Articles | Volume 15, issue 2
https://doi.org/10.5194/cp-15-795-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-795-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity of a leaf gas-exchange model for estimating paleoatmospheric CO2 concentration
Department of Earth and Environmental Sciences, Wesleyan University,
Middletown, Connecticut, USA
Kylen M. Moynihan
Department of Earth and Environmental Sciences, Wesleyan University,
Middletown, Connecticut, USA
Melissa L. McKee
Department of Earth and Environmental Sciences, Wesleyan University,
Middletown, Connecticut, USA
Liliana Londoño
Smithsonian Tropical Research Institute, Balboa, Ancón, Republic
of Panamá
Peter J. Franks
Faculty of Agriculture and Environment, University of Sydney, Sydney,
New South Wales, Australia
Related authors
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Cited articles
Arvidson, R. S., Mackenzie, F. T., and Guidry, M. W.: Geologic history of
seawater: A MAGic approach to carbon chemistry and ocean ventilation, Chem.
Geol., 362, 287–304, https://doi.org/10.1016/j.chemgeo.2013.10.012, 2013.
Barclay, R. S. and Wing, S. L.: Improving the Ginkgo CO2
barometer: implications for the early Cenozoic atmosphere,
Earth Planet. Sci. Lett., 439, 158–171, https://doi.org/10.1016/j.epsl.2016.01.012,
2016.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting linear
mixed-effects models using lme4, J. Stat. Softw., 67, 1–48,
https://doi.org/10.18637/jss.v067.i01, 2015.
Beerling, D. J.: Evolutionary responses of land plants to atmospheric
CO2, in: A History of Atmospheric CO2 and Its Effects on
Plants, Animals, and Ecosystems, edited by: Ehleringer, J. R., Cerling, T.
E., and Dearing, M. D., Springer, New York, 114–132, 2005.
Beerling, D. J., Fox, A., and Anderson, C. W.: Quantitative uncertainty
analyses of ancient atmospheric CO2 estimates from fossil leaves,
Am. J. Sci., 309, 775–787, https://doi.org/10.2475/09.2009.01, 2009.
Beerling, D. J., Lake, J. A., Berner, R. A., Hickey, L. J., Taylor, D. W.,
and Royer, D. L.: Carbon isotope evidence implying high O2∕CO2
ratios in the Permo-Carboniferous atmosphere, Geochimica et Cosmochimica
Acta, 66, 3757–3767, https://doi.org/10.1016/S0016-7037(02)00901-8, 2002.
Bernacchi, C. J., Pimentel, C., and Long, S. P.: In vivo temperature
response functions of parameters required to model RuBP-limited
photosynthesis, Plant Cell Environ., 26, 1419–1430, https://doi.org/10.1046/j.0016-8025.2003.01050.x, 2003.
Berner, R. A.: Phanerozoic atmospheric oxygen: new results using the
GEOCARBSULF model, Am. J. Sci., 309, 603-606, https://doi.org/10.2475/07.2009.03, 2009.
Berner, R. A., Beerling, D. J., Dudley, R., Robinson, J. M., and Wildman, R.
A.: Phanerozoic atmospheric oxygen, Annu. Rev. Earth Pl Sc., 31, 105–134,
https://doi.org/10.1146/annurev.earth.31.100901.141329, 2003.
Breecker, D. O., Sharp, Z. D., and McFadden, L. D.: Seasonal bias in the
formation and stable isotopic composition of pedogenic carbonate in modern
soils from central New Mexico, USA, Geol. Soc. Am. Bull.,
121, 630–640, https://doi.org/10.1130/B26413.1, 2009.
Broadmeadow, M., Griffiths, H., Maxwell, C., and Borland, A.: The carbon
isotope ratio of plant organic material reflects temporal and spatial
variations in CO2 within tropical forest formations in Trinidad,
Oecologia, 89, 435–441, https://doi.org/10.1007/BF00317423,
1992.
