Articles | Volume 15, issue 4
https://doi.org/10.5194/cp-15-1327-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-1327-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Central Tethyan platform-top hypoxia during Oceanic Anoxic Event 1a
Alexander Hueter
CORRESPONDING AUTHOR
Institute for Geology, Mineralogy and Geophysics, Sediment and Isotope
Geology, Ruhr-University Bochum, Bochum, Germany
Stefan Huck
Institute for Geology, Leibniz University Hannover, Hanover, Germany
Stéphane Bodin
Department of Geoscience, Aarhus University, Aarhus, Denmark
Ulrich Heimhofer
Institute for Geology, Leibniz University Hannover, Hanover, Germany
Stefan Weyer
Institute for Mineralogy, Leibniz University Hannover, Hanover, Germany
Klaus P. Jochum
Climate Geochemistry Department, Max Planck Institute for Chemistry,
Mainz, Germany
Adrian Immenhauser
Institute for Geology, Mineralogy and Geophysics, Sediment and Isotope
Geology, Ruhr-University Bochum, Bochum, Germany
Related authors
No articles found.
Alexander Pohle, Kevin Stevens, René Hoffmann, and Adrian Immenhauser
EGUsphere, https://doi.org/10.5194/egusphere-2024-3383, https://doi.org/10.5194/egusphere-2024-3383, 2024
Short summary
Short summary
The belemnite rostrum geochemistry is used as proxy in paleoceanography. Evolutionary patterns in element ratios (Mg/Ca, Sr/Ca, Mn/Ca and Fe/Ca) from belemnite rostra based on a literature dataset are assessed. These proxy data reflect a complex interplay between evolutionary, ontogenetic, environmental, kinetic and diagenetic effects. We coin the new term ‘phylogeochemistry’ for this interdisciplinary research field.
Onyedika Anthony Igbokwe, Jithender J. Timothy, Ashwani Kumar, Xiao Yan, Mathias Mueller, Alessandro Verdecchia, Günther Meschke, and Adrian Immenhauser
Solid Earth, 15, 763–787, https://doi.org/10.5194/se-15-763-2024, https://doi.org/10.5194/se-15-763-2024, 2024
Short summary
Short summary
We present a workflow that models the impact of stress regime change on the permeability of fractured Latemar carbonate buildup using a displacement-based linear elastic finite-element method (FEM) and outcrop data. Stress-dependent heterogeneous apertures and effective permeability were calculated and constrained by the study area's stress directions. Simulated far-field stresses at NW–SE subsidence deformation and N–S Alpine deformation increased the overall fracture aperture and permeability.
Christian R. Singer, Harald Behrens, Ingo Horn, Martin Oeser, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 1009–1026, https://doi.org/10.5194/ejm-35-1009-2023, https://doi.org/10.5194/ejm-35-1009-2023, 2023
Short summary
Short summary
Li is a critical element that is often enriched in pegmatites. To better understand the enrichment of Li in such systems, it is necessary to understand the underlying transport mechanisms. We performed experiments to investigate diffusion rates and exchange mechanisms of Li between a Li-rich and a Li-poor melt at high temperature and pressure. Our results indicate that fluxing elements do not increase the diffusivity of Li compared to a flux-free melt.
Martin Oeser, Ingo Horn, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 813–830, https://doi.org/10.5194/ejm-35-813-2023, https://doi.org/10.5194/ejm-35-813-2023, 2023
Short summary
Short summary
This study presents a new method designed to analyze micrometer-scale chemical and isotopic profiles in minerals, glasses, and other solids. The employed technique combines plasma mass spectrometers and a state-of-the-art femtosecond laser equipped with open-source software (LinuxCNC) that controls the movement of the laser beam. It allows for equably drilling into the sample surface, e.g., in order to measure chemically or isotopically zoned or heterogeneous materials at micrometer scales.
