Articles | Volume 15, issue 5
https://doi.org/10.5194/cp-15-1741-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-1741-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Paleoenvironmental response of midlatitudinal wetlands to Paleocene–early Eocene climate change (Schöningen lignite deposits, Germany)
Katharina Methner
CORRESPONDING AUTHOR
Senckenberg Biodiversity and Climate Research Centre, 60325 Frankfurt am
Main, Germany
Olaf Lenz
Senckenberg Research Institute and Natural History Museum Frankfurt,
60325 Frankfurt am Main, Germany
Walter Riegel
Senckenberg Research Institute and Natural History Museum Frankfurt,
60325 Frankfurt am Main, Germany
Volker Wilde
Senckenberg Research Institute and Natural History Museum Frankfurt,
60325 Frankfurt am Main, Germany
Andreas Mulch
Senckenberg Biodiversity and Climate Research Centre, 60325 Frankfurt am
Main, Germany
Institute of Geosciences, Goethe University Frankfurt, 60438 Frankfurt am
Main, Germany
Related authors
Armelle Ballian, Maud J. M. Meijers, Isabelle Cojan, Damien Huyghe, Miguel Bernecker, Katharina Methner, Mattia Tagliavento, Jens Fiebig, and Andreas Mulch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2093, https://doi.org/10.5194/egusphere-2024-2093, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
During the Middle Miocene, the Earth transitioned from a warm period to a colder one, significantly impacting global ecosystems and climate patterns. We present a climate record (23–13 Ma) from northern Mediterranean soil carbonates in France, revealing dynamic temperature changes and suggesting early Mediterranean-like climate periods. Our climate record aligns well with terrestrial European and global marine records, enhancing our understanding of Miocene climate dynamics around the Alps.
Daniel Boateng, Sebastian G. Mutz, Armelle Ballian, Maud J. M. Meijers, Katharina Methner, Svetlana Botsyun, Andreas Mulch, and Todd A. Ehlers
Earth Syst. Dynam., 14, 1183–1210, https://doi.org/10.5194/esd-14-1183-2023, https://doi.org/10.5194/esd-14-1183-2023, 2023
Short summary
Short summary
We present model-based topographic sensitivity experiments that provide valuable constraints for interpreting past proxies and records of climate and tectonic processes. The study uses a climate model to quantify the response of regional climate and oxygen isotopic composition of precipitation to diachronous surface uplift scenarios across the European Alps. The results suggest that isotopic signal changes can be measured in geologic archives using stable isotope paleoaltimetry.
Olaf Klaus Lenz, Mara Montag, Volker Wilde, Katharina Methner, Walter Riegel, and Andreas Mulch
Clim. Past, 18, 2231–2254, https://doi.org/10.5194/cp-18-2231-2022, https://doi.org/10.5194/cp-18-2231-2022, 2022
Short summary
Short summary
We describe different carbon isotope excursions (CIEs) in an upper Paleocene to lower Eocene lignite succession (Schöningen, DE). The combination with a new stratigraphic framework allows for a correlation of distinct CIEs with long- and short-term thermal events of the last natural greenhouse period on Earth. Furthermore, changes in the peat-forming wetland vegetation are correlated with a CIE that can be can be related to the Paleocene–Eocene Thermal Maximum (PETM).
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Benita Putlitz, Andreas Mulch, Edwin Gnos, and Marco Herwegh
Eur. J. Mineral., 36, 879–898, https://doi.org/10.5194/ejm-36-879-2024, https://doi.org/10.5194/ejm-36-879-2024, 2024
Short summary
Short summary
We used U–Pb dating and Pb–Sr–O–H isotopes of hydrothermal epidote to characterize fluid circulation in the Aar Massif (central Swiss Alps). Our data support the hypothesis that Permian fluids exploited syn-rift extensional faults. In the Miocene during the Alpine orogeny, fluid sources were meteoric, sedimentary, and/or metamorphic water. Likely, Miocene shear zones were exploited for fluid circulation, with implications for the Sr isotope budget of the granitoids.
Konstantina Agiadi, Iuliana Vasiliev, Geanina Butiseacă, George Kontakiotis, Danae Thivaiou, Evangelia Besiou, Stergios Zarkogiannis, Efterpi Koskeridou, Assimina Antonarakou, and Andreas Mulch
Biogeosciences, 21, 3869–3881, https://doi.org/10.5194/bg-21-3869-2024, https://doi.org/10.5194/bg-21-3869-2024, 2024
Short summary
Short summary
Seven million years ago, the marine gateway connecting the Mediterranean Sea with the Atlantic Ocean started to close, and, as a result, water circulation ceased. To find out how this phenomenon affected the fish living in the Mediterranean Sea, we examined the changes in the isotopic composition of otoliths of two common fish species. Although the species living at the surface fared pretty well, the bottom-water fish starved and eventually became extinct in the Mediterranean.