Buchmann, N., Guehl, J.-M., Barigah, T., and Ehleringer, J. R.: Interseasonal
comparison of CO2 concentrations, isotopic composition, and carbon
dynamics in an Amazonian rainforest (French Guiana), Oecologia, 110, 120–131,
doi10.1007/s004420050140, 1997.
doi10.1007/s004420050140, 1997.
Burnham, R. J., Wing, S. L., and Parker, G. G.: The reflection of deciduous
forest communities in leaf litter: implications for autochthonous litter
assemblages from the fossil record, Paleobiology, 18,
30–49, https://doi.org/10.1017/S0094837300012203, 1992.
Cerling, T. E.: Stable carbon isotopes in palaeosol carbonates, Special
Publications of the International Association of Sedimentologists, 27, 43–60,
1999.
Chaloner, W. G. and McElwain, J.: The fossil plant record and global climatic
change, Rev. Palaeobot. Palyno., 95, 73–82,
https://doi.org/10.1016/S0034-6667(96)00028-0, 1997.
Crifò, C., Currano, E. D., Baresch, A., and Jaramillo, C.: Variations in
angiosperm leaf vein density have implications for interpreting life form in
the fossil record, Geology, 42, 919–922, https://doi.org/10.1130/g35828.1, 2014.
Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., and Freeman, K.
H.: Global patterns in leaf 13C discrimination and implications for
studies of past and future climate, P. Natl. Acad.
Sci. USA, 107, 5738–5743, https://doi.org/10.1073/pnas.0910513107, 2010.
Dilcher, D. L.: A paleoclimatic interpretation of the Eocene floras of
southeastern North America, in: Vegetation and Vegetational History of
Northern Latin America, edited by: Graham, A., Elsevier, Amsterdam, 39–53,
1973.
Doria, G., Royer, D. L., Wolfe, A. P., Fox, A., Westgate, J. A., and
Beerling, D. J.: Declining atmospheric CO2 during the late Middle
Eocene climate transition, Am. J. Sci., 311, 63–75,
https://doi.org/10.2475/01.2011.03, 2011.
Dow, G. J., Bergmann, D. C., and Berry, J. A.: An integrated model of
stomatal development and leaf physiology, New Phytol., 201, 1218–1226,
https://doi.org/10.1111/nph.12608, 2014.
Dunn, R. E., Strömberg, C. A. E., Madden, R. H., Kohn, M. J., and
Carlini, A. A.: Linked canopy, climate, and faunal change in the Cenozoic of
Patagonia, Science, 347, 258–261, https://doi.org/10.1126/science.1260947, 2015.
Erdei, B., Utescher, T., Hably, L., Tamás, J., Roth-Nebelsick, A., and
Grein, M.: Early Oligocene continental climate of the Palaeogene Basin
(Hungary and Slovenia) and the surrounding area, Turk. J. Earth Sci., 21, 153–186,
https://doi.org/10.3906/yer-1005-29,
2012.
Farquhar, G., von Caemmerer, S., and Berry, J.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta,
149, 78–90, https://doi.org/10.1007/BF00386231, 1980.
Farquhar, G. D. and Sharkey, T. D.: Stomatal conductance and photosynthesis,
Ann. Rev. Plant Physio., 33, 317–345, https://doi.org/10.1146/annurev.pp.33.060182.001533, 1982.
Farquhar, G. D., O'Leary, M. H., and Berry, J. A.: On the relationship
between carbon isotope discrimination and the intercellular carbon dioxide
concentration in leaves, Aust. J. Plant Physiol., 9, 121–137,
https://doi.org/10.1071/PP9820121, 1982.
Ferguson, D. K.: The origin of leaf-assemblages – new light on an old
problem, Rev. Palaeobot. Palyno, 46, 117–188, https://doi.org/10.1016/0034-6667(85)90041-7, 1985.
Francey, R., Gifford, R., Sharkey, T., and Weir, B.: Physiological influences
on carbon isotope discrimination in huon pine (Lagarostrobos franklinii), Oecologia, 66, 211–218, https://doi.org/10.1007/BF00379857, 1985.