Valentin Siebert, Brivaëla Moriceau, Lukas Fröhlich, Bernd R. Schöne, Erwan Amice, Beatriz Beker, Kevin Bihannic, Isabelle Bihannic, Gaspard Delebecq, Jérémy Devesa, Morgane Gallinari, Yoan Germain, Émilie Grossteffan, Klaus Peter Jochum, Thierry Le Bec, Manon Le Goff, Céline Liorzou, Aude Leynaert, Claudie Marec, Marc Picheral, Peggy Rimmelin-Maury, Marie-Laure Rouget, Matthieu Waeles, and Julien Thébault
Earth Syst. Sci. Data, 15, 3263–3281, https://doi.org/10.5194/essd-15-3263-2023, https://doi.org/10.5194/essd-15-3263-2023, 2023
Short summary
Short summary
This article presents an overview of the results of biological, chemical and physical parameters measured at high temporal resolution (sampling once and twice per week) during environmental monitoring that took place in 2021 in the Bay of Brest. We strongly believe that this dataset could be very useful for other scientists performing sclerochronological investigations, studying biogeochemical cycles or conducting various ecological research projects.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Cinthya Nava-Fernandez, Adam Hartland, Fernando Gázquez, Ola Kwiecien, Norbert Marwan, Bethany Fox, John Hellstrom, Andrew Pearson, Brittany Ward, Amanda French, David A. Hodell, Adrian Immenhauser, and Sebastian F. M. Breitenbach
Hydrol. Earth Syst. Sci., 24, 3361–3380, https://doi.org/10.5194/hess-24-3361-2020, https://doi.org/10.5194/hess-24-3361-2020, 2020
Short summary
Short summary
Speleothems are powerful archives of past climate for understanding modern local hydrology and its relation to regional circulation patterns. We use a 3-year monitoring dataset to test the sensitivity of Waipuna Cave to seasonal changes and El Niño–Southern Oscillation (ENSO) dynamics. Drip water data suggest a fast response to rainfall events; its elemental composition reflects a seasonal cycle and ENSO variability. Waipuna Cave speleothems have a high potential for past ENSO reconstructions.
Jeremy McCormack, Finn Viehberg, Derya Akdemir, Adrian Immenhauser, and Ola Kwiecien
Biogeosciences, 16, 2095–2114, https://doi.org/10.5194/bg-16-2095-2019, https://doi.org/10.5194/bg-16-2095-2019, 2019
Short summary
Short summary
We juxtapose changes in ostracod taxonomy, morphology (noding) and oxygen (δ18O) and carbon (δ13C) isotopic composition for the last 150 kyr with independent low-resolution salinity proxies. We demonstrate that for Lake Van, salinity is the most important factor influencing the composition of the ostracod assemblage and the formation of nodes on the valves of limnocytherinae species. Ostracod δ18O shows a higher sensibility towards climatic and hydrological variations than the bulk isotopy.
Dorothea S. Macholdt, Jan-David Förster, Maren Müller, Bettina Weber, Michael Kappl, A. L. David Kilcoyne, Markus Weigand, Jan Leitner, Klaus Peter Jochum, Christopher Pöhlker, and Meinrat O. Andreae
Geosci. Instrum. Method. Data Syst., 8, 97–111, https://doi.org/10.5194/gi-8-97-2019, https://doi.org/10.5194/gi-8-97-2019, 2019
Short summary
Short summary
Focused ion beam (FIB) slicing is a widely used technique to prepare ultrathin slices for the microanalysis of geological and environmental samples. During our investigations of the manganese oxidation states in rock varnish slices, we found an FIB-related reduction of manganese(IV) to manganese(II) at the samples’ surfaces. This study characterizes the observed reduction artifacts and emphasizes that caution is needed in the analysis of transition metal oxidation states upon FIB preparation.
Laura A. Casella, Erika Griesshaber, Xiaofei Yin, Andreas Ziegler, Vasileios Mavromatis, Dirk Müller, Ann-Christine Ritter, Dorothee Hippler, Elizabeth M. Harper, Martin Dietzel, Adrian Immenhauser, Bernd R. Schöne, Lucia Angiolini, and Wolfgang W. Schmahl
Biogeosciences, 14, 1461–1492, https://doi.org/10.5194/bg-14-1461-2017, https://doi.org/10.5194/bg-14-1461-2017, 2017
Short summary
Short summary
Mollusc shells record past environments. Fossil shell chemistry and microstructure change as metastable biogenic aragonite transforms to stable geogenic calcite. We simulated this alteration of Arctica islandica shells by hydrothermal treatments. Below 175 °C the shell aragonite survived for weeks. At 175 °C the replacement of the original material starts after 4 days and yields submillimetre-sized calcites preserving the macroscopic morphology as well as the original internal micromorphology.
