Articles | Volume 15, issue 5
https://doi.org/10.5194/cp-15-1825-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-1825-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identifying teleconnections and multidecadal variability of East Asian surface temperature during the last millennium in CMIP5 simulations
Satyaban B. Ratna
CORRESPONDING AUTHOR
Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Timothy J. Osborn
Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Manoj Joshi
Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Bao Yang
Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
Jianglin Wang
Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
Related authors
No articles found.
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel Westervelt, Andrew Williams, and Bjørn H. Samset
EGUsphere, https://doi.org/10.5194/egusphere-2024-1946, https://doi.org/10.5194/egusphere-2024-1946, 2024
Short summary
Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that while there is regional warming, the global 2020–2040 temperature rise is only +0.03°C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
Nele Reyniers, Qianyu Zha, Nans Addor, Timothy J. Osborn, Nicole Forstenhäusler, and Yi He
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-132, https://doi.org/10.5194/essd-2024-132, 2024
Preprint under review for ESSD
Short summary
Short summary
We present two sets of bias-corrected UK Climate Projections 2018 (UKCP18) regional projections of temperature, precipitation and potential evapotranspiration for 1981–2080. All 12 members of the UKCP18 regional ensemble were bias-corrected using (1) empirical quantile mapping and (2) a change-preserving variant. The two methods were evaluated and compared to guide dataset application. The datasets improve the usability of UKCP18 and serve as a reference for selecting bias correction methods.
William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock
Weather Clim. Dynam., 5, 357–367, https://doi.org/10.5194/wcd-5-357-2024, https://doi.org/10.5194/wcd-5-357-2024, 2024
Short summary
Short summary
Changes to sea surface temperatures in the extratropical North Pacific are driven partly by patterns of local atmospheric circulation, such as the Aleutian Low. We show that an intensification of the Aleutian Low could contribute to small changes in temperatures across the equatorial Pacific via the initiation of two mechanisms. The effect, although significant, is unlikely to explain fully the recently observed multi-year shift of a pattern of climate variability across the wider Pacific.
Thomas Wilder, Xiaoming Zhai, David Munday, and Manoj Joshi
Ocean Sci., 19, 1669–1686, https://doi.org/10.5194/os-19-1669-2023, https://doi.org/10.5194/os-19-1669-2023, 2023
Short summary
Short summary
The dissipation rate of eddy energy in current energy budget-based eddy parameterisations is still relatively unconstrained, leading to uncertainties in ocean transport and ocean heat uptake. Here, we derive a dissipation rate due to the interaction of surface winds and eddy currents, a process known to significantly damp ocean eddies. The dissipation rate is quantified using seasonal climatology and displays wide spatial variability, with some of the largest values found in the Southern Ocean.
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023, https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
Short summary
The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane and affects ocean tides. In this work we use a climate model to examine the effect of this cycle on the ocean, surface, and atmosphere. The timing of anomalies is consistent with the so-called slowdown in global warming and has implications for when global temperatures will exceed 1.5 ℃ above pre-industrial levels. Regional anomalies have implications for seasonal climate areas such as Europe.
Nele Reyniers, Timothy J. Osborn, Nans Addor, and Geoff Darch
Hydrol. Earth Syst. Sci., 27, 1151–1171, https://doi.org/10.5194/hess-27-1151-2023, https://doi.org/10.5194/hess-27-1151-2023, 2023
Short summary
Short summary
In an analysis of future drought projections for Great Britain based on the Standardised Precipitation Index and the Standardised Precipitation Evapotranspiration Index, we show that the choice of drought indicator has a decisive influence on the resulting projected changes in drought characteristics, although both result in increased drying. This highlights the need to understand the interplay between increasing atmospheric evaporative demand and drought impacts under a changing climate.
Jack Giddings, Karen J. Heywood, Adrian J. Matthews, Manoj M. Joshi, Benjamin G. M. Webber, Alejandra Sanchez-Franks, Brian A. King, and Puthenveettil N. Vinayachandran
Ocean Sci., 17, 871–890, https://doi.org/10.5194/os-17-871-2021, https://doi.org/10.5194/os-17-871-2021, 2021
Short summary
Short summary
Little is known about the impact of chlorophyll on SST in the Bay of Bengal (BoB). Solar irradiance measured by an ocean glider and three Argo floats is used to determine the effect of chlorophyll on BoB SST during the 2016 summer monsoon. The Southwest Monsoon Current has high chlorophyll concentrations (∼0.5 mg m−3) and shallow solar penetration depths (∼14 m). Ocean mixed layer model simulations show that SST increases by 0.35°C per month, with the potential to influence monsoon rainfall.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Jack Giddings, Adrian J. Matthews, Nicholas P. Klingaman, Karen J. Heywood, Manoj Joshi, and Benjamin G. M. Webber
Weather Clim. Dynam., 1, 635–655, https://doi.org/10.5194/wcd-1-635-2020, https://doi.org/10.5194/wcd-1-635-2020, 2020
Short summary
Short summary
The impact of chlorophyll on the southwest monsoon is unknown. Here, seasonally varying chlorophyll in the Bay of Bengal was imposed in a general circulation model coupled to an ocean mixed layer model. The SST increases by 0.5 °C in response to chlorophyll forcing and shallow mixed layer depths in coastal regions during the inter-monsoon. Precipitation increases significantly to 3 mm d-1 across Myanmar during June and over northeast India and Bangladesh during October, decreasing model bias.
