Articles | Volume 15, issue 4
https://doi.org/10.5194/cp-15-1581-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-1581-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamic climate-driven controls on the deposition of the Kimmeridge Clay Formation in the Cleveland Basin, Yorkshire, UK
Department of Earth Sciences, Durham University, South Road, Durham, DH1 3LE, UK
Christian März
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Andrew C. Aplin
Department of Earth Sciences, Durham University, South Road, Durham, DH1 3LE, UK
Olaf Dellwig
Leibniz-Institute for Baltic Sea Research, Marine Geology, Seestrasse 15, 18119 Rostock, Germany
Liam G. Herringshaw
School of Environmental Sciences, University of Hull, Hull, HU6 7RX, UK
Violaine Lamoureux-Var
IFP Energies Nouvelles, Geosciences Division, 1 et 4 Avenue de
Bois-Préau, 92852 Rueil-Malmaison Cedex, France
Melanie J. Leng
National Environmental Isotope Facility, British Geological Survey,
Nottingham, NG12 5GG, UK
Centre for Environmental Geochemistry, School of
Biosciences, University of Nottingham, Sutton Bonington Campus,
Leicestershire, UK
Bernhard Schnetger
ICMB, Oldenburg University, P.O. Box 2503, 26111 Oldenburg, Germany
Thomas Wagner
Lyell Centre, Heriot-Watt University, Edinburgh, EH14 4AS, UK
Related authors
No articles found.
Sebastian Steinig, Wolf Dummann, Peter Hofmann, Martin Frank, Wonsun Park, Thomas Wagner, and Sascha Flögel
Clim. Past, 20, 1537–1558, https://doi.org/10.5194/cp-20-1537-2024, https://doi.org/10.5194/cp-20-1537-2024, 2024
Short summary
Short summary
The opening of the South Atlantic Ocean, starting ~ 140 million years ago, had the potential to influence the global carbon cycle and climate trends. We use 36 climate model experiments to simulate the evolution of ocean circulation in this narrow basin. We test different combinations of palaeogeographic and atmospheric CO2 reconstructions with geochemical data to not only quantify the influence of individual processes on ocean circulation but also to find nonlinear interactions between them.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
James P. J. Ward, Katharine R. Hendry, Sandra Arndt, Johan C. Faust, Felipe S. Freitas, Sian F. Henley, Jeffrey W. Krause, Christian März, Allyson C. Tessin, and Ruth L. Airs
Biogeosciences, 19, 3445–3467, https://doi.org/10.5194/bg-19-3445-2022, https://doi.org/10.5194/bg-19-3445-2022, 2022
Short summary
Short summary
The seafloor plays an important role in the cycling of silicon (Si), a key nutrient that promotes marine primary productivity. In our model study, we disentangle major controls on the seafloor Si cycle to better anticipate the impacts of continued warming and sea ice melt in the Barents Sea. We uncover a coupling of the iron redox and Si cycles, dissolution of lithogenic silicates, and authigenic clay formation, comprising a Si sink that could have implications for the Arctic Ocean Si budget.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Andrew L. A. Johnson, Annemarie M. Valentine, Bernd R. Schöne, Melanie J. Leng, and Stijn Goolaerts
Clim. Past, 18, 1203–1229, https://doi.org/10.5194/cp-18-1203-2022, https://doi.org/10.5194/cp-18-1203-2022, 2022
Short summary
Short summary
Determining seasonal temperatures demands proxies that record the highest and lowest temperatures over the annual cycle. Many record neither, but oxygen isotope profiles from shells in principle record both. Oxygen isotope data from late Pliocene bivalve molluscs of the southern North Sea basin show that the seasonal temperature range was at times much higher than previously estimated and higher than now. This suggests reduced oceanic heat supply, in contrast to some previous interpretations.
Ben J. Fisher, Johan C. Faust, Oliver W. Moore, Caroline L. Peacock, and Christian März
Biogeosciences, 18, 3409–3419, https://doi.org/10.5194/bg-18-3409-2021, https://doi.org/10.5194/bg-18-3409-2021, 2021
Short summary
Short summary
Organic carbon can be protected from microbial degradation in marine sediments through association with iron minerals on 1000-year timescales. Despite the importance of this carbon sink, our spatial and temporal understanding of iron-bound organic carbon interactions globally is poor. Here we show that caution must be applied when comparing quantification of iron-bound organic carbon extracted by different methods as the extraction strength and method specificity can be highly variable.
James F. Spray, Thomas Wagner, Juliane Bischoff, Sara Trojahn, Sevda Norouzi, Walter Hill, Julian Brasche, Leroy James, and Ryan Pereira
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-92, https://doi.org/10.5194/bg-2021-92, 2021
Manuscript not accepted for further review
Short summary
Short summary
Sunlight and microbial activity break down river dissolved organic matter (DOM), releasing greenhouse gases, but are poorly understood in tropical headwaters. We incubated water in light and darkness, using novel methods to quantify changes in DOM concentration and character. Light removed up to 9 % of DOM, but microbial activity had a varied response. Importantly, light affected DOM compounds considered photo-resistant; likewise microbial activity degraded compounds thought to be bio-resistant.