Dana Felicitas Christine Riechelmann, Jens Fohlmeister, Rik Tjallingii, Klaus Peter Jochum, Detlev Konrad Richter, Geert-Jan A. Brummer, and Denis Scholz
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-18, https://doi.org/10.5194/cp-2016-18, 2016
Revised manuscript not accepted
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Pre-Cenozoic
Precessional pacing of tropical ocean carbon export during the Late Cretaceous
Enhanced terrestrial runoff during Oceanic Anoxic Event 2 on the North Carolina Coastal Plain, USA
Ji-Eun Kim, Thomas Westerhold, Laia Alegret, Anna Joy Drury, Ursula Röhl, and Elizabeth M. Griffith
Clim. Past, 18, 2631–2641, https://doi.org/10.5194/cp-18-2631-2022, https://doi.org/10.5194/cp-18-2631-2022, 2022
Short summary
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
Christopher M. Lowery, Jean M. Self-Trail, and Craig D. Barrie
Clim. Past, 17, 1227–1242, https://doi.org/10.5194/cp-17-1227-2021, https://doi.org/10.5194/cp-17-1227-2021, 2021
Short summary
Short summary
Recent work has shown that the mid-Cretaceous Oceanic Anoxic Event 2 (OAE2, ∼ 94 million years ago) was associated with a global increase in precipitation, but regional patterns are still poorly known. We present two new OAE2 records from the ancient inner continental shelf of North Carolina, USA. These cores show an increase in the amount of land-plant-derived organic matter delivered to the inner shelf during OAE2, indicating that this region experienced increased precipitation during OAE2.
Cited articles
Algeo, T. J.: Can marine anoxic events draw down the trace element inventory
of seawater?, Geology, 32, 1057–1060, https://doi.org/10.1130/G20896.1,
2004.
Algeo, T. J. and Maynard, J. B.: Trace-element behavior and redox facies in
core shales of Upper Pennsylvanian Kansas-type cyclothems, Chem. Geol., 206,
289–318, https://doi.org/10.1016/j.chemgeo.2003.12.009, 2004.
Algeo, T. J., Heckel, P. H., Maynard, J. B., Blakey, R. C., and Rowe, H.: Modern
and ancienct epeiric seas and the super estuarine circulation model of
marine anoxia, in: Dynamics of Epeiric Seas, edited by: Pratt, B. R. and Holmden, C.,
Geological Association of Canada Special Paper, 8–38, 2008.
Altieri, A. H. and Diaz, R. J.: Dead Zones: Oxygen Depletion in Coastal
Ecosystems, in: World Seas: An Environmental Evaluation, 2nd Edn.,
Vol. III: Ecological Issues and Environmental Impacts, 453–473,
https://doi.org/10.1016/B978-0-12-805052-1.00021-8, 2019.
Alvisi, F., Giani, M., Ravaiolo, M., and Giordano, P.: Role of sedimentary
environment in the development of hypoxia and anoxia in the NW Adriatic
shelf (Italy), Estuar. Coast. Shelf Sci., 128, 9–21,
https://doi.org/10.1016/j.ecss.2013.05.012, 2013.
Andersen, M. B., Romaniello, S., Vance, D., Little, S. H., Herdman, R., and
Lyons, T. W.: A modern framework for the interpretation of
238U∕235U in studies of ancient ocean redox, Earth Planet. Sci.
Lett., 400, 184–194, https://doi.org/10.1016/j.epsl.2014.05.051, 2014.
Barth, M. G., McDonough, W. F., and Rudnick, R. L.: Tracking the budget of Nb and
Ta in the continental crust, Chem. Geol., 165, 197–213,
https://doi.org/10.1016/S0009-2541(99)00173-4, 2000.
Bau, M. and Dulski, P.: Distribution of yttrium and rare-earth elements in
the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa,
Precambrian Res., 79, 37–55, 1996.
Bersezio, R., Erba, E., Gorza, M., and Riva, A.: Berriasian-Aptian black
shales of the Maiolica formation (Lombardian Basin, Southern Alps, Northern
Italy): local to global events, Palaeogeogr. Palaeocl.,
180, 253–275, https://doi.org/10.1016/S0031-0182(01)00416-3, 2002.