Conor Murphy, Ciaran Broderick, Timothy P. Burt, Mary Curley, Catriona Duffy, Julia Hall, Shaun Harrigan, Tom K. R. Matthews, Neil Macdonald, Gerard McCarthy, Mark P. McCarthy, Donal Mullan, Simon Noone, Timothy J. Osborn, Ciara Ryan, John Sweeney, Peter W. Thorne, Seamus Walsh, and Robert L. Wilby
Clim. Past, 14, 413–440, https://doi.org/10.5194/cp-14-413-2018, https://doi.org/10.5194/cp-14-413-2018, 2018
Short summary
Short summary
This work reconstructs a continuous 305-year rainfall record for Ireland. The series reveals remarkable variability in decadal rainfall – far in excess of the typical period of digitised data. Notably, the series sheds light on exceptionally wet winters in the 1730s and wet summers in the 1750s. The derived record, one of the longest continuous series in Europe, offers a firm basis for benchmarking other long-term records and reconstructions of past climate both locally and across Europe.
M. Joshi, M. Stringer, K. van der Wiel, A. O'Callaghan, and S. Fueglistaler
Geosci. Model Dev., 8, 1157–1167, https://doi.org/10.5194/gmd-8-1157-2015, https://doi.org/10.5194/gmd-8-1157-2015, 2015
T. J. Osborn and P. D. Jones
Earth Syst. Sci. Data, 6, 61–68, https://doi.org/10.5194/essd-6-61-2014, https://doi.org/10.5194/essd-6-61-2014, 2014
Related subject area
Subject: Teleconnections | Archive: Historical Records | Timescale: Centennial-Decadal
Model and proxy evidence for coordinated changes in the hydroclimate of distant regions over the Last Millennium
Pedro José Roldán-Gómez, Jesús Fidel González-Rouco, Jason E. Smerdon, and Félix García-Pereira
Clim. Past, 19, 2361–2387, https://doi.org/10.5194/cp-19-2361-2023, https://doi.org/10.5194/cp-19-2361-2023, 2023
Short summary
Short summary
Analyses of reconstructed data suggest that the precipitation and availability of water have evolved in a similar way during the Last Millennium in different regions of the world, including areas of North America, Europe, the Middle East, southern Asia, northern South America, East Africa and the Indo-Pacific. To confirm this link between distant regions and to understand the reasons behind it, the information from different reconstructed and simulated products has been compiled and analyzed.
Cited articles
Ammann, C. M., Joos, F., Schimel, D., Otto-Bliesner, B., and Tomas, R.:
Solar influence on climate during the past millennium: Results from
transient simulations with the NCAR Climate System Model, P. Natl. Acad.
Sci. USA, 104, 3713, https://doi.org/10.1073/pnas.0605064103, 2007.
Atwood, A. R., Wu, E., Frierson, D. M. W., Battisti, D. S., and Sachs, J.
P.: Quantifying climate forcings and feedbacks over the last millennium in
the CMIP5-PMIP3, J. Climate, 29, 1161–1178, 2016.
Briffa, K. R., Jones, P. D., Schweingruber, F. H., and Osborn, T. J.:
Influence of volcanic eruptions on Northern Hemisphere summer temperature
over the past 600 years, Nature, 393, 450–455, 1998.
Buckley, B. M., Ummenhofer, C. C., D'Arrigo, R. D., Hansen, K. G., Truong,
L. H., Le, C. N., and Stahle, D. K.: Interdecadal Pacific Oscillation
reconstructed from trans-Pacific tree rings: 1350–2004 CE, Clim.
Dynam., 53, 3181–3196, https://doi.org/10.1007/s00382-019-04694-4, 2019.
Buntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V.,
Kaplan, J. O., Herzig, F., Heussner, K.-U., and Wanner, H.: 2500 years of
European climate variability and human susceptibility, Science, 331,
578–582, 2011.