Mark A. Stevenson, Suzanne McGowan, Emma J. Pearson, George E. A. Swann, Melanie J. Leng, Vivienne J. Jones, Joseph J. Bailey, Xianyu Huang, and Erika Whiteford
Biogeosciences, 18, 2465–2485, https://doi.org/10.5194/bg-18-2465-2021, https://doi.org/10.5194/bg-18-2465-2021, 2021
Short summary
Short summary
We link detailed stable isotope and biomarker analyses from the catchments of three Arctic upland lakes on Disko Island (West Greenland) to a recent dated sediment core to understand how carbon cycling has changed over the past ~500 years. We find that the carbon deposited in sediments in these upland lakes is predominately sourced from in-lake production due to the catchment's limited terrestrial vegetation and elevation and that recent increases in algal production link with climate change.
Wolf Dummann, Sebastian Steinig, Peter Hofmann, Matthias Lenz, Stephanie Kusch, Sascha Flögel, Jens Olaf Herrle, Christian Hallmann, Janet Rethemeyer, Haino Uwe Kasper, and Thomas Wagner
Clim. Past, 17, 469–490, https://doi.org/10.5194/cp-17-469-2021, https://doi.org/10.5194/cp-17-469-2021, 2021
Short summary
Short summary
This study investigates the climatic mechanism that controlled the deposition of organic matter in the South Atlantic Cape Basin during the Early Cretaceous. The presented geochemical and climate modeling data suggest that fluctuations in riverine nutrient supply were the main driver of organic carbon burial on timescales < 1 Myr. Our results have implications for the understanding of Cretaceous atmospheric circulation patterns and climate-land-ocean interactions in emerging ocean basins.
James M. Russell, Philip Barker, Andrew Cohen, Sarah Ivory, Ishmael Kimirei, Christine Lane, Melanie Leng, Neema Maganza, Michael McGlue, Emma Msaky, Anders Noren, Lisa Park Boush, Walter Salzburger, Christopher Scholz, Ralph Tiedemann, Shaidu Nuru, and the Lake Tanganyika Scientific Drilling Project (TSDP) Consortium
Sci. Dril., 27, 53–60, https://doi.org/10.5194/sd-27-53-2020, https://doi.org/10.5194/sd-27-53-2020, 2020
Short summary
Short summary
Our planet experienced enormous environmental changes in the last 10 million years. Lake Tanganyika is the oldest lake in Africa and its sediments comprise the most continuous terrestrial environmental record for this time period in the tropics. This workshop report identifies key research objectives in rift processes, evolutionary biology, geomicrobiology, paleoclimatology, paleoecology, paleoanthropology, and geochronology that could be addressed by drilling this globally important site.
Anna Mikis, Katharine R. Hendry, Jennifer Pike, Daniela N. Schmidt, Kirsty M. Edgar, Victoria Peck, Frank J. C. Peeters, Melanie J. Leng, Michael P. Meredith, Chloe L. C. Jones, Sharon Stammerjohn, and Hugh Ducklow
Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, https://doi.org/10.5194/bg-16-3267-2019, 2019
Short summary
Short summary
Antarctic marine calcifying organisms are threatened by regional climate change and ocean acidification. Future projections of regional carbonate production are challenging due to the lack of historical data combined with complex climate variability. We present a 6-year record of flux, morphology and geochemistry of an Antarctic planktonic foraminifera, which shows that their growth is most sensitive to sea ice dynamics and is linked with the El Niño–Southern Oscillation.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
Rowan Dejardin, Sev Kender, Claire S. Allen, Melanie J. Leng, George E. A. Swann, and Victoria L. Peck
J. Micropalaeontol., 37, 25–71, https://doi.org/10.5194/jm-37-25-2018, https://doi.org/10.5194/jm-37-25-2018, 2018
Bernd Wagner, Thomas Wilke, Alexander Francke, Christian Albrecht, Henrike Baumgarten, Adele Bertini, Nathalie Combourieu-Nebout, Aleksandra Cvetkoska, Michele D'Addabbo, Timme H. Donders, Kirstin Föller, Biagio Giaccio, Andon Grazhdani, Torsten Hauffe, Jens Holtvoeth, Sebastien Joannin, Elena Jovanovska, Janna Just, Katerina Kouli, Andreas Koutsodendris, Sebastian Krastel, Jack H. Lacey, Niklas Leicher, Melanie J. Leng, Zlatko Levkov, Katja Lindhorst, Alessia Masi, Anna M. Mercuri, Sebastien Nomade, Norbert Nowaczyk, Konstantinos Panagiotopoulos, Odile Peyron, Jane M. Reed, Eleonora Regattieri, Laura Sadori, Leonardo Sagnotti, Björn Stelbrink, Roberto Sulpizio, Slavica Tofilovska, Paola Torri, Hendrik Vogel, Thomas Wagner, Friederike Wagner-Cremer, George A. Wolff, Thomas Wonik, Giovanni Zanchetta, and Xiaosen S. Zhang
Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017, https://doi.org/10.5194/bg-14-2033-2017, 2017
Short summary
Short summary
Lake Ohrid is considered to be the oldest existing lake in Europe. Moreover, it has a very high degree of endemic biodiversity. During a drilling campaign at Lake Ohrid in 2013, a 569 m long sediment sequence was recovered from Lake Ohrid. The ongoing studies of this record provide first important information on the environmental and evolutionary history of the lake and the reasons for its high endimic biodiversity.
