Articles | Volume 15, issue 5
https://doi.org/10.5194/cp-15-1715-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-1715-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity
College of Earth, Ocean, and Atmospheric Science, Oregon State
University, 104 CEOAS Admin Bldg, Corvallis, Oregon 97331, USA
Anna Joy Drury
MARUM – Center for Marine Environmental Sciences, University of Bremen,
Leobener Strasse, 28359 Bremen, Germany
now at: University College London, Earth Sciences, London WC1E 6BS, UK
Jun Tian
Laboratory of Marine Geology, Tongji University, Siping Road 1239,
Shanghai 200092, PR China
Roy Wilkens
University of Hawaii, School of Ocean and Earth Science and
Technology, Honolulu, Hawaii 96822, USA
Thomas Westerhold
MARUM – Center for Marine Environmental Sciences, University of Bremen,
Leobener Strasse, 28359 Bremen, Germany
Related authors
Mitchell Lyle and Annette Olivarez Lyle
Clim. Past, 20, 2685–2700, https://doi.org/10.5194/cp-20-2685-2024, https://doi.org/10.5194/cp-20-2685-2024, 2024
Short summary
Short summary
Greenhouse gases were key in maintaining past warm intervals, but feedbacks are needed to sustain high atmospheric CO2 levels. We assess whether changes in the ocean degradation depth of plankton-produced organic matter (particulate organic carbon – POC) affect ocean carbon storage. Limited POC burial in sediments during the Miocene Climate Optimum (MCO) warm interval, relative to recent periods, suggests poorer POC transfer to the abyss, leading to the MCO's higher atmospheric CO2 levels.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
Mitchell Lyle and Annette Olivarez Lyle
Clim. Past, 20, 2685–2700, https://doi.org/10.5194/cp-20-2685-2024, https://doi.org/10.5194/cp-20-2685-2024, 2024
Short summary
Short summary
Greenhouse gases were key in maintaining past warm intervals, but feedbacks are needed to sustain high atmospheric CO2 levels. We assess whether changes in the ocean degradation depth of plankton-produced organic matter (particulate organic carbon – POC) affect ocean carbon storage. Limited POC burial in sediments during the Miocene Climate Optimum (MCO) warm interval, relative to recent periods, suggests poorer POC transfer to the abyss, leading to the MCO's higher atmospheric CO2 levels.
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Ji-Eun Kim, Thomas Westerhold, Laia Alegret, Anna Joy Drury, Ursula Röhl, and Elizabeth M. Griffith
Clim. Past, 18, 2631–2641, https://doi.org/10.5194/cp-18-2631-2022, https://doi.org/10.5194/cp-18-2631-2022, 2022
Short summary
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Thomas Westerhold, Ursula Röhl, Roy H. Wilkens, Philip D. Gingerich, William C. Clyde, Scott L. Wing, Gabriel J. Bowen, and Mary J. Kraus
Clim. Past, 14, 303–319, https://doi.org/10.5194/cp-14-303-2018, https://doi.org/10.5194/cp-14-303-2018, 2018
Short summary
Short summary
Here we present a high-resolution timescale synchronization of continental and marine deposits for one of the most pronounced global warming events, the Paleocene–Eocene Thermal Maximum, which occurred 56 million years ago. New high-resolution age models for the Bighorn Basin Coring Project (BBCP) drill cores help to improve age models for climate records from deep-sea drill cores and for the first time point to a concurrent major change in marine and terrestrial biota 54.25 million years ago.
Anna Joy Drury, Thomas Westerhold, David Hodell, and Ursula Röhl
Clim. Past, 14, 321–338, https://doi.org/10.5194/cp-14-321-2018, https://doi.org/10.5194/cp-14-321-2018, 2018
Short summary
Short summary
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12 million years. However, the stratigraphy and age model are unverified. We verify the composite splice using XRF core scanning data and establish a revised benthic foraminiferal stable isotope astrochronology from 8.0–4.5 million years ago. Our new stratigraphy accurately correlates the Atlantic and the Mediterranean and suggests a connection between late Miocene cooling and dynamic ice sheet expansion.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Thomas Westerhold, Ursula Röhl, Thomas Frederichs, Claudia Agnini, Isabella Raffi, James C. Zachos, and Roy H. Wilkens
Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, https://doi.org/10.5194/cp-13-1129-2017, 2017
Short summary
Short summary
We assembled a very accurate geological timescale from the interval 47.8 to 56.0 million years ago, also known as the Ypresian stage. We used cyclic variations in the data caused by periodic changes in Earthäs orbit around the sun as a metronome for timescale construction. Our new data compilation provides the first geological evidence for chaos in the long-term behavior of planetary orbits in the solar system, as postulated almost 30 years ago, and a possible link to plate tectonics events.
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
Oliver Friedrich, Sietske J. Batenburg, Kazuyoshi Moriya, Silke Voigt, Cécile Cournède, Iris Möbius, Peter Blum, André Bornemann, Jens Fiebig, Takashi Hasegawa, Pincelli M. Hull, Richard D. Norris, Ursula Röhl, Thomas Westerhold, Paul A. Wilson, and IODP Expedition
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-51, https://doi.org/10.5194/cp-2016-51, 2016
Manuscript not accepted for further review
Short summary
Short summary
A lack of knowledge on the timing of Late Cretaceous climatic change inhibits our understanding of underlying causal mechanisms. Therefore, we used an expanded deep ocean record from the North Atlantic that shows distinct sedimentary cyclicity suggesting orbital forcing. A high-resolution carbon-isotope record from bulk carbonates allows to identify global trends in the carbon cycle. Our new carbon isotope record and the established cyclostratigraphy may serve as a future reference site.