Christiansen, B. and Ljungqvist, F. C.: Challenges and perspectives for
large-scale temperature reconstructions of the past two millennia, Rev. Geophys., 55, 40–96, 2017.
Coats, S. and Smerdon, J. E.: Climate variability: The Atlantic's internal
drum beat, Nat. Geosci., 10, 470–471, 2017.
Coats, S., Smerdon, J. E., Cook, B. I., and Seager, R.: Stationarity of the
tropical Pacific teleconnection to North America in CMIP5/PMIP3 model
simulations, Geophys. Res. Lett., 40, 4927–4932, 2013.
Cook, E. R., Krusic, P. J., Anchukaitis, K. J., Buckley, B. M.,
Nakatsuka, T., and Sano, M.: Tree-ring reconstructed summer
temperature anomalies for temperate East Asia since 800 C.E., Clim.
Dynam., 41, 2957–2972, 2013.
Crowley, T. J., Zielinski, G., Vinther, B., Udisti, R., Kreutz, K.,
Cole-Dai, J., and Castellano, E.: Volcanism and the Little IceAge, PAGES
Newslett., 16, 22–23, 2008.
Dai, A., Fyfe, J. C., Xie, S.-P., and Dai, X.: Decadal modulation of global
surface temperature by internal climate variability, Nat. Clim. Change, 5,
555–559, 2015.
Delaygue, G. and Bard, E.: An Antarctic view of Beryllium-10 and solar
activity for the past millennium, Clim. Dynam., 36, 2201–2218,
https://doi.org/10.1007/s00382-010-0795-1, 2011.
Delworth, T. L. and Mann, M. E.: Observed and simulated multidecadal
variability in the Northern Hemisphere, Clim. Dynam., 16, 661–676, 2000.
Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont,
O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp,
L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic,
A., Cugnet, D., de Noblet, N., Duval, J. P., Ethe, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J. Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M. P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madecm G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., and Viovy, N.: Climate change
projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5,
Clim. Dynam., 40, 2123–2165, 2013.
Fang, K., Cook, E., Guo, Z., Chen, D., Ou, T., and Zhao, Y.: Syncronous
multi-decadal climate variability of the whole Pacific areas revealed in
tree rings since 1567, Environ. Res. Lett., 13, 024016, https://doi.org/10.1088/1748-9326/aa9f74, 2018.
Fang, K., Guo, Z., Chen, D., Wang, L., Dong, Z., Zhou, F., Zhao, Y., Li, J.,
Li, Y., and Cao, X.: Interdecadal modulation of the Atlantic Multi-decadal
Oscillation (AMO) on southwest China's temperature over the past 250 years,
Clim. Dynam., 52, 2055–2065, https://doi.org/10.1007/s00382-018-4244-x, 2019.
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins,
W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Evaluation of Climate Models, in: Climate Change 2013: The Physical Science
Basis, Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 2013.
Fleming, L. E. and Anchukaitis, K. J.: North Pacific decadal variability in the
CMIP5 last millennium simulations, Clim. Dynam., 47, 3783–3801, https://doi.org/10.1007/s00382-016-3041-7, 2016.
Frank, D., Esper, J., Zorita, E., and Wilson, R.: A noodle, hockey stick,
and spaghetti plate: a perspective on highresolution paleoclimatology, WIREs
Climate Change, 1, 507–516, https://doi.org/10.1002/wcc.53, 2010.
Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the
past 1500 years: An improved ice core-based index for climate models, J.
Geophys. Res., 113, D231111, https://doi.org/10.1029/2008JD010239, 2008.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak,
K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh,
L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D.,
Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H.,
Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C.,
Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and
Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM
simulations for the coupled model intercomparison project phase 5, J. Adv.
Model. Earth Sy., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013.
Hegerl, G. and Zwiers, F.: Use of models in detection and attribution of
climate change, Wiley Interdiscip. Rev., Climate Change, 2, 570–591, 2011.
Jones, P. D. and Mann, M. E.: Climate over past millennia, Rev. Geophys.,
42, RG2002, https://doi.org/10.1029/2003RG000143, 2004.
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T. D.,
Vinther, B. M., Luterbacher, J., Wahl, E. R., Zwiers, F. W., Mann, M. E.,
Schmidt, G. A., Ammann, C. M., Buckley, B. M., Cobb, K. M., Esper, J.,
Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Kuttel, M.,
Mosley-Thompson, E., Overpeck, J. T., Riedwyl, N.,
Schulz, M., Tudhope, A. W., Villalba, R., Wanner, H., Wolff, E., and
Xoplaki, E.: High-resolution palaeoclimatology of the last millennium: a
review of current status and future prospects, Holocene, 19, 3–49,
2009.