Jack H. Lacey, Melanie J. Leng, Alexander Francke, Hilary J. Sloane, Antoni Milodowski, Hendrik Vogel, Henrike Baumgarten, Giovanni Zanchetta, and Bernd Wagner
Biogeosciences, 13, 1801–1820, https://doi.org/10.5194/bg-13-1801-2016, https://doi.org/10.5194/bg-13-1801-2016, 2016
Short summary
Short summary
We use stable isotope data from carbonates to provide a palaeoenvironmental reconstruction covering the last 637 kyr at Lake Ohrid (FYROM/Albania). Our results indicate a relatively stable climate until 450 ka, wetter climate conditions at 400–250 ka, and a transition to a drier climate after 250 ka. This work emphasises the importance of Lake Ohrid as a valuable archive of climate change in the northern Mediterranean region.
J. Holtvoeth, D. Rushworth, H. Copsey, A. Imeri, M. Cara, H. Vogel, T. Wagner, and G. A. Wolff
Biogeosciences, 13, 795–816, https://doi.org/10.5194/bg-13-795-2016, https://doi.org/10.5194/bg-13-795-2016, 2016
Short summary
Short summary
Lake Ohrid is situated in the southern Balkans between Albania and Macedonia. It is a unique ecosystem with remarkable biodiversity and a sediment record of past climates that goes back more than a million years. Detailed reconstructions of past climate development and human alteration of the environment require underpinned and so in this study we go the present-day lake vegetation and catchment soils and test new proxies over one of the known recent cooling events of the region 8200 years ago.
A. M. Snelling, G. E. A. Swann, J. Pike, and M. J. Leng
Clim. Past, 10, 1837–1842, https://doi.org/10.5194/cp-10-1837-2014, https://doi.org/10.5194/cp-10-1837-2014, 2014
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Pre-Cenozoic
Warming drove the expansion of marine anoxia in the equatorial Atlantic during the Cenomanian leading up to Oceanic Anoxic Event 2
Driving mechanisms of organic carbon burial in the Early Cretaceous South Atlantic Cape Basin (DSDP Site 361)
Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks
Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation
Water-mass evolution in the Cretaceous Western Interior Seaway of North America and equatorial Atlantic
Late Cretaceous (late Campanian–Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea
Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany)
"OAE 3" – regional Atlantic organic carbon burial during the Coniacian–Santonian
Bridging the Faraoni and Selli oceanic anoxic events: late Hauterivian to early Aptian dysaerobic to anaerobic phases in the Tethys
Mohd Al Farid Abraham, Bernhard David A. Naafs, Vittoria Lauretano, Fotis Sgouridis, and Richard D. Pancost
Clim. Past, 19, 2569–2580, https://doi.org/10.5194/cp-19-2569-2023, https://doi.org/10.5194/cp-19-2569-2023, 2023
Short summary
Short summary
Oceanic Anoxic Event 2 (OAE 2), about 93.5 million years ago, is characterized by widespread deoxygenated ocean and massive burial of organic-rich sediments. Our results show that the marine deoxygenation at the equatorial Atlantic that predates the OAE 2 interval was driven by global warming and associated with the nutrient status of the site, with factors like temperature-modulated upwelling and hydrology-induced weathering contributing to enhanced nutrient delivery over various timescales.
Wolf Dummann, Sebastian Steinig, Peter Hofmann, Matthias Lenz, Stephanie Kusch, Sascha Flögel, Jens Olaf Herrle, Christian Hallmann, Janet Rethemeyer, Haino Uwe Kasper, and Thomas Wagner
Clim. Past, 17, 469–490, https://doi.org/10.5194/cp-17-469-2021, https://doi.org/10.5194/cp-17-469-2021, 2021
Short summary
Short summary
This study investigates the climatic mechanism that controlled the deposition of organic matter in the South Atlantic Cape Basin during the Early Cretaceous. The presented geochemical and climate modeling data suggest that fluctuations in riverine nutrient supply were the main driver of organic carbon burial on timescales < 1 Myr. Our results have implications for the understanding of Cretaceous atmospheric circulation patterns and climate-land-ocean interactions in emerging ocean basins.
Sebastian Beil, Wolfgang Kuhnt, Ann Holbourn, Florian Scholz, Julian Oxmann, Klaus Wallmann, Janne Lorenzen, Mohamed Aquit, and El Hassane Chellai
Clim. Past, 16, 757–782, https://doi.org/10.5194/cp-16-757-2020, https://doi.org/10.5194/cp-16-757-2020, 2020
Short summary
Short summary
Comparison of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates shows that long-lasting negative δ13C excursions precede the positive δ13C excursions and that the evolution of the marine δ13C positive excursions is similar during both OAEs, although the durations of individual phases differ substantially. Phosphorus speciation data across OAE2 and the Mid-Cenomanian Event suggest a positive feedback loop, enhancing marine productivity during OAEs.