Franks, P. J., Leitch, I. J., Ruszala, E. M., Hetherington, A. M., and
Beerling, D. J.: Physiological framework for adaptation of stomata to
CO2 from glacial to future concentrations, Philos. T. R. Soc. B,
367, 537–546, https://doi.org/10.1098/rstb.2011.0270, 2012.
Franks, P. J., Royer, D. L., Beerling, D. J., Van de Water, P. K., Cantrill,
D. J., Barbour, M. M., and Berry, J. A.: New constraints on atmospheric
CO2 concentration for the Phanerozoic, Geophys. Res. Lett.,
41, 4685–4694, https://doi.org/10.1002/2014gl060457, 2014.
Givnish, T. J.: Ecological aspects of plant morphology: leaf form in relation
to environment, Acta Biotheor., 27, 83–142, 1978.
Givnish, T. J.: Adaptation to sun and shade: a whole-plant perspective,
Aust. J. Plant Physiol., 15, 63–92, https://doi.org/10.1071/PP9880063, 1988.
Glasspool, I. J. and Scott, A. C.: Phanerozoic concentrations of atmospheric
oxygen reconstructed from sedimentary charcoal, Nat. Geosci., 3,
627–630, https://doi.org/10.1038/ngeo923, 2010.
Graham, H. V., Patzkowsky, M. E., Wing, S. L., Parker, G. G., Fogel, M. L.,
and Freeman, K. H.: Isotopic characteristics of canopies in simulated leaf
assemblages, Geochim. Cosmochim. Ac., 144, 82–95,
doi10.1016/j.gca.2014.08.032, 2014.
doi10.1016/j.gca.2014.08.032, 2014.
Grein, M., Utescher, T., Wilde, V., and Roth-Nebelsick, A.: Reconstruction of
the middle Eocene climate of Messel using palaeobotanical data, Neues. Jahrb. Geol. P.-A., 260, 305–318,
https://doi.org/10.1127/0077-7749/2011/0139, 2011a.
Grein, M., Konrad, W., Wilde, V., Utescher, T., and Roth-Nebelsick, A.:
Reconstruction of atmospheric CO2 during the early Middle Eocene by
application of a gas exchange model to fossil plants from the Messel
Formation, Germany, Palaeogeogr. Palaeocl., 309,
383–391, https://doi.org/10.1016/j.palaeo.2011.07.008, 2011b.
Grein, M., Oehm, C., Konrad, W., Utescher, T., Kunzmann, L., and
Roth-Nebelsick, A.: Atmospheric CO2 from the late Oligocene to early
Miocene based on photosynthesis data and fossil leaf characteristics,
Palaeogeogr. Palaeocl., 374, 41–51, https://doi.org/10.1016/j.palaeo.2012.12.025, 2013.
Hashimoto, S., Tanaka, N., Suzuki, M., Inoue, A., Takizawa, H., Kosaka, I.,
Tanaka, K., Tantasirin, C., and Tangtham, N.: Soil respiration and soil
CO2 concentration in a tropical forest, Thailand, J. For. Res.-Jpn.,
9, 75–79, https://doi.org/10.1007/s10310-003-0046-y, 2004.
Haworth, M., Heath, J., and McElwain, J. C.: Differences in the response
sensitivity of stomatal index to atmospheric CO2 among four genera of
Cupressaceae conifers, Ann. Bot.-London, 105, 411–418, https://doi.org/10.1093/aob/mcp309, 2010.
Helliker, B. R. and Richter, S. L.: Subtropical to boreal convergence of
tree-leaf temperatures, Nature, 454, 511–514, https://doi.org/10.1038/nature07031, 2008.
Hirano, T., Kim, H., and Tanaka, Y.: Long-term half-hourly measurement of
soil CO2 concentration and soil respiration in a temperate deciduous
forest, J. Geophys. Res., 108, 4631, https://doi.org/10.1029/2003JD003766, 2003.
Holtum, J. and Winter, K.: Are plants growing close to the floors of tropical
forests exposed to markedly elevated concentrations of carbon dioxide?,
Aust. J. Bot., 49, 629–636, https://doi.org/10.1071/BT00054, 2001.