Bodin, S., Godet, A., Matera, V., Steinmann, P., Vermeulen, J., Gardin, S.,
Adatte, T., Coccioni, R., and Föllmi, K. B.: Enrichment of redox-sensitive
trace metals (U, V, Mo, As) associated with the late Hauterivian Faraoni
Oceanic Anoxic Event, Int. J. Earth Sci., 96, 327–341,
https://doi.org/10.1007/s00531-006-0091-9, 2007.
Bodin, S., Godet, A., Westermann, S., and Föllmi, K.B.: Secular change in
northwestern Tethyan water-mass oxygenation during the late Hauterivian –
early Aptian, Earth Planet. Sc. Lett., 374, 121–131,
https://doi.org/10.1016/j.epsl.2013.05.030, 2013.
Boehlert, G. W.: Current-Topography Interactions at Mid-Ocean Seamounts and
the Impact on Pelagic Ecosystems, Geo. J., 16, 45–5,
https://doi.org/10.1007/BF02626371, 1988.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K.,
Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
Yasuhara, M., and Thang, J.: Declining oxygen in the global ocean and coastal
waters, Science, 359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018.
Burla, S., Heimhofer, U., Hochuli, P. A., Weissert, H., and Skelton, P.:
Changes in sedimentary patterns of coastal and deep sea successions from the
North Atlantic (Portugal) linked to Early Cretaceous environmental change,
Palaeogeogr. Palaeocl., 257, 38–57,
https://doi.org/10.1016/j.palaeo.2007.09.010, 2008.
Chen, X., Romaniello, S. J., Herrmann, A. D., Wasylenki, L. E., and Anbar, A. D.:
Uranium isotope fractionation during coprecipitation with aragonite and
calcite, Geochim. Cosmochim. Ac., 188, 189–207,
https://doi.org/10.1016/j.gca.2016.05.022, 2016.
Chen, X., Romaniello, S. J., Herrmann, A. D., Hardisty, D., Gill, B. C., and
Anbar, A. D.: Diagenetic effects on uranium isotope fractionation in
carbonate sediments from the Bahamas, Geochim. Cosmochim. Ac,, 237,
294–311, https://doi.org/10.1016/j.gca.2018.06.026, 2018.
Collin, P. Y., Kershaw, S., Tribovillard, N., Foral, M. B., and Crasquin, S.:
Geochemistry of post-extinction microbialites as a powerful tool to assess
the oxygenation of shallow marine water in the immediate aftermath of the
end-Permian mass extinction, Int. J. Earth Sci., 104, 1025–1037,
https://doi.org/10.1007/s00531-014-1125-3, 2015.
Conley, D. J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G.,
Gustafsson, B. G., Hietanen, S., Kortekaas, M., Kuosa, H., Markus Meier,
H.E., Müller-Karulis, B., Nordberg, K., Norkko, A., Nürnberg, G.,
Pitkänen, H., Rabalais, N. N., Rosenberg, R., Savchuk, O. P., Slomp, C. P.,
Voss, M., Wulff, F., and Zillén, L.: Hypoxia-Related Processes in the
Baltic Sea, Environ. Sci. Technol., 43, 3412–3420, https://doi.org/10.1021/es802762a, 2009.
Della Porta, G., Webb, G. E., and McDonald, I.: REE patterns of microbial
carbonate and cements from Sinemurian (Lower Jurassic) siliceous sponge
mounds (Djebel Bou Dahar, High Atlas, Morocco), Chem. Geol., 400, 65–86,
https://doi.org/10.1016/j.chemgeo.2015.02.010, 2015.
Dercourt, J., Zonenshain, L. P., Ricou, L. E., Kazmin, V. G., Lepichon, X.,
Knipper, A. L., Grandjacquet, C., Sbortshikov, I. M., Geyssant, J., Lepvrier,
C., Pechersky, D. H., Boulin, J., Sibuet, J. C., Savostin, L. A., Sorokhtin,
O., Westphal, M., Bazhenov, M. L., Lauer, J. P., and Bijuduval, B.: Geological
evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias,
Tectonophysics, 123, 241–315, https://doi.org/10.1016/0040-1951(86)90199-X,
1986.
Diaz, R., Selman, M., and Chique, C.: Global Eutrophic and Hypoxic Coastal
Systems, Washington, DC, World Resources Institute, Eutrophication and
Hypoxia, Nutrient Pollution in Coastal Waters, available at: http://www.wri.org/project/eutrophication/ (last access: 16 July 2019), 2011.