Martin Schobben, Sebastiaan van de Velde, Jana Gliwa, Lucyna Leda, Dieter Korn, Ulrich Struck, Clemens Vinzenz Ullmann, Vachik Hairapetian, Abbas Ghaderi, Christoph Korte, Robert J. Newton, Simon W. Poulton, and Paul B. Wignall
Clim. Past, 13, 1635–1659, https://doi.org/10.5194/cp-13-1635-2017, https://doi.org/10.5194/cp-13-1635-2017, 2017
Short summary
Short summary
Stratigraphic trends in the carbon isotope composition of calcium carbonate rock can be used as a stratigraphic tool. An important assumption when using these isotope chemical records is that they record a globally universal signal of marine water chemistry. We show that carbon isotope scatter on a confined centimetre stratigraphic scale appears to represent a signal of microbial activity. However, long-term carbon isotope trends are still compatible with a primary isotope imprint.
James S. Eldrett, Paul Dodsworth, Steven C. Bergman, Milly Wright, and Daniel Minisini
Clim. Past, 13, 855–878, https://doi.org/10.5194/cp-13-855-2017, https://doi.org/10.5194/cp-13-855-2017, 2017
Short summary
Short summary
This contribution integrates new data on the main components of organic matter, geochemistry, and stable isotopes for the Cenomanian to Coniacian stages of the Late Cretaceous, along a north–south transect from the Cretaceous Western Interior Seaway to the equatorial western Atlantic and Southern Ocean. Distinct palynological assemblages and geochemical signatures allow insights into palaeoenvironmental conditions and water-mass evolution during this greenhouse climate period.
Nicolas Thibault, Rikke Harlou, Niels H. Schovsbo, Lars Stemmerik, and Finn Surlyk
Clim. Past, 12, 429–438, https://doi.org/10.5194/cp-12-429-2016, https://doi.org/10.5194/cp-12-429-2016, 2016
Short summary
Short summary
We present here for the first time a very high-resolution record of sea-surface temperature changes in the Boreal Chalk Sea for the last 8 million years of the Cretaceous. This record was obtained from 1932 bulk oxygen isotope measurements, and their interpretation into temperature trends is validated by similar trends observed from changes in phytoplankton assemblages.
N. A. G. M. van Helmond, A. Sluijs, J. S. Sinninghe Damsté, G.-J. Reichart, S. Voigt, J. Erbacher, J. Pross, and H. Brinkhuis
Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015, https://doi.org/10.5194/cp-11-495-2015, 2015
Short summary
Short summary
Based on the chemistry and microfossils preserved in sediments deposited in a shallow sea, in the current Lower Saxony region (NW Germany), we conclude that changes in Earth’s orbit around the Sun led to enhanced rainfall and organic matter production. The additional supply of organic matter, depleting oxygen upon degradation, and freshwater, inhibiting the mixing of oxygen-rich surface waters with deeper waters, caused the development of oxygen-poor waters about 94 million years ago.
M. Wagreich
Clim. Past, 8, 1447–1455, https://doi.org/10.5194/cp-8-1447-2012, https://doi.org/10.5194/cp-8-1447-2012, 2012
K. B. Föllmi, M. Bôle, N. Jammet, P. Froidevaux, A. Godet, S. Bodin, T. Adatte, V. Matera, D. Fleitmann, and J. E. Spangenberg
Clim. Past, 8, 171–189, https://doi.org/10.5194/cp-8-171-2012, https://doi.org/10.5194/cp-8-171-2012, 2012
Cited articles
Aigner, T.: Biofabrics and stratinomy of the Lower Kimmeridge Clay (U.
Jurassic, Dorset, England), Neues Jahrb. Geol. P.-A., 159, 324–338, 1980.
Algeo, T. J. and Tribovillard, N.: Environmental analysis of paleoceanographic
systems based on molybdenum–uranium covariation, Chem. Geol.,
268, 211–225, 2009.
Algeo, T. J., Heckel, P. H., Maynard, J. B, Blakey, R. C., Rowe, H., Pratt,
B. R., and Holmden, C., Modern and ancient epeiric seas and the
super-estuarine circulation model of marine anoxia, Dynamics of Epeiric
Seas: Sedimentological, Paleontological and Geochemical Perspectives:
Geological Association Canada Special Paper, 48, 7–38, 2008.
Armstrong, H. A., Wagner, T., Herringshaw, L. G.,
Farnsworth, A. J., Lunt, D. J., Harland, M., Imber, J., Loptson, C.,
and Atar, E. F. L.: Hadley circulation and precipitation changes
controlling black shale deposition in the Late Jurassic Boreal Seaway,
Paleoceanography, 31, 1041–1053, 2016.
Atar, E., März, C., Aplin, A. C., Dellwig, O., Herringshaw, L., Lamoureux-Var, V., Leng, M. J., Schnetger, B., and Wagner, T.: Geochemical data from the Ebberston 87 Core (Cleveland Basin, Yorkshire, UK), PANGAEA, https://doi.org/10.1594/PANGAEA.903744, 2019.
Boussafir, M. and Lallier-Vergès, E.: Accumulation of organic matter in the
Kimmeridge Clay formation (KCF): an update fossilisation model for marine
petroleum source-rocks, Mar. Petrol. Geol., 14, 75–83, 1997.
Boussafir, M., Gelin, F., Lallier-Vergès, E., Derenne, S., Bertrand, P.,
and Largeau, C.: Electron microscopy and pyrolysis of kerogens from the
Kimmeridge Clay Formation, UK: Source organisms, preservation processes, and
origin of microcycles, Geochim. Cosmochim. Ac., 59, 3731–3747, 1995.