Jones, H. G.: Plants and Microclimate, Cambridge University Press, Cambridge,
1992.
Keeling, C. D.: The concentration and isotopic abundances of atmospheric
carbon dioxide in rural areas, Geochim. Cosmochim. Ac., 13, 322–334,
https://doi.org/10.1016/0016-7037(58)90033-4, 1958.
Konrad, W., Roth-Nebelsick, A., and Grein, M.: Modelling of stomatal density
response to atmospheric CO2, J. Theor. Biol., 253,
638–658, https://doi.org/10.1016/j.jtbi.2008.03.032, 2008.
Konrad, W., Katul, G., Roth-Nebelsick, A., and Grein, M.: A reduced order
model to analytically infer atmospheric CO2 concentration from
stomatal and climate data, Adv. Water Resour., 104, 145–157,
https://doi.org/10.1016/j.advwatres.2017.03.018, 2017.
Kowalczyk, J. B., Royer, D. L., Miller, I. M., Anderson, C. W., Beerling, D.
J., Franks, P. J., Grein, M., Konrad, W., Roth-Nebelsick, A., Bowring, S. A.,
Johnson, K. R., and Ramezani, J.: Multiple proxy estimates of atmospheric
CO2 from an early Paleocene rainforest, Paleoceanogr.
Paleoclimatol., 33, 1427–1438, https://doi.org/10.1029/2018PA003356, 2018.
Kürschner, W. M.: The anatomical diversity of recent and fossil leaves of
the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea
Goeppert)-implications for their use as biosensors of palaeoatmospheric
CO2 levels, Rev. Palaeobot. Palyno., 96, 1–30,
https://doi.org/10.1016/S0034-6667(96)00051-6, 1997.
Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B.: lmerTest
package: tests in linear mixed effects models, J. Stat. Softw., 82, 1–26,
https://doi.org/10.18637/jss.v082.i13, 2017.
Lei, X., Du, Z., Du, B., Zhang, M., and Sun, B.: Middle Cretaceous
pCO2 variation in Yumen, Gansu Province and its response to the
climate events, Acta Geol. Sin.-Engl., 92, 801–813, https://doi.org/10.1111/1755-6724.13555, 2018.
Lenton, T. M., Daines, S. J., and Mills, B. J. W.: COPSE reloaded: an
improved model of biogeochemical cycling over Phanerozoic time, Earth-Sci.
Rev., 178, 1–28, https://doi.org/10.1016/j.earscirev.2017.12.004, 2018.
Lloyd, J., Kruijt, B., Hollinger, D. Y., Grace, J., Francey, R. J., Wong,
S.-C., Kelliher, F. M., Miranda, A. C., Farquhar, G. D., and Gash, J.:
Vegetation effects on the isotopic composition of atmospheric CO2 at
local and regional scales: theoretical aspects and a comparison between rain
forest in Amazonia and a boreal forest in Siberia, Aust. J.
Plant Physio., 23, 371–399, https://doi.org/10.1071/PP9960371, 1996.
Londoño, L., Royer, D. L., Jaramillo, C., Escobar, J., Foster, D. A.,
Cárdenas-Rozo, A. L., and Wood, A.: Early Miocene CO2 estimates
from a Neotropical fossil assemblage exceed 400 ppm, Am. J.
Bot., 105, 1929–1937, https://doi.org/10.1002/ajb2.1187, 2018.
Marrero, T. R. and Mason, E. A.: Gaseous diffusion coefficients, J.
Phys. Chem. Ref. Data, 1, 3–118, https://doi.org/10.1063/1.3253094, 1972.
Maxbauer, D. P., Royer, D. L., and LePage, B. A.: High Arctic forests during
the middle Eocene supported by moderate levels of atmospheric CO2,
Geology, 42, 1027–1030, https://doi.org/10.1130/g36014.1, 2014.
McElwain, J. C.: Do fossil plants signal palaeoatmospheric CO2
concentration in the geological past?, Philos. T. R. Soc. B, 353,
83–96, https://doi.org/10.1098/rstb.1998.0193, 1998.