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, and J. C. Zachos
Clim. Past, 11, 1181–1195, https://doi.org/10.5194/cp-11-1181-2015, https://doi.org/10.5194/cp-11-1181-2015, 2015
Short summary
Short summary
Testing hypotheses for mechanisms and dynamics of past climate change relies on the accuracy of geological dating. Development of a highly accurate geological timescale for the Cenozoic Era has previously been hampered by discrepancies between radioisotopic and astronomical dating methods, as well as a stratigraphic gap in the middle Eocene. We close this gap and provide a fundamental advance in establishing a reliable and highly accurate geological timescale for the last 66 million years.
T. Westerhold, U. Röhl, H. Pälike, R. Wilkens, P. A. Wilson, and G. Acton
Clim. Past, 10, 955–973, https://doi.org/10.5194/cp-10-955-2014, https://doi.org/10.5194/cp-10-955-2014, 2014
W. C. Clyde, P. D. Gingerich, S. L. Wing, U. Röhl, T. Westerhold, G. Bowen, K. Johnson, A. A. Baczynski, A. Diefendorf, F. McInerney, D. Schnurrenberger, A. Noren, K. Brady, and the BBCP Science Team
Sci. Dril., 16, 21–31, https://doi.org/10.5194/sd-16-21-2013, https://doi.org/10.5194/sd-16-21-2013, 2013
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Cenozoic
Variations in the biological pump throughout the Miocene: evidence from organic carbon burial in Pacific Ocean sediments
Precise dating of deglacial Laptev Sea sediments via 14C and authigenic 10Be∕9Be – assessing local 14C reservoir ages
Late Eocene to early Oligocene productivity events in the proto-Southern Ocean and correlation to climate change
Tracing North Atlantic volcanism and seaway connectivity across the Paleocene–Eocene Thermal Maximum (PETM)
Late Paleocene CO2 drawdown, climatic cooling and terrestrial denudation in the southwest Pacific
Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust
Reduced carbon cycle resilience across the Palaeocene–Eocene Thermal Maximum
Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum
Ocean carbon cycling during the past 130 000 years – a pilot study on inverse palaeoclimate record modelling
Major perturbations in the global carbon cycle and photosymbiont-bearing planktic foraminifera during the early Eocene
Stable isotope and calcareous nannofossil assemblage record of the late Paleocene and early Eocene (Cicogna section)
Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum
Astronomical calibration of the geological timescale: closing the middle Eocene gap
Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean
A seasonality trigger for carbon injection at the Paleocene–Eocene Thermal Maximum
Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events
Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum
Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species
Mitchell Lyle and Annette Olivarez Lyle
Clim. Past, 20, 2685–2700, https://doi.org/10.5194/cp-20-2685-2024, https://doi.org/10.5194/cp-20-2685-2024, 2024
Short summary
Short summary
Greenhouse gases were key in maintaining past warm intervals, but feedbacks are needed to sustain high atmospheric CO2 levels. We assess whether changes in the ocean degradation depth of plankton-produced organic matter (particulate organic carbon – POC) affect ocean carbon storage. Limited POC burial in sediments during the Miocene Climate Optimum (MCO) warm interval, relative to recent periods, suggests poorer POC transfer to the abyss, leading to the MCO's higher atmospheric CO2 levels.
Arnaud Nicolas, Gesine Mollenhauer, Johannes Lachner, Konstanze Stübner, Maylin Malter, Jutta Wollenburg, Hendrik Grotheer, and Florian Adolphi
Clim. Past, 20, 2617–2628, https://doi.org/10.5194/cp-20-2617-2024, https://doi.org/10.5194/cp-20-2617-2024, 2024
Short summary
Short summary
We use the authigenic 10Be/9Be record of a Laptev Sea sediment core for the period 8–14 kyr BP and synchronize it with the 10Be records from absolutely dated ice cores. We employed a likelihood function to calculate the ΔR values. A benthic ΔR value of +345±60 14C years was estimated, which corresponds to a marine reservoir age of 848±90 14C years. This new ΔR value was used to refine the age–depth model for core PS2458-4, establishing it as a potential reference chronology for the Laptev Sea.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Christopher J. Hollis, Sebastian Naeher, Christopher D. Clowes, B. David A. Naafs, Richard D. Pancost, Kyle W. R. Taylor, Jenny Dahl, Xun Li, G. Todd Ventura, and Richard Sykes
Clim. Past, 18, 1295–1320, https://doi.org/10.5194/cp-18-1295-2022, https://doi.org/10.5194/cp-18-1295-2022, 2022
Short summary
Short summary
Previous studies of Paleogene greenhouse climates identified short-lived global warming events, termed hyperthermals, that provide insights into global warming scenarios. Within the same time period, we have identified a short-lived cooling event in the late Paleocene, which we term a hypothermal, that has potential to provide novel insights into the feedback mechanisms at work in a greenhouse climate.
Akitomo Yamamoto, Ayako Abe-Ouchi, Rumi Ohgaito, Akinori Ito, and Akira Oka
Clim. Past, 15, 981–996, https://doi.org/10.5194/cp-15-981-2019, https://doi.org/10.5194/cp-15-981-2019, 2019
Short summary
Short summary
Proxy records of glacial oxygen change provide constraints on the contribution of the biological pump to glacial CO2 decrease. Here, we report our numerical simulation which successfully reproduces records of glacial oxygen changes and shows the significance of iron supply from glaciogenic dust. Our model simulations clarify that the enhanced efficiency of the biological pump is responsible for glacial CO2 decline of more than 30 ppm and approximately half of deep-ocean deoxygenation.