Bradshaw, M. J., Cope, J. C. W., Cripps, D. W., Donovan, D. T., Howarth, M.
K., Rawson, P. F., West, I. M., and Wimbledon, W. A.: Jurassic, Geological
Society, London, Memoirs, 13, 107–129, 1992.
Brumsack, H.-J.: Rezente, C-org-reiche Sedimente als Schlüssel zum
Verständnis fossiler Schwarzschiefer, University of Göttingen, 1988.
Brumsack, H.-J.: Geochemistry of recent TOC-rich sediments from the Gulf of
California and the Black Sea, Geol. Rundsch., 78, 851–882, 1989.
Brumsack, H.-J.: The trace metal content of recent organic carbon-rich
sediments: Implications for Cretaceous black shale formation,
Palaeogeogr. Palaeocl., 232, 344–361, 2006.
Canfield, D. E., Raiswell, R., and Bottrell, S. H.: The reactivity of sedimentary
iron minerals toward sulfide, Am. J. Sci., 292, 659–683,
1992.
Dellwig, O., Watermann, F., Brumsack, H. J., and Gerdes, G.: High-resolution
Reconstruction of a Holocene Coastal Sequence (NW Germany) Using Inorganic
Geochemical Data and Diatom Inventories, Estuar. Coast. Shelf
S., 48, 617–633, 1999.
Dellwig, O., Hinrichs, J., Hild, A., and Brumsack, H. J.: Changing sedimentation
in tidal flat sediments of the southern North Sea from the Holocene to the
present: a geochemical approach, J. Sea Res., 44, 195–208,
2000.
Dellwig, O., Watermann, F., Brumsack, H.-J., Gerdes, G., and Krumbein, W.:
Sulphur and iron geochemistry of Holocene coastal peats (NW Germany): a tool
for palaeoenvironmental reconstruction, Palaeogeogr. Palaeocl., 167, 359–379, 2001.
Dellwig, O., Leipe, T., März, C., Glockzin, M., Pollehne, F., Schnetger, B., Yakushev, E. V., Böttcher, M. E., and Brumsack, H. J.: A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins, Geochim. Cosmochim. Ac., 74, 7100–7115, 2010.
Dellwig, O., Schnetger, B., Meyer, D., Pollehne, F., Häusler, K., and
Arz, H. W.: Impact of the Major Baltic Inflow in 2014 on Manganese Cycling in
the Gotland Deep (Baltic Sea), Front. Mar. Sci., 5, 248, https://doi.org/10.3389/fmars.2018.00248, 2018.
Dellwig, O., Wegwerth, A., Schnetger, B., Schulz, H., and Arz, H. W.:
Dissimilar behaviors of the geochemical twins W and Mo in hypoxic-euxinic
marine basins, Earth-Sci. Rev., 193, 1–23, 2019.
Demaison, G. J. and Moore, G. T.: Anoxic environments and oil source bed genesis,
Org. Geochem., 2, 9–31, 1980.
Demaison, G., Pedersen, T. F., and Calvert, S. E.: Anoxia vs. productivity; what
controls the formation of organic-carbon-rich sediments and sedimentary
rocks?; discussion and reply, AAPG Bull., 75, 499–501, 1991.
Erickson, B. E. and Helz, G. R.: Molybdenum(VI) speciation in sulfidic waters:
Stability and lability of thiomolybdates, Geochim. Cosmochim. Ac.,
64, 1149–1158, 2000.
Gallois, R. W.: Coccolith blooms in the Kimmeridge Clay and origin of North
Sea Oil, Nature, 259, 473–475, 1976.
Gallois, R. W.: Oil shale resources in Great Britain, Institute of Geological
Sciences, London, 1979.
Goldberg, E. D.: Marine geochemistry 1. Chemical scavengers of the sea,
J. Geol., 62, 249–265, 1954.
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G.: The geologic time scale 2012, Elsevier, Boston, 2012.
Grasby, S. E., Them II, T. R., Chen, Z., Yin, R., and Ardakani, O. H.: Mercury
as a proxy for volcanic emissions in the geologic record, Earth-Sci.
Rev., 196, 102880, https://doi.org/10.1016/j.earscirev.2019.102880, 2019.
Hallam, A.: Jurassic environments, Cambridge University Press, 1975.
Haq, B. U., Hardenbol, J., and Vail, P. R.: Mesozoic and Cenozoic
chronostratigraphy and cycles of sea-level change, in: Sea-Level Changes: An Integrated Approach, Society of Economic Paleontologists and Mineralogists, vol. 42, https://doi.org/10.2110/pec.88.01.0071, 1988.
Häusler, K., Moros, M., Wacker, L., Hammerschmidt, L., Dellwig, O.,
Leipe, T., Kotilainen, A., and Arz, H. W.: Mid- to late Holocene
environmental separation of the northern and central Baltic Sea basins in
response to differential land uplift, Boreas, 46, 111–128, 2017.
Häusler, K., Dellwig, O., Schnetger, B., Feldens, P., Leipe, T., Moros,
M., Pollehne, F., Schönke, M., Wegwerth, A., and Arz, H. W.: Massive Mn
carbonate formation in the Landsort Deep (Baltic Sea): Hydrographic
conditions, temporal succession, and Mn budget calculations, Mar. Geol.,
395, 260–270, 2018.