Armelle Ballian, Maud J. M. Meijers, Isabelle Cojan, Damien Huyghe, Miguel Bernecker, Katharina Methner, Mattia Tagliavento, Jens Fiebig, and Andreas Mulch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2093, https://doi.org/10.5194/egusphere-2024-2093, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
During the Middle Miocene, the Earth transitioned from a warm period to a colder one, significantly impacting global ecosystems and climate patterns. We present a climate record (23–13 Ma) from northern Mediterranean soil carbonates in France, revealing dynamic temperature changes and suggesting early Mediterranean-like climate periods. Our climate record aligns well with terrestrial European and global marine records, enhancing our understanding of Miocene climate dynamics around the Alps.
Daniel Boateng, Sebastian G. Mutz, Armelle Ballian, Maud J. M. Meijers, Katharina Methner, Svetlana Botsyun, Andreas Mulch, and Todd A. Ehlers
Earth Syst. Dynam., 14, 1183–1210, https://doi.org/10.5194/esd-14-1183-2023, https://doi.org/10.5194/esd-14-1183-2023, 2023
Short summary
Short summary
We present model-based topographic sensitivity experiments that provide valuable constraints for interpreting past proxies and records of climate and tectonic processes. The study uses a climate model to quantify the response of regional climate and oxygen isotopic composition of precipitation to diachronous surface uplift scenarios across the European Alps. The results suggest that isotopic signal changes can be measured in geologic archives using stable isotope paleoaltimetry.
Olaf Klaus Lenz, Mara Montag, Volker Wilde, Katharina Methner, Walter Riegel, and Andreas Mulch
Clim. Past, 18, 2231–2254, https://doi.org/10.5194/cp-18-2231-2022, https://doi.org/10.5194/cp-18-2231-2022, 2022
Short summary
Short summary
We describe different carbon isotope excursions (CIEs) in an upper Paleocene to lower Eocene lignite succession (Schöningen, DE). The combination with a new stratigraphic framework allows for a correlation of distinct CIEs with long- and short-term thermal events of the last natural greenhouse period on Earth. Furthermore, changes in the peat-forming wetland vegetation are correlated with a CIE that can be can be related to the Paleocene–Eocene Thermal Maximum (PETM).
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Related subject area
Subject: Carbon Cycle | Archive: Terrestrial Archives | Timescale: Cenozoic
Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up
Alluvial record of an early Eocene hyperthermal within the Castissent Formation, the Pyrenees, Spain
Synchronizing early Eocene deep-sea and continental records – cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores
Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming
Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary
Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt
Annique van der Boon, Klaudia F. Kuiper, Robin van der Ploeg, Marlow Julius Cramwinckel, Maryam Honarmand, Appy Sluijs, and Wout Krijgsman
Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, https://doi.org/10.5194/cp-17-229-2021, 2021
Short summary
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Jeremy K. Caves Rugenstein, Miquel Poyatos-Moré, Cai Puigdefàbregas, Emmanuelle Chanvry, Julian Clark, Andrea Fildani, Eric Verrechia, Kalin Kouzmanov, Matthieu Harlaux, and Sébastien Castelltort
Clim. Past, 16, 227–243, https://doi.org/10.5194/cp-16-227-2020, https://doi.org/10.5194/cp-16-227-2020, 2020
Short summary
Short summary
A geochemical study of a continental section reveals a rapid global warming event (hyperthermal U), occurring ca. 50 Myr ago, only described until now in marine sediment cores. Documenting how the Earth system responded to rapid climatic shifts provides fundamental information to constrain climatic models. Our results suggest that continental deposits can be high-resolution recorders of these warmings. They also give an insight on the climatic conditions occurring during at the time.
Thomas Westerhold, Ursula Röhl, Roy H. Wilkens, Philip D. Gingerich, William C. Clyde, Scott L. Wing, Gabriel J. Bowen, and Mary J. Kraus
Clim. Past, 14, 303–319, https://doi.org/10.5194/cp-14-303-2018, https://doi.org/10.5194/cp-14-303-2018, 2018
Short summary
Short summary
Here we present a high-resolution timescale synchronization of continental and marine deposits for one of the most pronounced global warming events, the Paleocene–Eocene Thermal Maximum, which occurred 56 million years ago. New high-resolution age models for the Bighorn Basin Coring Project (BBCP) drill cores help to improve age models for climate records from deep-sea drill cores and for the first time point to a concurrent major change in marine and terrestrial biota 54.25 million years ago.