Diaz, R. J. and Rosenberg, R.: Marine Benthic Hypoxia: A Review of its
Ecological Effects and the Behavioural Responses of Benthic Macrofauna,
Oceanogr. Mar. Biol., 33, 245–303, 1995.
Druon, J. N., Schrimpf, W., Dobricic, S., and Stips, A.: Comparative assessment
of large-scale marine eutrophication: North Sea area and Adriatic Sea as
case studies, Marine Ecology Progress Series, 272, 1–23, https://doi.org/10.3354/meps272001, 2004.
Dunham, R. J.: Classification of Carbonate Rocks According to Depositional
Textures, in: Classification of Carbonate Rocks – A Symposium, 108–121,
1962.
Föllmi, K. B., Godet, A., Bodin, S., and Linder, P.: Interactions between
environmental change and shallow water carbonate buildup along the northern
Tethyan margin and their impact on the Early Cretaceous carbon isotope
record, Paleoceanography, 21, PA4211, https://doi.org/10.1029/2006PA001313,
2006.
Giorgioni, M., Weissert, H., Bernasconi, S. M., Hochuli, P. A., Keller, C. E.,
Coccioni, R., Rose Petrizzo, M., Lukeneder, A., and Garcia, T. I.:
Paleoceanographic changes during the Albian-Canomanian in the Tethys and
North Atlantic and the onset of the Cretaceous chalk, Glob. Planet. Change,
126, 46–61, https://doi.org/10.1016/j.gloplacha.2015.01.005, 2015.
Guido, A., Mastandrea, A., Stefani, M., and Russo, F.: Role of autochthonous
versus detrital micrite in depositional geometries of Middle Triassic
carbonate platform systems, Geol. Soc. Am. Bull., 128, 989–999,
https://doi.org/10.1130/B31318.1, 2016.
Hahn, S., Rodolfo-Metalpa, R., Griesshaber, E., Schmahl, W. W., Buhl, D.,
Hall-Spencer, J. M., Baggini, C., Fehr, K. T., and Immenhauser, A.: Marine
bivalve shell geochemistry and ultrastructure from modern low pH
environments: environmental effect versus experimental bias, Biogeosciences,
9, 1897–1914, https://doi.org/10.5194/bg-9-1897-2012, 2012.
Harris, P. M., Purkis, S. J., Ellis, J., Swart, P. K., and Reijmer, J. J. G.:
Mapping bathymetry and depositional facies on Great Bahama Bank,
Sedimentology, 62, 566–589, https://doi.org/10.1111/sed.12159, 2015.
Hochachka, P. W.: Oxygen – A key regulatory metabolite in metabolic defense
against hypoxia, Am. Zool., 37, 595–603.
https://doi.org/10.1093/icb/37.6.595, 1997.
Hood, A. v. S., Planavsky, N. J., Wallace, M. W., and Wang, X.: The effects of
diagenesis on geochemical paleoredox proxies in sedimentary carbonates,
Geochim. Cosmochim. Ac., 232, 265–287,
https://doi.org/10.1016/j.gca.2018.04.022, 2018.
Horwitz, E. P., Chiarizia, R., Dietz, M. L., and Diamond, H.: Separation and
preconcentration of actinides from acidic media by extraction
chromatography, Anal. Chim. Ac., 281, 361–372,
https://doi.org/10.1016/0003-2670(93)85194-O, 1993.
Huck, S., Rameil, N., Korbar, T., Heimhofer, U., Wieczorek, T. D., and
Immenhauser, A.: Latitudinally different response of Tethyan shoal-water
carbonate systems to the Early Aptian Oceanic Anoxic Event (OAE 1a),
Sedimentology, 57, 1585–1614,
https://doi.org/10.1111/j.1365-3091.2010.01157.x, 2010.
Huck, S., Heimhofer, U., Rameil, N., Bodin, S., and Immenhauser, A.:
Strontium and carbon-isotope chronostratigraphy of Barremian-Aptian
shoal-water carbonates: Northern Tethyan platform drowning predates OAE 1a,
Earth Planet. Sc. Lett., 304, 547–558,
https://doi.org/10.1016/j.epsl.2011.02.031, 2011.
Huck, S., Heimhofer, U., and Immenhauser, A.: Early Aptian algal bloom in a
neritic proto-North Atlantic setting: Harbinger of global change related to
OAE 1a?, Geol. Soc. Am. Bull., 124, 1810–1825,
https://doi.org/10.1130/B30587.1, 2012.