Helz, G. R., Miller, C. V., Charnock, J. M., Mosselmans, J. F. W., Pattrick,
R. A. D., Garner, C. D., and Vaughan, D. J.: Mechanism of molybdenum removal from
the sea and its concentration in black shales: EXAFS evidence, Geochim.
Cosmochim. Ac., 60, 3631–3642, 1996.
Henkel, J. V., Dellwig, O., Pollehne, F., Herlemann, D. P., Leipe, T., and
Schulz-Vogt, H. N.: A bacterial isolate from the Black Sea oxidizes sulfide
with manganese (IV) oxide, P. Natl. Acad. Sci. USA,
116, 12153–12155, 2019.
Herbin, J. P. and Geyssant, J. R.: Organic belts during Kimmeridgian/Tithonian in
England (Yorkshire, Dorset) and France (Boulonnais), Cr. Acad. Sci. II, 317, 1309–1316, 1993.
Herbin, J. P., Muller, C., Geyssant, J., Melieres, F., and Penn, I.:
Heterogeneity of organic matter distribution in relation to a transgressive
systems tract: Kimmeridge Clay (Jurassic), England, AAPG
Bull., 75, 593–594, 1991.
Herbin, J. P., Müller, C., Geyssant, J. R., Mélières, F., Penn,
I. E., and Group, Y.: Variation of the distribution of organic matter within
a transgressive system tract: Kimmeridge Clay (Jurassic), England, in: Source
Rocks in a Sequence Stratigraphic Framework, American Association of Petroleum Geologists, 67–100, 1993.
Herbin, J. P., Fernandez-Martinez, J. L., Geyssant, J. R., Albani, A. E.,
Deconinck, J. F., Proust, J. N., Colbeaux, J. P., and Vidier, J. P.: Sequence
stratigraphy of source rocks applied to the study of the
Kimmeridgian/Tithonian in the north-west European shelf (Dorset/UK,
Yorkshire/UK and Boulonnais/France), Mar. Petrol. Geol., 12,
177–194, 1995.
Herndon, E. M., Havig, J. R., Singer, D. M., McCormick, M. L., and Kump, L. R.:
Manganese and iron geochemistry in sediments underlying the redox-stratified
Fayetteville Green Lake, Geochim. Cosmochim. Ac., 231, 50–63, 2018.
Hesselbo, S. P., Deconinck, J. F., Huggett, J. M., and Morgans Bell, H. S.: Late Jurassic palaeoclimatic change from clay mineralogy and gamma-ray
spectrometry of the Kimmeridge Clay, Dorset, UK, J. Geol.
Soc., 166, 1123–1133, 2009.
Hetzel, A., März, C., Vogt, C., and Brumsack, H.-J.: Geochemical environment
of Cenomanian – Turonian black shale deposition at Wunstorf (northern
Germany), Cretaceous Res., 32, 480–494, 2011.
Hofmann, P. and Wagner, T.: ITCZ controls on Late Cretaceous black shale
sedimentation in the tropical Atlantic Ocean, Paleoceanography, 26, PA4223, https://doi.org/10.1029/2011PA002154, 2011.
Huang, C., Hesselbo, S. P., and Hinnov, L.: Astrochronology of the late Jurassic
Kimmeridge Clay (Dorset, England) and implications for Earth system
processes, Earth Planet. Sc. Lett., 289, 242–255, 2010.
Huckriede, H. and Meischner, D.: Origin and environment of manganese-rich
sediments within black-shale basins, Geochim. Cosmochim. Ac., 60,
1399–1413, 1996.
Ittekkot, V., Haake, B., Bartsch, M., Nair, R., and Ramaswamy, V.: Organic
carbon removal in the sea: the continental connection, Geological Society,
London, Special Publications, 64, 167–176, 1992
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochemistry,
Geophysics, Geosystems, 11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
Katz, B. J.: Controlling factors on source rock development – a review of
productivity, preservation, and sedimentation rate, 2005.
Korte, C., Hesselbo, S. P., Ullmann, C. V., Dietl, G., Ruhl, M., Schweigert,
G., and Thibault, N.: Jurassic climate mode governed by ocean gateway,
Nat. Commun., 6, 10015, https://doi.org/10.1038/ncomms10015, 2015.
Lallier-Vergès, E., Hayes, J. M., Boussafir, M., Zaback, D. A.,
Tribovillard, N. P., Connan, J., and Bertrand, P.: Productivity-induced
sulphur enrichment of hydrocarbon-rich sediments from the Kimmeridge Clay
Formation, Chem. Geol., 134, 277–288, 1997.
Lazar, O. R., Bohacs, K. M., Macquaker, J. H., Schieber, J., and Demko, T. M.:
Capturing key attributes of fine-grained sedimentary rocks in outcrops,
cores, and thin sections: nomenclature and description guidelines, J. Sediment. Res., 85, 230–246, 2015.
Lees, J. A., Bown, P. R., Young, J. R., and Riding, J. B.: Evidence for annual
records of phytoplankton productivity in the Kimmeridge Clay Formation
coccolith stone bands (Upper Jurassic, Dorset, UK), Mar.