Hemmo A. Abels, Vittoria Lauretano, Anna E. van Yperen, Tarek Hopman, James C. Zachos, Lucas J. Lourens, Philip D. Gingerich, and Gabriel J. Bowen
Clim. Past, 12, 1151–1163, https://doi.org/10.5194/cp-12-1151-2016, https://doi.org/10.5194/cp-12-1151-2016, 2016
Short summary
Short summary
Ancient greenhouse warming episodes are studied in river floodplain sediments in the western interior of the USA. Paleohydrological changes of four smaller warming episodes are revealed to be the opposite of those of the largest, most-studied event. Carbon cycle tracers are used to ascertain whether the largest event was a similar event but proportional to the smaller ones or whether this event was distinct in size as well as in carbon sourcing, a question the current work cannot answer.
Margret Steinthorsdottir, Amanda S. Porter, Aidan Holohan, Lutz Kunzmann, Margaret Collinson, and Jennifer C. McElwain
Clim. Past, 12, 439–454, https://doi.org/10.5194/cp-12-439-2016, https://doi.org/10.5194/cp-12-439-2016, 2016
Short summary
Short summary
Our manuscript "Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary" reports that ~ 40 % decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene–Oliogocene climate transition. The results endorse the theory that pCO2 drawdown was the main forcer of the Eocene–Oligocene climate change, and a "tipping point" was reached in the latest Eocene, triggering the plunge of the Earth System into icehouse conditions.
D. V. Kent and G. Muttoni
Clim. Past, 9, 525–546, https://doi.org/10.5194/cp-9-525-2013, https://doi.org/10.5194/cp-9-525-2013, 2013
Cited articles
Ahrendt, H., Köthe, A., Lietzow, A., Marheine, D., and Ritzkowski, S.:
Lithostratigraphie, Biostratigraphie und radiometrische Datierung des
Unter-Eozäns von Helmstedt (SE-Niedersachsen), Zeitschrift der Deutschen
Geologischen Gesellschaft, 146, 450–457, 1995.
Allen, L. O.: Palynology of the Palaeocene and early Eocene of the London
Basin, PhD, University College London, 1982.
Bechtel, A., Gruber, W., Sachsenhofer, R. F., Gratzer, R., Lücke, A.,
and Püttmann, W.: Depositional environment of the Late Miocene Hausruck
lignite (Alpine Foreland Basin): insights from petrography, organic
geochemistry, and stable carbon isotopes, Int. J. Coal Geol., 53, 153–180, 2003.
Beerling, D. J. and Jolley, D. W.: Fossil plants record an atmospheric CO2
and temperature spike across the Palaeocene-Eocene transition in NW Europe,
J. Geol. Soc. London, 155, 591–594, 1998.
Bijl, P. K., Bendle, J. A. P., Bohaty, S. M., Pross, J., Schouten, S., Tauxe,
L., Stickley, C. E., McKay, R. M., Rohl, U., Olney, M., Sluijs, A., Escutia,
C., Brinkhuis, H., Klaus, A., Fehr, A., Williams, T., Carr, S. A., Dunbar,
R. B., Gonzalez, J. J., Hayden, T. G., Iwai, M., Jimenez-Espejo, F. J., Katsuki,
K., Kong, G. S., Nakai, M., Passchier, S., Pekar, S. F., Riesselman, C.,
Sakai, T., Shrivastava, P. K., Sugisaki, S., Tuo, S., van de Flierdt, T.,
Welsh, K., and Yamane, M.: Eocene cooling linked to early flow across the
Tasmanian Gateway, P. Natl. Acad. Sci. USA, 110, 9645–9650, 2013.
Bornemann, A., Norris, R. D., Lyman, J. A., D'Haenens, S., Groeneveld, J.,
Röhl, U., Farley, K. A., and Speijer, R. P.: Persistent environmental
change after the Paleocene–Eocene Thermal Maximum in the eastern North
Atlantic, Earth Planet. Sc. Lett., 394, 70–81, 2014.
Brandes, C., Pollok, L., Schmidt, C., Wilde, V., and Winsemann, J.: Basin
modelling of a lignite-bearing salt rim syncline: insights into rim syncline
evolution and salt diapirism in NW Germany, Basin Res., 24, 699–716, 2012.