David I. Armstrong McKay and Timothy M. Lenton
Clim. Past, 14, 1515–1527, https://doi.org/10.5194/cp-14-1515-2018, https://doi.org/10.5194/cp-14-1515-2018, 2018
Short summary
Short summary
This study uses statistical analyses to look for signs of declining resilience (i.e. greater sensitivity to small shocks) in the global carbon cycle and climate system across the Palaeocene–Eocene Thermal Maximum (PETM), a global warming event 56 Myr ago driven by rapid carbon release. Our main finding is that carbon cycle resilience declined in the 1.5 Myr beforehand (a time of significant volcanic emissions), which is consistent with but not proof of a carbon release tipping point at the PETM.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Christoph Heinze, Babette A. A. Hoogakker, and Arne Winguth
Clim. Past, 12, 1949–1978, https://doi.org/10.5194/cp-12-1949-2016, https://doi.org/10.5194/cp-12-1949-2016, 2016
Short summary
Short summary
Sensitivities of sediment tracers to changes in carbon cycle parameters were determined with a global ocean model. The sensitivities were combined with sediment and ice core data. The results suggest a drawdown of the sea surface temperature by 5 °C, an outgassing of the land biosphere by 430 Pg C, and a strengthening of the vertical carbon transfer by biological processes at the Last Glacial Maximum. A glacial change in marine calcium carbonate production can neither be proven nor rejected.
Valeria Luciani, Gerald R. Dickens, Jan Backman, Eliana Fornaciari, Luca Giusberti, Claudia Agnini, and Roberta D'Onofrio
Clim. Past, 12, 981–1007, https://doi.org/10.5194/cp-12-981-2016, https://doi.org/10.5194/cp-12-981-2016, 2016
Short summary
Short summary
The symbiont-bearing planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of the early Paleogene tropical and subtropical oceans. However, a remarkable and permanent switch in the relative abundance of these genera happened in the early Eocene. We show that this switch occurred at low-latitude sites near the start of the Early Eocene Climatic Optimum (EECO), a multi-million-year interval when Earth surface temperatures reached their Cenozoic maximum.
Claudia Agnini, David J. A. Spofforth, Gerald R. Dickens, Domenico Rio, Heiko Pälike, Jan Backman, Giovanni Muttoni, and Edoardo Dallanave
Clim. Past, 12, 883–909, https://doi.org/10.5194/cp-12-883-2016, https://doi.org/10.5194/cp-12-883-2016, 2016
Short summary
Short summary
In this paper we present records of stable C and O isotopes, CaCO3 content, and changes in calcareous nannofossil assemblages in a upper Paleocene-lower Eocene rocks now exposed in northeast Italy. Modifications of nannoplankton assemblages and carbon isotopes are strictly linked one to each other and always display the same ranking and spacing. The integration of this two data sets represents a significative improvement in our capacity to correlate different sections at a very high resolution.
V. Lauretano, K. Littler, M. Polling, J. C. Zachos, and L. J. Lourens
Clim. Past, 11, 1313–1324, https://doi.org/10.5194/cp-11-1313-2015, https://doi.org/10.5194/cp-11-1313-2015, 2015
Short summary
Short summary
Several episodes of global warming took place during greenhouse conditions in the early Eocene and are recorded in deep-sea sediments. The stable carbon and oxygen isotope records are used to investigate the magnitude of six of these events describing their effects on the global carbon cycle and the associated temperature response. Findings indicate that these events share a common nature and hint to the presence of multiple sources of carbon release.
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, and J. C. Zachos
Clim. Past, 11, 1181–1195, https://doi.org/10.5194/cp-11-1181-2015, https://doi.org/10.5194/cp-11-1181-2015, 2015
Short summary
Short summary
Testing hypotheses for mechanisms and dynamics of past climate change relies on the accuracy of geological dating. Development of a highly accurate geological timescale for the Cenozoic Era has previously been hampered by discrepancies between radioisotopic and astronomical dating methods, as well as a stratigraphic gap in the middle Eocene. We close this gap and provide a fundamental advance in establishing a reliable and highly accurate geological timescale for the last 66 million years.
B. S. Slotnick, V. Lauretano, J. Backman, G. R. Dickens, A. Sluijs, and L. Lourens
Clim. Past, 11, 473–493, https://doi.org/10.5194/cp-11-473-2015, https://doi.org/10.5194/cp-11-473-2015, 2015
J. S. Eldrett, D. R. Greenwood, M. Polling, H. Brinkhuis, and A. Sluijs
Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, https://doi.org/10.5194/cp-10-759-2014, 2014
G. R. Dickens
Clim. Past, 7, 831–846, https://doi.org/10.5194/cp-7-831-2011, https://doi.org/10.5194/cp-7-831-2011, 2011
A. Sluijs, P. K. Bijl, S. Schouten, U. Röhl, G.-J. Reichart, and H. Brinkhuis
Clim. Past, 7, 47–61, https://doi.org/10.5194/cp-7-47-2011, https://doi.org/10.5194/cp-7-47-2011, 2011
R. E. M. Rickaby, J. Henderiks, and J. N. Young
Clim. Past, 6, 771–785, https://doi.org/10.5194/cp-6-771-2010, https://doi.org/10.5194/cp-6-771-2010, 2010
Cited articles
Bacon, M. P.: Glacial to interglacial changes in carbonate and clay sedimentation in the Atlantic Ocean estimated from 230Th measurements, Isotope Geoscience, 2, 97–111, 1984.
Balakrishnan Nair, T. M., Ittekkot, V., Shankar, R., and Guptha, M. V. S.:
Settling barium fluxes in the Arabian Sea: Critical evaluation of
relationship with export production, Deep-Sea Res. Pt. II, 52, 1930–1946,
https://doi.org/10.1016/j.dsr2.2005.06.003, 2005.
Barron, J., Lyle, M., and Koizumi, I.: Late Miocene and early Pliocene
biosiliceous sedimentation along the California margin, Rev. Mex. Cienc. Geol., 19, 161–169, 2002.
Bell, D. B., Jung, S. J. A., Kroon, D., Hodell, D. A., Lourens, L. J., and
Raymo, M. E.: Atlantic deep-water response to the early Pliocene shoaling of
the Central American Seaway, Sci. Rep., 5, 12552,
https://doi.org/10.1038/srep12252, 2015.
Berger, W. H.: Biogenous deep-sea sediments: fractionation by deep-sea
circulation, Geol. Soc. Am. Bull., 81, 1385–1402, 1970.