Micropaleontol., 52, 29–49, 2004.
Lees, J. A., Bown, P. R., and Young, J. R.: Photic zone palaeoenvironments of the
Kimmeridge Clay Formation (Upper Jurassic, UK) suggested by calcareous
nannoplankton palaeoecology, Palaeogeogr. Palaeocl., 235, 110–134, 2006.
Leng, M. J. and Lewis, J. P.: Bulk C/N ratios and Carbon Isotopes in Estuarine Environments, in: Applications of
Paleoenvironmental Techniques in Estuarine Studies, edited by: Weckström, K., Saunders, K., Gell, P., and Skilbeck, G., Developments in
Palaeoenvironmental Research, vol. 20, Springer, 2017.
Macquaker, J. and Gawthorpe, R.: Mudstone lithofacies in the Kimmeridge Clay
Formation, Wessex Basin, southern England: implications for the origin and
controls of the distribution of mudstones, J. Sediment. Res.,
63, 1129–1143, 1993.
Macquaker, J. H. S., Keller, M. A., and Davies, S. J.: Algal blooms and marine snow:
mechanisms that enhance preservation of organic carbon in ancient
fine-grained sediments, J. Sediment. Res., 80, 934–942, 2010.
Morgans-Bell, H. S., Coe, A. L., Hesselbo, S. P., Jenkyns, H. C., Weedon, G.
P., Marshall, J. E. A., Tyson, R. V., and Williams, C. J.: Integrated stratigraphy
of the Kimmeridge Clay Formation (Upper Jurassic) based on exposures and
boreholes in south Dorset, UK, Geol. Mag., 138, 511–539, 2001.
Neretin, L. N., Böttcher, M. E., Jørgensen, B. B., Volkov, I. I.,
Lüschen, H., and Hilgenfeldt, K.: Pyritization processes and greigite
formation in the advancing sulfidization front in the upper Pleistocene
sediments of the Black Sea 1, Geochim. Cosmochim. Ac., 68,
2081–2093, 2004.
Oschmann, W.: Kimmeridge clay sedimentation – A new cyclic model,
Palaeogeogr. Palaeocl., 65, 217–251, 1988.
Pearce, C. R., Coe, A. L., and Cohen, A. S.: Seawater redox variations during the
deposition of the Kimmeridge Clay Formation, United Kingdom (Upper
Jurassic): Evidence from molybdenum isotopes and trace metal ratios,
Paleoceanography, 25, PA4213, https://doi.org/10.1029/2010PA001963, 2010.
Pedersen, T. F. and Calvert, S. E.: Anoxia vs. Productivity: What Controls the
Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks, AAPG
Bull., 74, 454–466, 1990.
Percival, L. M. E., Witt, M. L. I., Mather, T. A., Hermoso, M., Jenkyns, H.
C., Hesselbo, S. P., Al-Suwaidi, A. H., Storm, M. S., Xu, W., and Ruhl, M.:
Globally enhanced mercury deposition during the end-Pliensbachian extinction
and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province, Earth
Planet. Sc. Lett., 428, 267–280, 2015.
Piper, D. and Calvert, S.: A marine biogeochemical perspective on black shale
deposition, Earth-Sci. Rev., 95, 63–96, 2009.
Powell, J. H.: Jurassic sedimentation in the Cleveland Basin: a review,
P. Yorks. Geol. Soc., 58, 21–72, 2010.
Rawson, P. F., Wright, J. K., Starmer, I., Whitham, F., Hemingway, J., and
Greensmith, J. T.: The Yorkshire Coast, Geologists' Association, 2000.
Rudnick, R. L. and Gao, S.: Composition of the continental crust, chap. 3, in: Treatise on geochemistry, Elsevier, 3, 1–64, 2003.
Sageman, B. B., Murphy, A. E., Werne, J. P., Ver Straeten, C. A., Hollander,
D. J., and Lyons, T. W.: A tale of shales: the relative roles of production,
decomposition, and dilution in the accumulation of organic-rich strata,
Middle–Upper Devonian, Appalachian basin, Chem. Geol., 195, 229–273,
2003.
Scaife, J. D., Ruhl, M., Dickson, A. J., Mather, T. A., Jenkyns, H. C.,
Percival, L. M. E., Hesselbo, S. P., Cartwright, J., Eldrett, J. S.,
Bergman, S. C., and Minisini, D.: Sedimentary Mercury Enrichments as a
Marker for Submarine Large Igneous Province Volcanism? Evidence From the
Mid-Cenomanian Event and Oceanic Anoxic Event 2 (Late Cretaceous),
Geochem. Geophy. Geosy., 18, 4253–4275, 2017.
Schieber, J.: Mud re-distribution in epicontinental basins – Exploring
likely processes, Mar. Petrol. Geol., 71, 119–133, 2016.
Scholz, F., Baum, M., Siebert, C., Eroglu, S., Dale, A. W., Naumann, M., and
Sommer, S.: Sedimentary molybdenum cycling in the aftermath of seawater
inflow to the intermittently euxinic Gotland Deep, Central Baltic Sea,
Chem. Geol., 491, 27–38, 2018.
Scotchman, I. C.: Kerogen facies and maturity of the Kimmeridge Clay
Formation in southern and eastern England, Mar. Petrol. Geol.,
8, 278–295, 1991.