McElwain, J. C. and Chaloner, W. G.: Stomatal density and index of fossil
plants track atmospheric carbon dioxide in the Palaeozoic, Ann. Bot.,
76, 389–395, https://doi.org/10.1006/anbo.1995.1112, 1995.
McElwain, J. C. and Chaloner, W. G.: The fossil cuticle as a skeletal record
of environmental change, Palaios, 11, 376–388, https://doi.org/10.2307/3515247, 1996.
McElwain, J. C., Montañez, I., White, J. D., Wilson, J. P., and Yiotis,
C.: Was atmospheric CO2 capped at 1000 ppm over the past 300 million
years?, Palaeogeogr. Palaeocl., 441, 653–658,
https://doi.org/10.1016/j.palaeo.2015.10.017, 2016.
Medina, E., Montes, G., Cuevas, E., and Rokzandic, Z.: Profiles of
CO2 concentration and δ13C values in tropical rain
forests of the upper Rio Negro Basin, Venezuela, J. Trop. Ecol., 2, 207–217,
https://doi.org/10.1017/S0266467400000821, 1986.
Michaletz, S. T., Weiser, M. D., Zhou, J., Kaspari, M., Helliker, B. R., and
Enquist, B. J.: Plant thermoregulation: energetics, trait-environment
interactions, and carbon economics, Trends Ecol. Evol., 30,
714–724, https://doi.org/10.1016/j.tree.2015.09.006, 2015.
Michaletz, S. T., Weiser, M. D., McDowell, N. G., Zhou, J., Kaspari, M.,
Helliker, B. R., and Enquist, B. J.: The energetic and carbon economic
origins of leaf thermoregulation, Nat. Plants, 2, 16129,
https://doi.org/10.1038/nplants.2016.129, 2016.
Milligan, J. N., Royer, D. L., Franks, P. J., Upchurch, G. R., and McKee, M.
L.: No evidence for a large atmospheric CO2 spike across the
Cretaceous-Paleogene boundary, Geophys. Res. Lett., 46, 3462–3472,
https://doi.org/10.1029/2018GL081215, 2019.
Mills, B. J. W., Belcher, C. M., Lenton, T. M., and Newton, R. J.: A modeling
case for high atmospheric oxygen concentrations during the Mesozoic and
Cenozoic, Geology, 44, 1023–1026, https://doi.org/10.1130/g38231.1, 2016.
Montañez, I. P., McElwain, J. C., Poulsen, C. J., White, J. D.,
DiMichele, W. A., Wilson, J. P., Griggs, G., and Hren, M. T.: Climate,
and terrestrial carbon cycle linkages during late Palaeozoic
glacial-interglacial cycles, Nat. Geosci., 9, 824–828, https://doi.org/10.1038/ngeo2822, 2016.
Munger, W. and Hadley, J.: CO2 profile at Harvard Forest HEM and LPH
towers since 2009, Harvard Forest Data Archive: HF197, available at:
http://harvardforest.fas.harvard.edu:8080/exist/apps/datasets/showData.html?id=hf197
(last access: 12 April 2019), 2017.
NOAA/ESRL: https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html, last
access: 12 April 2019.
Porter, A. S., Yiotis, C., Montañez, I. P., and McElwain, J. C.:
Evolutionary differences in Δ13C detected between spore and seed
bearing plants following exposure to a range of atmospheric
O2:CO2 ratios: implications for paleoatmosphere
reconstruction, Geochim. Cosmochim. Ac., 213, 517–533,
https://doi.org/10.1016/j.gca.2017.07.007, 2017.
Quay, P., King, S., Wilbur, D., Wofsy, S., and Rickey, J.: 13C ∕ 12C
of atmospheric CO2 in the Amazon Basin: forest and river sources,
J. Geophys. Res., 94, 18327–18336, https://doi.org/10.1029/JD094iD15p18327, 1989.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 12 April 2019), 2016.
Reichgelt, T., D'Andrea, W. J., and Fox, B. R. S.: Abrupt plant physiological
changes in southern New Zealand at the termination of the Mi-1 event reflect
shifts in hydroclimate and pCO2, Earth Planet. Sc. Lett., 455, 115–124,
https://doi.org/10.1016/j.epsl.2016.09.026, 2016.