Berger, W. H.: Cenozoic sedimentation in the eastern tropical Pacific,
Geol. Soc. Am. Bull., 84, 1941–1954, 1973.
Bloomer, S. F. and Mayer, L. A.: Core-log-seismic integration as a
framework for determining the basin-wide significance of regional reflectors
in the eastern equatorial Pacific, Geophys. Res. Lett., 24, 321–334, 1997.
Boudreau, B. P., Middelburg, J. J., and Meysman, F. J. R.: Carbonate
compensation dynamics, Geophys. Res. Lett., 37, L03603, https://doi.org/10.1029/2009GL041847, 2010.
Broecker, W. S.: Calcite accumulation rates and glacial to interglacial changes in oceanic mixing, in: The Late Cenozoic Glacial Ages, edited by: Turekian, K. K., Yale University Press, New Haven, Connecticut, 239–265, 1971.
Channell, J. E. T., Ohneiser, C., Yamamoto, Y., and Kesler, M. S.: Oligocene-Miocene magnetic stratigraphy carried by biogenic magnetite at sites U1334 and U1335 (equatorial Pacific Ocean), https://doi.org/10.1029/2012GC004429, Geochem. Geophy. Geosy., 14, 265–282, 2013.
Chuey, J. M., Rea, D. K., and Pisias, N. G.: Late Pleistocene
paleoclimatology of the central equatorial Pacific: a quantitative record of
eolian and carbonate deposition, Quaternary Res., 28, 323–339, 1987.
Coxall, H. K., Wilson, P. A., Pälike, H., Lear C., and Backman, J.: Rapid
stepwise onset of Antarctic glaciation and deeper calcite compensation in
the Pacific Ocean, Nature, 433, 53–57, 2005.
Crowley, T. J.: Late Quaternary carbonate changes in the North Atlantic and
Atlantic/Pacific comparisons, AGU Geophysical Monograph, 32, 271–284,
1985.
Di Lorenzo, E., Liguori, G., Schneider, N., Furtado, J. C., Anderson, B. T., and Alexander, M. A.: ENSO and meridional modes: A null hypothesis for
Pacific climate variability, Geophys. Res. Lett., 42, 9440–9448, 2015.
Dickens, G. R. and Barron, J. A.: A rapidly deposited pennate diatom ooze in
upper Miocene-lower Pliocene sediment beneath the North Pacific polar front,
Mar. Micropaleontol., 31, 177–182, 1997.
Dickens, G. R. and Owen, R. M.: The latest Miocene-early Pliocene biogenic
bloom: a revised Indian Ocean perspective, Mar. Geol., 161, 75–91, 1999.
Diester-Haass, L., Meyers, P. A., and Vidal, L.: The late Miocene onset of
high productivity in the Benguela Current upwelling system as part of a
global pattern, Mar. Geol., 180, 87–103, 2002.
Drury, A. J., John, C. M., and Shevenell, A. E.: Evaluating climatic
response to external radiative forcing during the late Miocene to early
Pliocene: New perspectives from eastern equatorial Pacific (IODP U1338) and
North Atlantic (ODP982) locations, Paleoceanography, 31, 167–184, https://doi.org/10.1002/2015PA002881,
2016.
Drury, A. J., Westerhold, T., Frederichs, T., Tian, J., Wilkens, R.,
Channell, J. E. T., Evans, H., John, C. M., Lyle, M., and Röhl, U.: Late
Miocene climate and time scale reconciliation: Accurate orbital calibration
from a deep-sea perspective, Earth Planet. Sc. Lett., 475, 254–266, https://doi.org/10.1016/j.epsl.2017.07.038,
2017.
Drury, A. J., Lee, G. P., Gray, W. R., Lyle, M., Westerhold, T., Shevenell,
A. E., and John, C. M.,: Deciphering the state of the late Miocene to early
Pliocene equatorial Pacific, Paleoceanography and Paleoclimatology, 33,
246–263, https://doi.org/10.1002/2017PA003245, 2018.
Duque-Caro, H.: Neogene stratigraphy, paleoceanography and paleobiogeography
in northwest South America and the evolution of the Panama Seaway,
Palaeogeogr. Palaeocl., 77, 203–234, 1990.
Dymond, J. and Collier, R.: Particulate barium fluxes and their
relationships to biological productivity, Deep-Sea Res. Pt. II, 43,
1283–1308, 1996.
Dymond, J., Suess, E., and Lyle, M.: Barium in deep-sea sediment: A
geochemical proxy for paleoproductivity, Paleoceanography, 7, 163–181, 1992.
Farrell, J. W. and Prell, W. L.: Climatic change and CaCO3
preservation: an 800,000 year bathymetric reconstruction from the central
equatorial Pacific Ocean, Paleoceanography, 4, 447–466, 1989.
Farrell, J. W. and Prell, W. L.: Pacific CaCO3 preservation and
δ18O since 4 Ma: Paleoceanic and paleoclimatic implicatons,
Paleoceanography, 6, 485–499, 1991.
Farrell, J. W., Raffi, I., Janecek, T. R., Murray, D. W., Levitan, M.,
Dadey, K. A., Emeis, K.-C., Lyle, M., Flores, J.-A., and Hovan, S.: Late
Neogene sedimentation patterns in the eastern equatorial Pacific Ocean, in:
Proceedings of the Ocean Drilling Program, Scientific Results, 138, 717–756, 1995.
Filipelli, G. M.: Intensification of the Asian monsoon and a chemical
weathering event in the late Miocene-early Pliocene: Implications for late
Neogene climate change, Geology, 25, 27–30, https://doi.org/10.1130/0091-7613(1997)025<0027:IOTAMA>2.3.CO;2, 1997.
Francois, R., Frank, M., Rutgers van der Loeff, M. M., and Bacon, M. P.:
230Th-normalization: an essential tool for interpreting sedimentary
fluxes during the late Quaternary, Paleoceanography, 19, PA1018, https://doi.org/10.1029/2003PA000939, 2004.