Bray, J. R. and Curtis, J. T.: An ordination of the upland forest
communities of southern Wisconsin, Ecol. Monogr., 27, 326–349,
1957.
Broothaerts, N., Verstraeten, G., Kasse, C., Bohncke, S., Notebaert, B., and
Vandenberghe, J.: Reconstruction and semi-quantification of human impact in
the Dijle catchment, central Belgium: a palynological and statistical
approach, Quaternary Sci. Rev., 102, 96–110, 2014.
Bujak, J. P. and Brinkhuis, H.: Global warming and dinocyst changes across the Paleocene/Eocene Epoch boundary, in: Late Paleocene–early Eocene climatic and biotic events in the marine and terrestrial records, edited by: Aubry, M.-P., Lucas, S. G., and Berggren, W. A., Columbia University Press, New York, 277–295, 1998.
Carmichael, M. J., Lunt, D. J., Huber, M., Heinemann, M., Kiehl, J., LeGrande, A., Loptson, C. A., Roberts, C. D., Sagoo, N., Shields, C., Valdes, P. J., Winguth, A., Winguth, C., and Pancost, R. D.: A model–model and data–model comparison for the early Eocene hydrological cycle, Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, 2016.
Carmichael, M. J., Inglis, G. N., Badger, M. P. S., Naafs, B. D. A.,
Behrooz, L., Remmelzwaal, S., Monteiro, F. M., Rohrssen, M., Farnsworth, A.,
Buss, H. L., Dickson, A. J., Valdes, P. J., Lunt, D. J., and Pancost, R. D.:
Hydrological and associated biogeochemical consequences of rapid global
warming during the Paleocene-Eocene Thermal Maximum, Global Planet. Change,
157, 114–138, 2017.
Christensen, T. R., Ekberg, A., Ström, L., Mastepanov, M., Panikov, N.,
Öquist, M., Svensson, B. H., Nykänen, H., Martikainen, P. J., and
Oskarsson, H.: Factors controlling large scale variations in methane
emissions from wetlands, Geophys. Res. Lett., 30, 67,
https://doi.org/10.1029/2002GL016848, 2003.
Collinson, M., Hooker, J., and Grocke, D.: Cobham lignite bed and
penecontemporaneous macrofloras of southern England: A record of vegetation
and fire across the Paleocene-Eocene Thermal Maximum, Special
Papers-Geological Society of America, 333–350, 2003.
Collinson, M. E., Steart, D. C., Harrington, G. J., Hooker, J. J., Scott, A.
C., Allen, L. O., Glasspool, I. J., and Gibbons, S. J.: Palynological
evidence of vegetation dynamics in response to palaeoenvironmental change
across the onset of the Paleocene-Eocene Thermal Maximum at Cobham, Southern
England, Grana, 48, 38–66, 2009.
Cramer, B. S. and Kent, D. V.: Bolide summer: The Paleocene/Eocene thermal
maximum as a response to an extraterrestrial trigger, Palaeogeogr.
Palaeoecl., 224, 144–166, 2005.
Cramer, B. S., Wright, J. D., Kent, D. V., and Aubry, M. P.: Orbital climate forcing
of δ13C excursions in the late Paleocene–early Eocene (chrons
C24n–C25n), Paleoceanography, 18, 1097, https://doi.org/10.1029/2003PA000909, 2003.
Crouch, E. M., Heilmann-Clausen, C., Brinkhuis, H., Morgans, H. E., Rogers,
K. M., Egger, H., and Schmitz, B.: Global dinoflagellate event associated
with the late Paleocene thermal maximum, Geology, 29, 315–318, 2001.
DeConto, R. M., Galeotti, S., Pagani, M., Tracy, D., Schaefer, K., Zhang,
T., Pollard, D., and Beerling, D. J.: Past extreme warming events linked to
massive carbon release from thawing permafrost, Nature, 484, 87–92,
https://doi.org/10.1038/nature10929, 2012.
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M.: Dissociation of
oceanic methane hydrate as a cause of the carbon isotope excursion at the
end of the Paleocene, Paleoceanography and Paleoclimatology, 10, 965–971,
1995.
Dorrepaal, E., Toet, S., van Logtestijn, R. S. P., Swart, E., van de Weg, M.
J., Callaghan, T. V., and Aerts, R.: Carbon respiration from subsurface peat
accelerated by climate warming in the subarctic, Nature, 460, 616–620,
https://doi.org/10.1038/nature08216, 2009.