Huerta-Diaz, M. A. and Morse, J. W.: Pyritization of trace metals in anoxic
marine sediments, Geochim. Cosmochim. Ac., 56, 2681–2702,
https://doi.org/10.1016/0016-7037(92)90353-K, 1992.
Husinec, A. and Read, J. F.: Cyclostratigraphic and δ13C record of
the Lower Cretaceous Adriatic Platform, Croatia: Assessment of
Milankovitch-forcing, Sed. Geol., 373, 11–31, 2018.
Husinec, A. and Sokač, B.: Early Cretaceous benthic associations
(foraminifera and calcareous algae) of a shallow tropical-water platform
environment (Mljet Island, southern Croatia), Cretaceous Res., 27, 418–441,
https://doi.org/10.1016/j.cretres.2005.07.008, 2006.
Husinec, A., Velić, I., Fuček, L., Vlahović, I., Matičec,
D., Oštrić, N., and Korbar, T.: Mid Cretaceous orbitolinid
(Foraminiferida) record from the islands of Cres and Losinj (Croatia) and
its regional stratigraphic correlation, Cretaceous Res., 21, 155–171,
https://doi.org/10.1006/cres.2000.0203, 2000.
Husinec, A., Harman, C. A., Regan, S. P., Mosher, D. A., Sweeney, R. J., and
Read, J. F.: Sequence development influenced by intermittent cooling events
in the Cretaceous Aptian greenhouse, Adriatic platform, Croatia, Am. Assoc.
Petr. Geol. Bull., 96, 2215–2244, 2012.
Immenhauser, A., Hillgärtner, H., and van Bentum, E.:
Microbial-foraminiferal episodes in the early Aptian of the southern Tethyan
margin: Ecological significance and possible relation to Oceanic Anoxic
Event 1a, Sedimentology, 52, 77–99,
https://doi.org/10.1111/j.1365-3091.2004.00683.x, 2005.
Immenhauser, A., Holmden, C., and Patterson, W. P.: Interpreting the
carbon-isotope record of ancient shallow epeiric seas: lessons from the
recent, in: Dynamics of epeiric seas 48, edited by: Pratt, B. R. and Holmden, C.,
Geol. Assoc. Can. Spec. Publ., 135–174, 2008.
Jenkyns, H. C.: Cretaceous anoxic events: from continents to oceans, J. Geol.
Soc. London, 137, 171–188, https://doi.org/10.1144/gsjgs.137.2.0171, 1980.
Jenkyns, H. C.: Evidence for rapid climate change in the Mesozoic-Palaeogene
greenhouse world, Phil. Trans. R. Soc. Lond. A, 361, 1885–1916,
https://doi.org/10.1098/rsta.2003.1240, 2003.
Jenkyns, H. C.: Geochemistry of Oceanic Anoxic Events, Geochem. Geophy.
Geosy., 11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
Kamber, B. S.: Archean mafic-ultramafic volcanic landmasses and their effect
on ocean-atmosphere chemistry, Chem. Geol., 274, 19–28,
https://doi.org/10.1016/j.chemgeo.2010.03.009, 2010.
Korbar, T.: Orogenic evolution of the External Dinarides in the NE Adriatic
region: a model constrained by tectonostratigraphy of Upper Cretaceous to
Paleogene carbonates, Earth-Sci. Rev., 96, 296–312,
https://doi.org/10.1016/j.earscirev.2009.07.004, 2009.
Ku, T. L., Knauss, K. G., and Mathieu, G. G.: Uranium in open ocean:
concentration and isotopic composition, Deep-Sea Res., 24, 1005–1017,
1977.
Laboy-Nieves, E. N., Klein, E., Conde, J. E., Losada, F., Cruz, J. J., and
Bone, D.: Mass mortality of tropical marine communities in Moorocy,
Venezuela, B. Mar. Sci., 68, 163–179, 2001.
Larson, R. L. and Erba, E.: Onset of the mid-Cretaceous greenhouse in the
Barremian-Aptian: Igneous events and the biological, sedimentary, and
geochemical responses, Paleoceanography, 14, 663–678, 1999.