Grant, K. M. and Dickens, G. R.: Coupled productivity and carbon isotope
records in the southwest Pacific Ocean during the late Miocene-early
Pliocene biogenic bloom, Palaeogeogr. Palaeocl., 187, 61–82, 2002.
Griffith, E. M. and Paytan, A.: Barite in the ocean–occurence, geochemistry
and palaeoceanographic applications, Sedimentology, 59, 1817–1835,
https://doi.org/10.1111/j.1365-3091.2012.01327.x, 2012.
Hagelberg, T. K., Pisias, N. G., Mayer, L. A., Shackleton, N. J., and Mix,
A. C.: Spatial and temporal variability of late Neogene equatorial Pacific
Carbonate: Leg 138, in: Proceedings of the Ocean Drilling Program, Scientific Results, 138, 321–336, 1995.
Harris, S. E., Mix, A. C., and King, T.: Biogenic and terrigenous
sedimentation at Ceara Rise, western tropical Atlantic, supports
Pliocene-Pleistocene Deep-water linkage between hemispheres, in: Proceedings of the Ocean Drilling Program, Scientific Results, 154, 331–345,
1997.
Haug, G. H., Tiedemann, R., Zahn, R., and Ravelo, A. C.: Role of Panama
uplift on oceanic freshwater balance, Geology, 29, 207–210, 2001.
Haug, G. H., Ganapolski, A., Sigman, D. M., Rosell-Mele, A., Swann, G. E.
A., Tiedemann, R., Jaccard, S. L., Bollman, J., Maslin, M. A., Leng, M. J.,
and Eglinton, G.: North Pacific seasonality and the glaciation of North
America 2.7 million years ago, Nature, 433, 821–825, 2005.
Hautala, S. L.: The abyssal and deep circulation of the Northeast Pacific
Basin, Prog. Oceanogr., 160, 68–82, https://doi.org/10.1016/j.pocean.2017.11.011,2018.
Hays, J. D., Saito, T., Opdyke, N. D., and Burckle, L. H.:
Pliocene-Pleistocene sediments of the equatorial Pacific: Their
paleomagnetic, biostratigraphic, and climatic record, Geol. Soc. Am. Bull., 80, 1481–1514, 1969.
Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C.,
Caballero-Gill, R., and Kelly, C. S.: Late Miocene global cooling and the
rise of modern ecosystems, Nat. Geosci., 9, 843–847, https://doi.org/10.1038/NGEO2813, 2016.
Hodell, D. A., Charles, C. D., and Sierro, F. J.: Late Pleistocene evolution
of the ocean's carbonate system, Earth Planet. Sc. Lett., 192, 109–124, 2001.
Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O., and Andersen,
N.: Middle Miocene climate cooling linked to intensification of eastern
equatorial Pacific upwelling, Geology, 42, 19–22, https://doi.org/10.1130/G34890.1, 2014.
Honjo, S., Dymond, J., Collier, R., and Manganini, S. J.: Export production
of particles to the interior of the equatorial Pacific Ocean during the 1992
EqPac experiment, Deep-Sea Res. Pt. II, 42, 831–870, 1995.
Hovan, S. A.: Late Cenozoic atmospheric circulation intensity and climatic
history recorded by eolian deposition in the eastern equatorial Pacific
Ocean, in: Proceedings of the Ocean Drilling Program, Scientific Results, 138, 615–627, 1995.
Johnson, G. C. and Toole, J. M.: flow of deep and bottom waters in the
Pacific at 10∘ N, Deep-Sea Res. Pt. I, 40, 371–394, 1993.
Kemp, A. E. S. and Baldauf, J. G.: Vast Neogene laminated diatom mat
deposits from the eastern equatorial Pacific Ocean, Nature, 362, 141–144, 1993.
Kleiven, H. F., Jansen, E., Curry, W. B., Hodell, D. A., and Venz, K.:,
Atlantic Ocean thermohaline circulation changes on orbital to suborbital
timescales during the mid-Pleistocene, Paleoceanography, 18, 1008, https://doi.org/10.1029/2001PA000629,
2003.
Klevenz, V., Vance, D., Schmidt, D. N., and Mezger, K.:Neodymium isotopes in
benthic foraminifera: Core-top systematics and a down-core record from the
Neogene south Atlantic, Earth Planet. Sc. Lett., 265, 571–587, https://doi.org/10.1016/j.epsl.2007.10.053, 2008.
Kochann, K. G. D., Holbourn, A., Kuhnt, W., Channell, J. E. T., Lyle, M.
Shackford, J. K., Wilkens, R. H., and Andersen, N.: Eccentricity pacing of
eastern equatorial Pacific carbonate dissolution cycles during the Miocene
Climatic Optimum, Paleoceanography, 31, https://doi.org/10.1002/2016PA002988, 2016.
Lawrence, K. T., Liu, Z., and Herbert, T. D.: Evolution of the eastern
tropical Pacific through Plio-Pleistocene glaciation, Science, 312, 79–83,
https://doi.org/10.1126/science.1120395, 2006.
Liao, Y. and Lyle, M.: Late Miocene to Pleistocene sedimentation and
sediment transport on the Cocos Ridge, eastern tropical Pacific Ocean,
Mar. Geol., 355, 1–14, https://doi.org/10.1016/j.margeo.2014.05.007, 2014.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography, 20, PA1003,
https://doi.org/10.1029/2004PA001071, 2005.
Lovely, M. R., Marcantonio, F., Lyle, M., Ibrahim, R., Hertzberg, J. E., and
Schmidt, M. W.: Sediment redistribution and grainsize effects on
230Th-normalized mass accumulation rates and focusing factors in the
Panama Basin, Earth Planet. Sc. Lett., 480, 107–120, 2017.
Lyle, M.: Reconstructed geographic positions and water depths for Leg 167
drill sites, in: Proceedings of the Ocean Drilling Program, Initial Reports, Part 1, Leg167, https://doi.org/10.2973/odp.proc.ir.167.103.1997, 1997.