Dunkley Jones, T., Lunt, D. J., Schmidt, D. N., Ridgwell, A., Sluijs, A.,
Valdes, P. J., and Maslin, M.: Climate model and proxy data constraints on
ocean warming across the Paleocene–Eocene Thermal Maximum, Earth-Sci. Rev.,
125, 123–145, 2013.
Eldrett, J. S., Greenwood, D. R., Polling, M., Brinkhuis, H., and Sluijs, A.: A seasonality trigger for carbon injection at the Paleocene–Eocene Thermal Maximum, Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, 2014.
Frieling, J., Iakovleva, A. I., Reichart, G.-J., Aleksandrova, G.N.,
Gnibidenko, Z. N., Schouten, S., and Sluijs, A.: Paleocene–Eocene warming and
biotic response in the epicontinental West Siberian Sea, Geology, 42, 767–770,
https://doi.org/10.1130/G35724.1, 2014.
Frieling, J., Huurdeman, E. P., Rem, C. C. M., Donders, T. H., Pross, J.,
Bohaty, S. M., Holdgate, G. R., Gallagher, S. J., McGowran, B., and Bijl, P. K.:
Identification of the Paleocene–Eocene boundary in coastal strata in the
Otway Basin, Victoria, Australia, J. Micropalaeontol., 37, 317–339, 2018.
Garel, S., Schnyder, J., Jacob, J., Dupuis, C., Boussafir, M., Le Milbeau,
C., Storme, J.-Y., Iakovleva, A. I., Yans, J., and Baudin, F.:
Paleohydrological and paleoenvironmental changes recorded in terrestrial
sediments of the Paleocene–Eocene boundary (Normandy, France),
Palaeogeogr. Palaeoecl., 376, 184–199, 2013.
Gauch, H. G. and Scruggs, W. M.: Variants of polar ordination, Vegetatio, 40,
147–153, 1979.
Ghilardi, B. and O'Connell, M.: Early Holocene vegetation and climate
dynamics with particular reference to the 8.2 ka event: pollen and
macrofossil evidence from a small lake in western Ireland, Veg.
Hist. Archaeobot., 22, 99–114, 2013.
Hammer-Schiemann, G.: Palynologische Untersuchungen zur Fazies und
Ökologie der Unterflözgruppe im Tagebau Schöningen
(Untereozän, Helmstedt, Bez. Braunschweig), Univ. Göttingen,
1998.
Heilmann-Clausen, C.: Observations of the dinoflagellate Wetzeliella in
Sparnacian facies (Eocene) near Epernay, France, and a note on tricky acmes
of Apectodinium, Proceedings of the Geologists' Association, 1, 2018.
Heilmann-Clausen, C. and Schmitz, B.: The late Paleocene thermal maximum
δ13C excursion in Denmark?, GFF, 122, 70–70, 2000.
Heilmann-Clausen, C., Nielsen, O. B., and Gersner, F.: Lithostratigraphy and
depositional environments in the Upper Paleocene and Eocene of Denmark,
B. Geol. Soc. Denmark, 33, 287–323, 1985.
Higgins, J. A. and Schrag, D. P.: Beyond methane: Towards a theory for the
Paleocene–Eocene Thermal Maximum, Earth Planet. Sc. Lett., 245, 523–537, 2006.
Iakovleva, A. I., Brinkhuis, H., and Cavagnetto, C.: Late Palaeocene–Early
Eocene dinoflagellate cysts from the Turgay Strait, Kazakhstan; correlations
across ancient seaways, Palaeogeogr. Palaeoecl.,
172, 243–268, 2001.
Inglis, G. N., Collinson, M. E., Riegel, W., Wilde, V., Robson, B. E., Lenz,
O. K., and Pancost, R. D.: Ecological and biogeochemical change in an early
Paleogene peat-forming environment: Linking biomarkers and palynology,
Palaeogeogr., Palaeoecl., 438, 245–255, 2015.
Inglis, G. N., Collinson, M. E., Riegel, W., Wilde, V., Farnsworth, A.,
Lunt, D. J., Valdes, P., Robson, B. E., Scott, A. C., Lenz, O. K., Naafs, B.
D. A., and Pancost, R. D.: Mid-latitude continental temperatures through the
early Eocene in western Europe, Earth Planet. Sc. Lett., 460, 86–96, 2017.
IPCC: Climate change 2014: synthesis report, Core Writing Team, edited by: Pachauri, R. K. and Meyer, L. A., IPCC Geneva, Switzerland, 2014.
Jardine, P. E. and Harrington, G. J.: The Red Hills Mine palynoflora: A
diverse swamp assemblage from the Late Paleocene of Mississippi, USA,
Palynology, 32, 183–204, 2008.