Richey, J. D., Upchurch, G. R., Montañez, I. P., Lomax, B. H., Suarez, M.
B., Crout, N. M. J., Joeckel, R. M., Ludvigson, G. A., and Smith, J. J.:
Changes in CO2 during Ocean Anoxic Event 1d indicate similarities to
other carbon cycle perturbations, Earth Planet. Sc. Lett., 491,
172–182, https://doi.org/10.1016/j.epsl.2018.03.035, 2018.
Roeske, C. and O'Leary, M. H.: Carbon isotope effects on enzyme-catalyzed
carboxylation of ribulose bisphosphate, Biochemistry, 23, 6275–6284,
doi10.1021/bi00320a058, 1984.
doi10.1021/bi00320a058, 1984.
Roth-Nebelsick, A., Grein, M., Utescher, T., and Konrad, W.: Stomatal pore
length change in leaves of Eotrigonobalanus furcinervis (Fagaceae)
from the Late Eocene to the Latest Oligocene and its impact on gas exchange
and CO2 reconstruction, Rev. Palaeobot. Palyno., 174,
106–112, https://doi.org/10.1016/j.revpalbo.2012.01.001, 2012.
Roth-Nebelsick, A., Oehm, C., Grein, M., Utescher, T., Kunzmann, L.,
Friedrich, J.-P., and Konrad, W.: Stomatal density and index data of
Platanus neptuni leaf fossils and their evaluation as a CO2
proxy for the Oligocene, Rev. Palaeobot. Palyno., 206, 1–9,
https://doi.org/10.1016/j.revpalbo.2014.03.001, 2014.
Roth, J. and Dilcher, D.: Some considerations in leaf size and leaf margin
analysis of fossil leaves, Courier Forschungsinstitut Senckenberg, 30,
165–171, 1978.
Royer, D. L.: Stomatal density and stomatal index as indicators of
paleoatmospheric CO2 concentration, Rev. Palaeobot.
Palyno., 114, 1–28, https://doi.org/10.1016/S0034-6667(00)00074-9, 2001.
Royer, D. L. and Hren, M. T.: Carbon isotopic fractionation between whole
leaves and cuticle, Palaios, 32, 199–205, https://doi.org/10.2110/palo.2016.073, 2017.
Royer, D. L., Miller, I. M., Peppe, D. J., and Hickey, L. J.: Leaf economic
traits from fossils support a weedy habit for early angiosperms, American
J. Bot., 97, 438–445, https://doi.org/10.3732/ajb.0900290, 2010.
Sack, L. and Scoffoni, C.: Leaf venation: structure, function, development,
evolution, ecology and applications in the past, present and future, New
Phytol., 198, 983–1000, https://doi.org/10.1111/nph.12253,
2013.
Sack, L., Melcher, P. J., Liu, W. H., Middleton, E., and Pardee, T.: How
strong is intracanopy leaf plasticity in temperate deciduous trees?, Am.
J. Bot., 93, 829–839, https://doi.org/10.3732/ajb.93.6.829, 2006.
Schubert, B. A. and Jahren, A. H.: Incorporating the effects of
photorespiration into terrestrial paleoclimate reconstruction, Earth-Sci.
Rev., 177, 637–642, https://doi.org/10.1016/j.earscirev.2017.12.008, 2018.
Smith, R. Y., Greenwood, D. R., and Basinger, J. F.: Estimating
paleoatmospheric pCO2 during the Early Eocene Climatic Optimum from
stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia,
Canada, Palaeogeogr. Palaeocl., 293, 120–131, https://doi.org/10.1016/j.palaeo.2010.05.006, 2010.
Song, X., Barbour, M. M., Saurer, M., and Helliker, B. R.: Examining the
large-scale convergence of photosynthesis-weighted tree leaf temperatures
through stable oxygen isotope analysis of multiple data sets, New
Phytol., 192, 912–924, https://doi.org/10.1111/j.1469-8137.2011.03851.x, 2011.