Lyle, M. and Backman, J.: Data Report: Calibration of XRF-estimated
CaCO3 along the Site U1338 splice, Proceedings of the Integrated Ocean Drilling Program, 320/321, https://doi.org/10.2204/iodp.proc.320321.205.2013, 2013.
Lyle, M. and Baldauf, J.: Biogenic sediment regimes in the Neogene
equatorial Pacific, IODP Site U1338: Burial, production, and diatom
community, Palaeogeogr. Palaeocl., 433, 106–128, https://doi.org/10.1016/j.palaeo.2015.04.001, 2015.
Lyle, M., Mitchell, N. C., Pisias, N., Mix, A., Martinez, J. I., and Paytan,
A.: Do geochemical estimates of sediment focusing pass the sediment test in
the equatorial Pacific, Paleoceanography, 20, PA1005ß, https://doi.org/10.1029/2004PA001019, 2005a.
Lyle, M., Olivarez Lyle, A., Backman, J., and Tripati, A.: Biogenic
sedimentation in the Eocene equatorial Pacific: the stuttering greenhouse
and Eocene carbonate compensation depth, in: Proceedings of the Ocean Drilling Program, Scientific Results, Leg 199, 1–35,
https://doi.org/10.2973/odp.proc.sr.199.219.2005, 2005b.
Lyle, M., Pälike, H., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the IODP Expeditions 320/321 Scientific Party: The Pacific Equatorial Age Transect, IODP Expeditions 320 and 321: Building a 50-Million-Year-Long Environmental Record of the Equatorial Pacific Ocean, Sci. Dril., 9, 4–15, https://doi.org/10.2204/iodp.sd.9.01.2010, 2010.
Lyle, M., Olivarez Lyle, A., Gorgas, T., Holbourn, A., Westerhold, T.,
Hathorne, E. C., Kimoto, K., and Yamamoto, S.: Data report: raw and
normalized elemental data along the U1338 splice from X-ray Fluorescence
scanning, Proceedings of the Integrated Ocean Drilling Program, 320/321, https://doi.org/10.2204/iodp.proc.320321.203.2012, 2012.
Lyle, M., Marcantonio, F., Moore, W. S., Murray, R. W., Huh, C.-A., Finney,
B. P., Murray, D. W., and Mix, A. C.: Sediment size fractionation and
sediment focusing in the equatorial Pacific: effect on 230Th
normalization and paleoflux measurements, Paleoceanography, 29, 747–763,
https://doi.org/10.1002/2014PA002616, 2014.
Lyle, M. W., Dadey, K., and Farrell, J. W. L.: The late Miocene (11–8 Ma) eastern Pacific carbonate crash: evidence for reorganization of deep water circulation by the closure of the Panama Gateway, Proceedings of the Ocean Drilling Program, Scientific Results, 138, 821–838, https://doi.org/10.2973/odp.proc.sr.138.157.1995, 1995.
Lyle, M. W., Drury, A. J., Tian, J., Wilkens, R. H., and Westerhold, T.: Supplemental Data for Climate of the Past article “Equatorial Pacific Carbonate cycles, 0-5 Ma: stratigraphy, dissolution, and paleoproductivity”, PANGAEA, https://doi.org/10.1594/PANGAEA.904489, 2019.
Ma, Z., Ravelo, A. C., Liu, Z., Zhou, L., and Paytan, A.: Export production fluctuations in the eastern equatorial Pacific during the Pliocene-Pleistocene: Reconstruction using barite accumulation rates, Paleoceanography, 30, https://doi.org/10.1002/2015PA002860, 2015.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A Pacific interdecadal climate oscillation with impacts on salmon production, B. Am. Meteorol. Soc., 78, 1069–1079, 1997.
Marcantonio, F., Lyle, M., and Ibrahim, R.: Particle sorting during sediment
redistribution processes and the effect on 230Th-normalized mass
accumulation rates, Geophys. Res. Lett., 41, 5547–5554, https://doi.org/10.1002/2014GL060477, 2014.
Mayer, L. A.: Deep-sea carbonates: acoustic, physical, and stratigraphic
properties, J. Sediment. Petrol., 49, 819–836, 1979.
Mayer, L. A.: Extraction of high-resolution carbonate data for palaeoclimate
reconstruction, Nature, 352, 148–150, 1991.
Mayer, L. A., Shipley, T. H., and Winterer, E. L.: Equatorial Pacific
seismic reflectors as indicators of global oceanographic events, Science, 233,
761–764, 1986.
Mayer, L., Pisias, N., Janecek, T., et al.: Proc. ODP, Init. Repts., 138, College Station, TX (Ocean Drilling Program), https://doi.org/10.2973/odp.proc.ir.138.1992, 1992.
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G.
S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and
Pekar, S. F.: The Phanerozoic record of global sea-level change, Science, 310,
1293–1298, https://doi.org/10.1126/science.1116412, 2005.
Milliman, J. D. and Droxler, A. W.: Neritic and pelagic carbonate
sedimentation in the marine environment: ignorance is not bliss,
Geol. Rundsch., 85, 496–504, 1996.
Mitchell, N. C. and Huthnance, J. M.: Geomorphological and geochemical
evidence (230Th anomalies) for cross-equatorial currents in the central
Pacific, Deep-Sea Res. Pt. I, 178, 24–14, https://doi.org/10.1016/j.dsr.2013.04.003, 2013.
Mix, A. C., Pisias, N. G., Rugh, W., Wilson, J., Morey, A., and Hagelberg,
T. K.: Benthic foraminifer stable isotope record from Site 849 (0–5 Ma):
local and global climate change, in: Proceedings of the Ocean Drilling Program, Scientific Results, 138, 371–412, 1995.
Molnar, P.: Closing of the Central American Seaway and the Ice Age: A
critical review, Paleoceanography, 23, PA2201, https://doi.org/10.1029/2007PA001574, 2008.