Kennett, J. P. and Stott, L. D.: Abrupt deep-sea warming, palaeoceanographic
changes and benthic extinctions at the end of the Palaeocene, Nature, 353,
225–229, 1991.
Kent, D. V., Cramer, B. S., Lanci, L., Wang, D., Wright, J. D., and Van der
Voo, R.: A case for a comet impact trigger for the Paleocene/Eocene thermal
maximum and carbon isotope excursion, Earth Planet. Sc. Lett., 211, 13–26,
2003.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J.,
Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C.,
Naik, V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B.,
Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell,
D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K.,
Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R.
F., Williams, J. E., and Zeng, G.: Three decades of global methane sources
and sinks, Nat. Geosci., 6, 813–823,
https://doi.org/10.1038/NGEO1955, 2013.
Köthe, A.: Dinozysten-Zonierung im Tertiär Norddeutschlands, Revue
Paléobiologie, 22, 895–923, 2003.
Kruskal, J. B.: Nonmetric multidimensional scaling: A numerical method,
Psychometrika, 29, 115–129, 1964.
Krutzsch, W.: Die stratigraphisch verwertbaren Sporen-und Pollenformen des
mitteleuropäischen Alttertiärs, J. Geol., 3, 309–379, 1970.
Kurtz, A., Kump, L., Arthur, M., Zachos, J., and Paytan, A.: Early Cenozoic
decoupling of the global carbon and sulfur cycles, Paleoceanography, 18,
1090, https://doi.org/10.1029/2003PA000908, 2003.
Lenz, O. K.: Palynologie und Paläoökologie eines Küstenmoores
aus dem Mittleren Eozän Mitteleuropas-Die Wulfersdorfer Flözgruppe
aus dem Tagebau Helmstedt, Niedersachsen, Palaeontographica Abteilung B,
271, 1–157, 2005.
Lenz, O. K. and Riegel, W.: Isopollen maps as a tool for the reconstruction
of a coastal swamp from the middle Eocene at Helmstedt (northern Germany),
Facies, 45, 177–194, 2001.
Lenz, O. K. and Wilde, V.: Changes in Eocene plant diversity and composition
of vegetation: the lacustrine archive of Messel (Germany), Paleobiology,
44, 709–735, 2018.
Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thomas, E., Rohl, U.,
Bowles, J., and Raffi, I.: Astronomical pacing of late Palaeocene to early
Eocene global warming events, Nature, 435, 1083–1087, 2005.
Lyons, S. L., Baczynski, A. A., Babila, T. L., Bralower, T. J., Hajek, E.
A., Kump, L. R., Polites, E. G., Self-Trail, J. M., Trampush, S. M., and
Vornlocher, J. R.: Palaeocene–Eocene Thermal Maximum prolonged by fossil
carbon oxidation, Nat. Geosci., 12, 54–61,
https://doi.org/10.1038/s41561-018-0277-3, 2019.
Mander, L., Kürschner, W. M., and McElwain, J. C.: An explanation for
conflicting records of Triassic–Jurassic plant diversity, P. Natl. Acad. Sci. USA, 107,
15351–15356, 2010.
McInerney, F. A. and Wing, S. L.: The Paleocene-Eocene Thermal Maximum: A
Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for
the Future, Annu. Rev. Earth Pl. Sc., 39, 489–516, 2011.
Minchin, P. R.: An evaluation of the relative robustness of techniques for
ecological ordination, Vegetatio, 69, 89–107, 1987.
Moore, E. A. and Kurtz, A. C.: Black carbon in Paleocene–Eocene boundary
sediments: A test of biomass combustion as the PETM trigger,
Palaeogeogr. Palaeoecl., 267, 147–152, 2008.
Nickel, B.: Die mitteleozäne Mikroflora von Eckfeld bei
Manderscheid/Eifel, Naturhistorisches Museum Mainz, Landessammlung für Naturkunde Rheinland-Pfalz, 18, 1–121, 1996.
Oksanen, J.: Standardization methods for community ecology. Documentation
and user guide for package Vegan version 1.8–6, 2007.
Osman, A., Pollok, L., Brandes, C., and Winsemann, J.: Sequence stratigraphy
of a Paleogene coal bearing rim syncline: interplay of salt dynamics and
sea-level changes, Schöningen, Germany, Basin Res., 25, 675–708, 2013.
Oswald, W. W., Faison, E. K., Foster, D. R., Doughty, E. D., Hall, B. R.,
and Hansen, B. C. S.: Post-glacial changes in spatial patterns of vegetation
across southern New England, J. Biogeogr., 34, 900–913, 2007.