Sellwood, B. W. and Valdes, P. J.: Jurassic climates, P. Geologist. Assoc., 119, 5–17, 2008.
Severmann, S., Lyons, T. W., Anbar, A., McManus, J., and Gordon, G.: Modern iron
isotope perspective on the benthic iron shuttle and the redox evolution of
ancient oceans, Geology, 36, 487–490, 2008.
Shanks, A. L.: The abundance, vertical flux, and still-water and apparent
sinking rates of marine snow in a shallow coastal water column, Cont.
Shelf Res., 22, 2045–2064, 2002.
Sweere, T., van den Boorn, S., Dickson, A. J., and Reichart, G. J.: Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations, Chem. Geol., 441, 235–245, 2016.
Taylor, S. R. and McLennan, S. M.: The continental crust: its composition and
evolution, Blackwell, Oxford, 312 pp., 1985.
Them, T. R., Jagoe, C. H., Caruthers, A. H., Gill, B. C., Grasby, S. E.,
Gröcke, D. R., Yin, R., and Owens, J. D.: Terrestrial sources as the
primary delivery mechanism of mercury to the oceans across the Toarcian
Oceanic Anoxic Event (Early Jurassic), Earth Planet. Sc. Lett.,
507, 62–72, 2019.
Trabucho-Alexandre, J.: More gaps than shale: erosion of mud and its effect
on preserved geochemical and palaeobiological signals. Strata and Time:
Probing the Gaps in Our Understanding, Geological Society, London, Special
Publications, 404, 251–270, 2015.
Tribovillard, N.-P., Desprairies, A., Lallier-Vergès, E., Bertrand, P.,
Moureau, N., Ramdani, A., and Ramanampisoa, L.: Geochemical study of
organic-matter rich cycles from the Kimmeridge Clay Formation of Yorkshire
(UK): productivity versus anoxia, Palaeogeogr. Palaeocl., 108, 165–181, 1994.
Tribovillard, N., Trentesaux, A., Ramdani, A., Baudinet, F., and Riboulleau, A.:
Controls on organic accumulation in late Jurassic shales of northwestern
Europe as inferred from trace-metal geochemistry, B. Soc. Geol. Fr., 175, 491–506, 2004.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals as paleoredox and paleoproductivity proxies: An update, Chem. Geol.,
232, 12–32, 2006.
Tribovillard, N., Algeo, T. J., Baudin, F., and Riboulleau, A.: Analysis of
marine environmental conditions based on molybdenum–uranium
covariation – Applications to Mesozoic paleoceanography, Chem. Geol.,
324–325, 46–58, 2012.
Tribovillard, N., Hatem, E., Averbuch, O., Barbecot, F., Bout-Roumazeilles,
V., and Trentesaux, A.: Iron availability as a dominant control on the
primary composition and diagenetic overprint of organic-matter-rich rocks,
Chem. Geol., 401, 67–82, 2015.
Turner, H. E., Batenburg, S. J., Gale, A. S., and Gradstein, F. M.: The
Kimmeridge Clay Formation (Upper Jurassic–Lower Cretaceous) of the
Norwegian Continental Shelf and Dorset, UK: a chemostratigraphic
correlation, Newsl. Stratigr., 1-32, 2019.
Tyson, R. V.: Sedimentation rate, dilution, preservation and total organic
carbon: some results of a modelling study, Org. Geochem., 32,
333–339, 2001.
Tyson, R. V.: The “Productivity versus Preservation” controversy: Cause,
Flaws and Resolution, Sediment. Geol., vol. 82, https://doi.org/10.2110/pec.05.82.0017, 2005.
Van der Weijden, C. H.: Pitfalls of normalization of marine geochemical data
using a common divisor, Mar. Geol., 184, 167–187, 2002.
Wagner, T., Hofmann, P., and Flögel, S.: Marine black shale deposition and
Hadley Cell dynamics: A conceptual framework for the Cretaceous Atlantic
Ocean, Mar. Petrol. Geol., 43, 222–238, 2013.
Wedepohl, K.: Environmental influences on the chemical composition of shales
and clays, Phys. Chem. Earth, 8, 307–333, 1971.
Wedepohl, K. H.: Chemical composition and fractionation of the continental
crust, Geol. Rund., 80, 207–223, 1991.
Wijsman, J. W., Middelburg, J. J., and Heip, C. H.: Reactive iron in Black Sea
sediments: implications for iron cycling, Mar. Geol., 172, 167–180,
2001.
Williams, C. J., Hesselbo, S. P., Jenkyns, H. C., and Morgans-Bell, H. S.:
Quartz silt in mudrocks as a key to sequence stratigraphy (Kimmeridge Clay
Formation, Late Jurassic, Wessex Basin, UK), Terra Nova, 13, 449–455,
2001.
Short summary
We present a geochemical and petrographic study of the Kimmeridge Clay Formation from the Cleveland Basin (Yorkshire, UK). Our results indicate that deposition during this interval was very dynamic and oscillated between three distinct modes of sedimentation. In line with recent modelling results, we propose that these highly dynamic conditions were driven by changes in climate, which affected continental weathering, enhanced primary productivity, and led to organic carbon enrichment.
We present a geochemical and petrographic study of the Kimmeridge Clay Formation from the...