Molnar, P.: Comment (2) on ”Formation of the Isthmus of Panama” by O'Dea et al., Sci. Adv., 3, e1602320, https://doi.org/10.1126/sciadv.1602320, 2017.
Molnar, P., England, P., and Martinod, J.: Mantle dynamics, uplift of the
Tibetan Plateau, and the Indian monsoon, Rev. Geophys., 31, 357–396, 1993.
Murray, R. W., Knowlton, C., Leinen, M., Mix, A., and Polsky, C. H.: Export
production and carbonate dissolution in the central equatorial Pacific Ocean
over the past 1 Myr, Paleoceanography, 15, 570–592, 2000.
NASA Goddard Space Flight Center: Ocean Ecology Laboratory, Ocean Biology
Processing Group, Sea-viewing Wide Field-of-view Sensor (SeaWiFS)
Particulate Organic Carbon Data; 2014 Reprocessing, NASA OB.DAAC, Greenbelt,
MD, USA, https://doi.org/10.5067/ORBVIEW-2/SEAWIFS/L3B/POC/2014, 2014.
O'Dea, A. Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S.
A., Cione, A. L., Collins, L. S., de Queiroz, A., Farris, D. W., Norris, R.
D., Stallard, R. F., Woodbourne, M. O., Aguilera, O., Aubry, M.-P.,
Berggren, W. A., Budd, A. F., Cossuol, M. A., Coppard, S. E., Duque-Caro,
H., Finnegan, S., Gasparini, G. M., Grossman, E. L., Johnson, K. G.,
Keigwin, L. D., Knowlton, N., Leigh, E. G., Leonard-Pingel, J. S., Marko, P.
B., Pyenson, N. D., Rachello-Dolmen, P., Soibelzon, E., Soibelzon, L., Todd,
J. A., Vermeiz, G. J., and Jackson, J. B. C.: Formation of the Isthmus of
Panama, Sci. Adv., 2, https://doi.org/10.1126/sciadv.1600883, 2016.
ODP Leg 202 Shipboard Scientific Party: Leg 202 summary, Proc. ODP, Init. Repts., 202: College
Station, TX (Ocean Drilling Program), 1–145,
https://doi.org/10.2973/odp.proc.ir.202.101.2003, 2003.
Olivarez Lyle, A. and Lyle, M.: Determination of biogenic opal in pelagic marine sediments: a simple method revisited, in: Proceedings of the Ocean Drilling Program, Initial Reports Volume 199, edited by: Lyle, M., Wilson, P. A., Janecek, T. R., et al., Ocean Drilling Program, College Station TX, https://doi.org/10.2973/odp.proc.ir.199.106.2002, 2002.
Opdyke, B. N. and Wilkinson, B. H.: Surface area control of shallow cratonic
to deep marine carbonate accumulation, Paleoceanography, 3, 685–703, 1988.
Pälike, H., Nishi, H., Lyle, M., Raffi, I., Gamage, K., Klaus, A., and
the Expedition 320/321 Scientists: Expedition 320/321 summary, Proc. IODP, 320/321,
https://doi.org/10.2204/iodp.proc.320321.101.2010, 2010.
Pälike, H., Lyle, M., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K.,
Klaus, A., Acton, G. D., Anderson, L., Backman, J., Baldauf, J., Beltran,
C., Bohaty, S. M., Bown, P., Busch, W., Channell, J. E. T., Chun, C. O. J.,
Delaney, M., Dewangan, P., Dunkley Jones, T., Edgar, K. M., Evans, H.,
Fitch, P., Foster, G. L., Gussone, N., Hasegawa, H., Hathorne, E. C.,
Hayashi, H., Herrle, J. O., Holbourn, A., Hovan, S., Hyeong, K., Iijima, K.,
Ito, T., Kamikuri, S., Kimoto, K., Kuroda, J., Leon-Rodrigues, L.,
Malinverno, A., Moore Jr., T. C., Murphy, B. H., Murphy, D. P., Nakamura,
H., Ogane, K., Ohneiser, C., Richter, C., Robinson, R., Rohling, E. J.,
Romero, O., Sawada, K., Scher, H., Schneider, L., Sluijs, A., Takata, H.,
Tian, J., Tsujimoto, A., Wade, B. S., Westerhold, T., Wilkens, R., Williams,
T., Wilson, P. A., Yamamoto, Y., Yamamoto, S., Yamazaki, T., and Zeebe, R.:
A Cenozoic record of the equatorial Pacific carbonate compensation depth,
Nature, 488, 609–614, https://doi.org/10.1038/nature11360, 2012.
Peterson, L. C., Murray, D. W., Ehrmann, W. U., and Hempel, P.: Cenozoic
carbonate accumulation and compensation depth changes in the Indian Ocean,
in: Synthesis of Results from Scientific Drilling in the Indian Ocean, edited by:
Duncan, R. A., Rea, D. K., Kidd, R. B., von Rad, U., and Weissel, J. K.,
Geophysical Monograph, 70, American Geophysical Union, Washington D.C., 311–331, 1992.
Poore, H. R., Samworth, R., White, N. J., Jones, S. M., and McCave, I. N.:
Neogene overflow of Northern Component Water at the Greenland-Scotia Ridge,
Geochem. Geophy. Geosy., 7, Q06010, https://doi.org/10.1029/2005GC001085, 2006.
Povea, P., Cacho, I., Moreno, A., Pena, L. D., Menendez, M., Calvo, E.,
Canals, M., Robinson, R. S., Mendez, F. J., and Flores, J.-A.:
Atmosphere-ocean linkages in the eastern equatorial Pacific over the early
Pleistocene, Paleoceanography, 31, https://doi.org/10.1002/2015PA002883, 2016.
Reghellin, D., Dickens, G. R., and Backman, J.: The relationship between wet
bulk density and carbonate content in sediments from the eastern equatorial
Pacific, Mar. Geol., 344, 41–52, 2013.