Pancost, R. D., Steart, D. S., Handley, L., Collinson, M. E., Hooker, J. J.,
Scott, A. C., Grassineau, N. V., and Glasspool, I. J.: Increased terrestrial
methane cycling at the Palaeocene–Eocene thermal maximum, Nature, 449, 332–336,
https://doi.org/10.1038/nature06012,
2007.
Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., Rijpstra, W. I. C.,
Wolters-Arts, M., Derksen, J., Jetten, M. S. M., Schouten, S., Sinninghe
Damsté, J. S., Lamers, L. P. M., Roelofs, J. G. M., Op den Camp, H. J.
M., and Strous, M.: Methanotrophic symbionts provide carbon for
photosynthesis in peat bogs, Nature, 436, 1153–1156,
https://doi.org/10.1038/nature03802, 2005.
Riegel, W. and Wilde, V.: An early Eocene Sphagnum bog at Schöningen,
northern Germany, Int. J. Coal Geol., 159, 57–70, 2016.
Riegel, W., Wilde, V., and Lenz, O. K.: The early Eocene of Schöningen
(N-Germany)–an interim report, Austrian J. Earth Sc., 105,
88–109, 2012.
Riegel, W., Lenz, O. K., and Wilde, V.: From open estuary to meandering
river in a greenhouse world: an ecological case study from the middle Eocene
of Helmstedt, northern Germany, Palaios, 30, 304–326, 2015.
Robson, B. E., Collinson, M. E., Riegel, W., Wilde, V., Scott, A. C., and
Pancost, R. D.: Early Paleogene wildfires in peat-forming environments at
Schöningen, Germany, Palaeogeogr. Palaeoecl.,
437, 53–62, 2015.
Rumpel, C., Amiraslani, F., Koutika, L.-S., Smith, P., Whitehead, D., and
Wollenberg, E.: Put more carbon in soils to meet Paris climate pledges,
Nature, 564, 32–34, 2018.
Santruckova, H., Bird, M., Frouz, J., Sustr, V., and Tajovsky, K.: Natural
abundance of 13C in leaf litter as related to feeding activity of soil
invertebrates and microbial mineralisation, Soil Biol. Biochem., 32, 1793–1797, 2000.
Schmitz, B. and Pujalte, V.: Sea-level, humidity, and land-erosion records
across the initial Eocene thermal maximum from a continental-marine transect
in northern Spain, Geology, 31, 689–692, 2003.
Schmitz, B., Peucker-Ehrenbrink, B., Heilmann-Clausen, C., Åberg, G.,
Asaro, F., and Lee, C.-T. A.: Basaltic explosive volcanism, but no comet
impact, at the Paleocene–Eocene boundary: high-resolution chemical and
isotopic records from Egypt, Spain and Denmark, Earth Planet. Sc. Lett., 225,
1–17, 2004.
Schoon, P. L., Heilmann-Clausen, C., Schultz, B. P., Sinninghe Damsté,
J. S., and Schouten, S.: Warming and environmental changes in the eastern
North Sea Basin during the Palaeocene–Eocene Thermal Maximum as revealed by
biomarker lipids, Org. Geochem., 78, 79–88, 2015.
Shepard, R. N.: The analysis of proximities: multidimensional scaling with
an unknown distance function, I. Psychometrika, 27, 125–139, 1962a.
Shepard, R. N.: The analysis of proximities: multidimensional scaling with
an unknown distance function, II. Psychometrika, 27, 219–246, 1962b.
Sluijs, A. and Brinkhuis, H.: A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf, Biogeosciences, 6, 1755–1781, https://doi.org/10.5194/bg-6-1755-2009, 2009.
Sluijs, A. and Dickens, G. R.: Assessing offsets between the δ13C of
sedimentary components and the global exogenic carbon pool across early
Paleogene carbon cycle perturbations, Global Biogeochem. Cy., 26, GB4005, https://doi.org/10.1029/2011GB004224, 2012.
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H.,
Damsté, J. S. S., Dickens, G. R., Huber, M., Reichart, G.-J., and Stein,
R.: Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene
thermal maximum, Nature, 441, 610–613, 2006.
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., Zachos,
J. C., Reichart, G.-J., Sinninghe Damsté, J. S., Crouch, E. M., and
Dickens, G. R.: Environmental precursors to rapid light carbon injection at
the Palaeocene/Eocene boundary, Nature, 450, 1218–1222,
https://doi.org/10.1038/nature06400, 2007.