Kerr, R. A.: A North Atlantic climate pacemaker for the centuries, Science,
288, 1984–1985, 2000.
Laepple, T. and Huybers, P. H.: Ocean surface temperature variability:
Large model–data differences at decadal and longer periods, P. Natl.
Acad. Sci. USA, 111, 16682–16687,
https://doi.org/10.1073/pnas.1412077111, 2014.
Landrum, L., Otto-Bliesner, B. L., Wahl, E. R., Conley, A., Lawrence, P. J.,
Rosenbloom, N., and Teng, H.: Last Millennium Climate and Its Variability in
CCSM4, J. Climate, 26, 1085–1111, https://doi.org/10.1175/JCLI-D-11-00326.1, 2013.
Li, X. L., Cheng, H., Tan, L. C., Ban, F. M., Sinha, A., Duan, W. H., Li, H.
Y., Zhang, H. W., Ning, Y. F., Kathtayat, G., and Edwards, R. L.: The East Asian
summer monsoon variability over the last 145 years inferred from the Shihua
Cave record, North China, Sci. Rep., 7, 7078, https://doi.org/10.1038/s41598-017-07251-3, 2017.
MacDonald, G. M. and Case, R. A.: Variations in the Pacific decadal
oscillation over the past millennium, Geophys. Res. Lett., 32, L08703,
https://doi.org/10.1029/2005GL022478, 2005.
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K.,
Shindell, D., Ammann, C., Faluvegi, G., and Ni, F.: Global signatures and
dynamical origins of the Little Ice Age and Medieval Climate Anomaly,
Science, 326, 1256–1260, 2009.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A
Pacific interdecadal climate oscillation with impacts on salmon production,
B. Am. Meteorol. Soc., 78, 1069–1079, 1997.
Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di
Lorenzo, E., Mantua, N. J., Miller, A. J., Minobe, S., and Nakamura, H.,
Schneider, N.: The Pacific decadal oscillation, revisited, J. Climate, 29, 4399–4427, https://doi.org/10.1175/JCLI-D-15-0508.1, 2016.
Parsons, L. A., Loope, G. R., Overpeck, J. T., Ault, T. R., Stouffer, R., and Cole, J.
E.: Temperature and precipitation variance in CMIP5 simulations and
paleoclimate records of the last millennium, J. Climate, 30, 8885–8912,
https://doi.org/10.1175/JCLI-D-16-0863.1, 2017.
Pausata, F. S. R., Chafik, L., Caballero, R., and Battisti, D. S.: Impacts
of a high-latitude volcanic eruption on AMOC and ENSO, P. Nat. Acad.
Sci. USA, 112, 13784–13788, https://doi.org/10.1073/pnas.1509153112, 2015.
Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A. C., and Budd, W. F.: The CSIRO Mk3L climate system model version 1.0 – Part 1: Description and evaluation, Geosci. Model Dev., 4, 483–509, https://doi.org/10.5194/gmd-4-483-2011, 2011.
Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A. C., and Budd, W. F.: The CSIRO Mk3L climate system model version 1.0 – Part 2: Response to external forcings, Geosci. Model Dev., 5, 649–682, https://doi.org/10.5194/gmd-5-649-2012, 2012.
Qian, C. C., Yu, J.-Y., and Chen, G.: Decadal summer drought frequency in
China: the increasing influence of the Atlantic Multi-decadal Oscillation,
Environ. Res. Lett., 9, 124004, https://doi.org/10.1088/1748-9326/9/12/124004, 2014.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003.
Schlesinger, M. E. and Ramankutty, N.: An oscillation in the global climate
system of period 65–70 years, Nature, 367, 723–726, 1994.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1), Geosci. Model Dev., 5, 185–191, https://doi.org/10.5194/gmd-5-185-2012, 2012.
Schurer, A. P., Hegerl, G. C., Mann, M. E., Tett, S. F. B., and Phipps, S.
J.: Separating forced from chaotic climate variability over the past
millennium, J. Climate, 26, 6954–6973, 2013.
Schurer, A. P., Tett, S. F. B., and Hegerl, G. C.: Small influence of solar
variability on climate over the past millennium, Nat. Geosci., 7, 104–108,
2014.
Shi, F., Ge, Q., Bao, Y., Li, J., Yang, F., Ljungqvist, F. C.,
Solomina, O., Nakatsuka, T., Wang, N., and Zhao, S.: A multi-proxy
reconstruction of spatial and temporal variations in Asian summer
temperatures over the last millennium, Climatic Change, 131, 663–676,
2015.