Reghellin, D., Coxall, H. K., Dickens, G. R., and Backman, J.: Carbon and
oxygen isotopes of bulk carbonate in sediment deposited beneath the eastern
equatorial Pacific over the last 8 million years, Paleoceanography, 30, 2015PA002825, https://doi.org/10.1002/2015PA002825, 2015.
Rohling, E. J., Foster, G. L., Grant, K. M., Marino, G., Roberts, A. P.,
Tamisiea, M. E., and Williams, F.: Sea-level and deep-sea-temperature
variability over the past 5.3 million years, Nature, 508, 477–482, https://doi.org/10.1038/nature13230, 2014.
Roth, J. M., Droxler, A. W., and Kameo, K.: The Caribbean carbonate crash at
the middle to late Miocene transition: linkage to the establishment of the
modern global ocean conveyer, Proceedings of the Ocean Drilling Program, Scientific Results, 165, 249–273,
https://doi.org/10.2973/odp.proc.sr.165.013.2000, 2000.
Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M., and
Backman, J.: Pleistocene evolution: Northern hemisphere ice sheets and
North Atlantic Ocean, Paleoceanography, 4, 353–412, 1989.
Ryan, W. B. F. ,Carbotte, S. M., Coplan, J. O., O'hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and Zemsky, R.: Global Multi-resolution topography synthesis, Geochem. Geophy. Geosy., 10, Q03014, 2009.
Seki, O., Foster, G. L., Schmidt, D. N., Mackenson, A., Kawamura, K., and
Pancost, R. D.: Alkenone and boron-based Pliocene pCO2 records, Earth Planet. Sc. Lett., 292,
201–211, https://doi.org/10.1016/j.epsl.2010.01.037, 2010.
Seki, O., Schmidt, D. N., Schouten, S., Hopmans, E. C., Sininghe Damste, J.
S., and Pancost, R. D.: Paleoceanographic changes in the eastern equatorial
Pacific over the last 10 Myr, Paleoceanography, 27, PA3224, https://doi.org/10.1029/2011PA002158, 2012.
Shackford, J. K., Lyle, M., Wilkens, R., and Tian, J.: Data report: raw and
normalized elemental data along the Site U1335, U1336, and U1337 splices
from X-ray fluorescence scanning Proceedings of the Integrated Ocean Drilling Program, 320/321,
https://doi.org/10.2204/iodp.proc.320321.216.2014, 2014.
Stap, L. B., de Boer, B., Ziegler, M., Bintanja, R., and Lourens, L. J.:
CO2 over the past 5 million years: continuous simulation and new
d11B-based proxy data, Earth Planet. Sc. Lett., 439, 1–10, https://doi.org/10.1016/j.epsl.2016.01.022, 2016.
Tada, R., Zheng, H., and Clift, P. D.: Evolution and variability of the Asian
monsoon and its potential linkage with uplift of the Himalaya and Tibetan
Plateau, Progress in Earth and Planetary Science, 3, https://doi.org/10.1186/s40645-016-0080-y, 2016.
Taylor, S. R. and McClennan,S. M. : The geochemical evolution of the continental crust, Rev. Geophys., 33, 241–265, 1995.
Tian, J., Ma, X., Zhou, J., Jiang, X., Lyle, M., Shackford, J. K., and
Wilkens, R. : Paleoceanography of the east equatorial Pacific over the past
16 Myr and Pacific-Atlantic comparison: High resolution benthic
foraminiferal δ18O and δ13C records at IODP Site
U1337, Earth Planet. Sc. Lett., 499, 185–196, https://doi.org/10.1016/j.epsl.2018.07.025, 2018.
Tominaga, M., Lyle, M., and Mitchell, N. C.: Seismic interpretation of pelagic
sedimentation regimes in the 18–53 Ma eastern equatorial Pacific:
Basin-scale sedimentation and infilling of abyssal valleys, Geochem. Geophy. Geosy., 12, Q03004,
https://doi.org/10.1029/2010GC003347, 2011.
van Andel, T. H. and Moore Rr., T. C.: Cenozoic calcium carbonate
distribution and calcite compensation depth in the central equatorial
Pacific Ocean, Geology, 2, 87–92, 1974.
van Andel, T. H., Heath, G. R., and Moore Jr., T. C.: Cenozoic History and
Paleoceanography of the central equatorial Pacific Ocean, GSA Memoir 143, Geological
Society of America, 1975.
Wilkens, R. H., Westerhold, T., Drury, A. J., Lyle, M., Gorgas, T., and Tian, J.: Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma, Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, 2017.
Wilson, J. K.: Early Miocene carbonate dissolution in the eastern equatorial
Pacific, Phd thesis, Oceanography, Texas A and M University, 155 pp., 2014.
Winckler, G., Anderson, R. F., Fleisher, M. Q., McGee, D., and Mahowald, N.:
Covariant Glacial-Interglacial dust fluxes in the equatorial Pacific and
Antarctica, Science, 320, 93–96, https://doi.org/10.1126/science.1150595, 2008.
Ziegler, C. L., Murray, R. W., Plank, T., and Hemming, S. R.: Sources of Fe
to the equatorial Pacific Ocean from the Holocene to Miocene, Earth Planet. Sc. Lett., 270,
258–270, https://doi.org/10.1016/j.epsl.2008.03.044, 2008.
Short summary
Ocean sediment records document changes in Earth’s carbon cycle and ocean productivity. We present 8 Myr CaCO3 and bulk sediment records from seven eastern Pacific scientific drill sites to identify intervals of excess CaCO3 dissolution (high carbon storage in the oceans) and excess burial of plankton hard parts indicating high productivity. We define the regional extent of production intervals and explore the impact of the closure of the Atlantic–Pacific Panama connection on CaCO3 burial.
Ocean sediment records document changes in Earth’s carbon cycle and ocean productivity. We...