Sluijs, A., Schouten, S., Donders, T. H., Schoon, P. L., Röhl, U.,
Reichart, G.-J., Sangiorgi, F., Kim, J.-H., Sinninghe Damsté, J. S., and
Brinkhuis, H.: Warm and wet conditions in the Arctic region during Eocene
Thermal Maximum 2, Nat. Geosci., 2, 777–780,
https://doi.org/10.1038/NGEO668, 2009.
Sluijs, A., Bijl, P. K., Schouten, S., Röhl, U., Reichart, G.-J., and Brinkhuis, H.: Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum, Clim. Past, 7, 47–61, https://doi.org/10.5194/cp-7-47-2011, 2011.
Stap, L., Lourens, L. J., Thomas, E., Sluijs, A., Bohaty, S., and Zachos, J. C.: High-resolution deep-sea carbon and oxygen isotope records of Eocene
Thermal Maximum 2 and H2, Geology, 38, 607–610, 2010.
Storme, J. Y., Dupuis, C., Schnyder, J., Quesnel, F., Garel, S., Iakovleva,
A. I., Iacumin, P., Di Matteo, A., Sebilo, M., and Yans, J.: Cycles of
humid-dry climate conditions around the P/E boundary: new stable isotope
data from terrestrial organic matter in Vasterival section (NW France),
Terra Nova, 24, 114–122, 2012.
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust,
R., Rasmussen Eidem, T., and Rey, S. S.: Release of methane from a volcanic
basin as a mechanism for initial Eocene global warming, Nature, 429, 542–545,
2004.
Thiele-Pfeiffer, H.: Die Mikroflora aus dem mitteleozänen Ölschiefer
von Messel bei Darmstadt, Palaeontogr. Abt. B, 211, 1–86, 1988.
Thomson, P. W. and Pflug, H. D.: Pollen und Sporen des
mitteleuropäischen Tertiärs, Palaeontogr. Abt. B, 94,
1–138, 1953.
Trampush, S. M. and Hajek, E. A.: Preserving proxy records in dynamic
landscapes: Modeling and examples from the Paleocene-Eocene Thermal Maximum,
Geology, 45, 967–970, 2017.
van Hinsbergen, D. J., de Groot, L. V., van Schaik, S. J., Spakman, W.,
Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A
paleolatitude calculator for paleoclimate studies, Plos One, 10, e0126946,
https://doi.org/10.1371/journal.pone.0126946, 2015.
Van Tongeren, O. F. R.: Cluster analysis, in: Data Analysis in Community and
Landscape Ecology, edited by: Jongman, R. H. G., ter Braak,
C. J. F., and van Tongeren, O. F. R., Cambridge University Press, Cambridge, 174–212, 1995.
Williams, G. L., Damassa, S. P., Fensome, R. A., and Guerstein, G. R.:
Wetzeliella and Its Allies – The “Hole” Story: A Taxonomic Revision of the
Paleogene Dinoflagellate Subfamily Wetzelielloideae, Palynology, 39,
289–344, 2015.
Willumsen, P. S.: Palynology of the Lower Eocene deposits of northwest
Jutland, Denmark, Bull. Geol. Soc. Denmark, 51, 141–157, 2004.
Zachos, J. C., Wara, M. W., Bohaty, S., Delaney, M. L., Petrizzo, M. R.,
Brill, A., Bralower, T. J., and Premoli-Silva, I.: A transient rise in
tropical sea surface temperature during the Paleocene-Eocene thermal
maximum, Science, 302, 1551–1554, 2003.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on
greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, 2008.
Zachos, J. C., McCarren, H., Murphy, B., Röhl, U., and Westerhold, T.: Tempo
and scale of late Paleocene and early Eocene carbon isotope cycles:
Implications for the origin of hyperthermals, Earth Planet. Sc. Lett., 299,
242–249, 2010.
Ziegler, P.: Geological Atlas of Western and Central Europe, Shell
Internationale Petroleum Maatschappij BV/Geological Society of London,
Elsevier, Amsterdam, 1990.
Short summary
We describe the presence of a carbon isotope excursion (CIE) in Paleogene lignites (Schöningen, DE) and assess paleoenvironmental changes in midlatitudinal late Paleocene–early Eocene peat mire records along the paleo-North Sea coast (Schöningen, Cobham, Vasterival). These records share major characteristics of a reduced CIE (~ -1.3 ‰) in terms of bulk organic matter, increased fire activity (pre-CIE), minor plant species changes, and drowning of near-coastal mires during the CIE.
We describe the presence of a carbon isotope excursion (CIE) in Paleogene lignites (Schöningen,...