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G.,
Ludlow, F., Buntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer,
H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R.,
Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M., Schupbach, S.,
Steffensen, J. P., Vinther, B. M., and Woodruff, T. E.: Timing and climate
forcing of volcanic eruptions for the past 2,500 years, Nature, 523,
543–549, https://doi.org/10.1038/nature14565, 2015.
Smerdon, J. E. and Pollack, H. N.: Reconstructing Earth's surface
temperature over the past 2000 years: the science behind the headlines,
WIREs Clim. Change, 7, 746–771, https://doi.org/10.1002/wcc.418, 2016.
Smith, T. M. and Reynolds, R. W.: Improved extended reconstruction of SST
(1854–1997), J. Climate, 17, 2466– 2477, 2004.
Steinhilber, F., Beer, J., and Fröhlich, C.: Total solar irradiance
during the Holocene, Geophys. Res. Lett., 36, L19704,
https://doi.org/10.1029/2009GL040142, 2009.
Steinman, B. A., Mann, M. E., and Miller, S. K.: Atlantic and Pacific
multidecadal oscillations and Northern Hemisphere temperatures, Science,
347, 988–991, 2015.
Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile-Geay, J., Anderson, D. M., Steig, E. J., and Noone, D.: Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling, Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, 2019.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Trenberth, K. E. and Shea, D. J.: Atlantic hurricanes and natural
variability in 2005, Geophys. Res. Lett., 33, L12704,
https://doi.org/10.1029/2006GL026894, 2006.
Vieira, L. E. A., Solanki, S. K., Krivova, N. A., and Usoskin, I.: Evolution
of the solar irradiance during the Holocene, Astron. Astrophys., 531, A6,
https://doi.org/10.1051/0004-6361/201015843, 2011.
Wang, J., Yang, B., Ljungqvist, F. C., and Zhao, Y.: The relationship
between the Atlantic Multidecadal Oscillation and temperature variability in
China during the last millennium, J. Quaternary Sci., 28, 653–658,
https://doi.org/10.1002/jqs.2658, 2013.
Wang, J., Yang, B., Ljungqvist, F. C., Luterbacher, J., Osborn, T. J.,
Briffa, K. R., and Zorita, E.: Internal and external forcing of multidecadal
Atlantic climate variability over the past 1,200 years, Nat. Geosci., 10,
512–517, https://doi.org/10.1038/ngeo2962, 2017.
Wang, J., Yang, B., Osborn, T. J., Ljungqvist, F. C., Zhang, H., and
Luterbacher, J.: Causes of East Asian temperature multidecadal variability
since 850 CE, Geophys. Res. Lett., 45, 13485–13494,
https://doi.org/10.1029/2018GL080725, 2018.
Wang, Y.-M., Lean, J. L., and Sheeley Jr., N. R.: Modeling the Sun's
Magnetic Field and Irradiance since 1713, Astrophys. J., 625, 522–538,
https://doi.org/10.1086/429689, 2005.
Xin, X. G., Wu, T. W., Li, J. L., Zhi, W. Z., Li, W. P., and Wu, F. H.: How well
does BCC CSM1.1 reproduce the 20th century climate change over China?, Atmos.
Ocean. Sci. Lett., 6, 21–26, 2013.
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara,
M., Tanaka, T.Y., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu, S.,
Obata, A., Nakano, H., Koshiro, T., Ose, T., and Kitoh, A.: A new global climate
model of the Meteorological Research Institute: MRI-CGCM3 – Model
description and basic performance, J. Meteorol. Soc. Jpn., 90a, 23–64,
2012.
Zhang, H., Werner, J. P. García-Bustamante, E., González-Rouco, F.,
Wagner, S., Zorita, E., Fraedrich, K., Ljungqvist, F. C., Zhu, X., Xoplaki,
E., Chen, F., Duan, J., Ge, Q., Hao, Z., Ivanov, M., Schneider, L., Talento,
S., Wang, J., Yang, B., and Luterbacher, J.: East Asian warm season
temperature variations over the past two millennia, Sci. Rep., 8,
7702, https://doi.org/10.1038/s41598-018-26038-8, 2018.
Short summary
We examine the relationships in models and reconstructions between multidecadal variability of East Asian temperature and two extratropical modes of variability. The relationship between East Asian temperature and Pacific multidecadal variability is largely driven by internal variability, whereas with Atlantic multidecadal variability it is more strongly influenced by the presence or absence of external forcing. We discuss the implications for diagnosing teleconnections from reconstructions.
We examine the relationships in models and reconstructions between multidecadal variability of...