Sotta, E. D., Meir, P., Malhi, Y., Donato nobre, A., Hodnett, M., and Grace,
J.: Soil CO2 efflux in a tropical forest in the central Amazon,
Glob. Change Biol., 10, 601–617, https://doi.org/10.1111/j.1529-8817.2003.00761.x, 2004.
Spicer, R. A.: The importance of depositional sorting to the biostratigraphy
of plant megafossils, in: Biostratigraphy of Fossil Plants: Successional and
Paleoecological Analyses, edited by: Dilcher, D. and Taylor, T., Dowden,
Hutchinson, and Ross, Stroudsburg, PA, 171–183, 1980.
Sternberg, L., Mulkey, S. S., and Wright, S. J.: Ecological interpretation of
leaf carbon isotope ratios: influence of respired carbon dioxide, Ecology,
70, 1317–1324, https://doi.org/10.2307/1938191, 1989.
Stevens, P. F.: Angiosperm Phylogeny Website. Version 13,
http://www.mobot.org/MOBOT/research/APweb/ (last access: 12 April
2019), 2001.
Talbert, C. M. and Holch, A. E.: A study of the lobing of sun and shade
leaves, Ecology, 38, 655–658, https://doi.org/10.2307/1943135,
1957.
Tcherkez, G.: How large is the carbon isotope fractionation of the
photorespiratory enzyme glycine decarboxylase?, Funct. Plant Biol., 33,
911–920, https://doi.org/10.1071/FP06098, 2006.
Tesfamichael, T., Jacobs, B., Tabor, N., Michel, L., Currano, E., Feseha, M.,
Barclay, R., Kappelman, J., and Schmitz, M.: Settling the issue of
“decoupling” between atmospheric carbon dioxide and global temperature:
[CO2]atm reconstructions across the warming Paleogene-Neogene
divide, Geology, 45, 999–1002, https://doi.org/10.1130/G39048.1, 2017.
Tipple, B. J., Meyers, S. R., and Pagani, M.: Carbon isotope ratio of
Cenozoic CO2: a comparative evaluation of available geochemical
proxies, Paleoceanography, 25, PA3202, https://doi.org/10.1029/2009PA001851, 2010.
Uhl, D. and Mosbrugger, V.: Leaf venation density as a climate and
environmental proxy: a critical review and new data, Palaeogeogr. Palaeocl.,
149, 15–26, https://doi.org/10.1016/S0031-0182(98)00189-8, 1999.
Von Caemmerer, S.: Biochemical Models of Leaf Photosynthesis, CSIRO
Publishing, Collingwood, Australia, 2000.
Wang, Y., Ito, A., Huang, Y., Fukushima, T., Wakamatsu, N., and Momohara, A.:
Reconstruction of altitudinal transportation range of leaves based on
stomatal evidence: an example of the Early Pleistocene Fagus leaf
fossils from central Japan, Palaeogeogr. Palaeocl., 505, 317–325,
https://doi.org/10.1016/j.palaeo.2018.06.011, 2018.
Woodward, F. I.: Stomatal numbers are sensitive to increases in CO2
from pre-industrial levels, Nature, 327, 617–618, https://doi.org/10.1038/327617a0, 1987.
Woodward, F. I. and Kelly, C. K.: The influence of CO2 concentration
on stomatal density, New Phytol., 131, 311–327, https://doi.org/10.1111/j.1469-8137.1995.tb03067.x, 1995.
Wynn, J. G.: Towards a physically based model of CO2-induced stomatal
frequency response, New Phytol., 157, 391–398, https://doi.org/10.1046/j.1469-8137.2003.00702.x, 2003.
Short summary
Plant-based proxies for estimating atmospheric CO2 in the geologic past are becoming more popular. Here we test the reliability of a method based on leaf gas-exchange principles in a wide range of living plants. Overall, the average error rate (~28 %) is broadly similar to other paleo-CO2 proxies. Our results should increase confidence in using this recently developed method.
Plant-based proxies for estimating atmospheric CO2 in the geologic past are becoming more...