Li, Y., Bralower, T. J., Montañez, I. P., Osleger, D. A., Arthur, M. A.,
Bice, D. M., Herbert, T. D., Erba, E., and Silva, I. P.: Toward an orbital
chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ∼120 Ma), Earth Planet. Sc. Lett., 271, 88–100,
https://doi.org/10.1016/j.epsl.2008.03.055, 2008.
Ling, H., Chen, X., Li, D., Wang, D., Shields-Zhou, G. A., and Zhu, M.: Cerium
anomaly variations in Ediacaran-earliest Cambrian carbonates from the
Yangtze Gorges area, South China: Implications for oxygenation of coeval
shallow seawater, Precambrian Res., 225, 110–127,
https://doi.org/10.1016/j.precamres.2011.10.011, 2013.
Martin, E. E., MacLeod, K. G., Jiménez Berrocoso, A., and Bourbon, E.:
Water mass circulation on Demerara Rise during the Late Cretaceous based on
Nd isotopes, Earth Planet. Sc. Lett., 327/328, 111–120,
https://doi.org/10.1016/j.epsl.2012.01.037, 2012.
Masse, J. P., Fenerci, M., Korbar, T., and Velic, I.: Lower Aptian Rudist
Faunas (Bivalvia, Hippuritoidea) from Croatia, Geol. Croatica, 57, 117–137,
2004.
Méhay, S., Keller, C. E., Bernasconi, S. M., Weissert, H., Erba, E.,
Bottini, C., and Hochuli, P. A.: A volcanic CO2 pulse triggered the Cretaceous
Oceanic Anoxic Event 1a and a biocalcification crisis, Geology, 37,
819–822, https://doi.org/10.1130/G30100A.1, 2009.
Menegatti, A. P., Weissert, H., Brown, R. S., Tyson, R. V., Farrimond, P., Strasser, A.,
and Caron, M.: High resolution δ13C stratigraphy through the early Aptian
“Livello Selli” of the Alpine Tethys, Paleoceanography, 13, 530–545,
https://doi.org/10.1029/98PA01793, 1988.
Montoya-Pino, C., Weyer, S., Anbar, A. D., Pross, J., Oschmann, W., van de
Schootbrugge, B., and Arz, H. W.: Global enhancement of ocean anoxia during
Oceanic Anoxic Event 2: A quantitative approach using U isotopes, Geology,
38, 315–318, https://doi.org/10.1130/G30652.1, 2010.
Naqvi, S. W. A., Bange, H. W., Farias, L., Monteiro, P. M. S., Scranton, M. I., and
Thang, J.: Marine hypoxia/anoxia as a source of CH4 and N2O,
Biogeosciences, 7, 2159–2190, https://doi.org/10.5194/bg-7-2159-2010, 2010.
Neuweiler, F. and Reitner, J.: Karbonatbänke mit Lithocodium aggregatum
ELLIOTT/Bacinella irregularis RADOICIC, Berl. Geowiss. Abh., 3, 273–293,
1992.
Noordmann, J., Weyer, S., Montoya-Pino, C., Dellwig, O., Neubert, N.,
Eckert, S., Paetzel, M., and Böttcher, M.E.: Uranium and molybdenum
isotope systematics in modern euxinic basins: Case studies from the central
Baltic Sea and the Kyllaren fjord (Norway), Chem. Geol., 396, 182–195,
https://doi.org/10.1016/j.chemgeo.2014.12.012, 2015.
Nozaki, Y.: Rare Earth Elements and their isotopes in the Ocean, in: Encyclopedia of Ocean Sciences
(Second Edition), edited by: Steele,
J. H., Turekian, K. K., and Thorpe, S. A., 653–665, 2008.
Olivier, N. and Boyet, M.: Rare earth and trace elements of microbialites in
Upper Jurassic coral- and sponge-microbialite reefs, Chem. Geol., 230,
105–123, https://doi.org/10.1016/j.chemgeo.2005.12.002, 2006.
Rabalais, N. N., Smith, L. E., Harper Jr., D. E., and Justic, D.: Effects of
Seasonal Hypoxia on Continental Shelf Benthos. Coastal Estuarine Stud., 58,
211-240. https://doi.org/10.1029/CE058p0211, 2001.
Rameil, N., Immenhauser, A., Warrlich, G., Hillgärtner, H., and Droste,
H.J.: Morphological patterns of Aptian Lithocodium-Bacinella geobodies:
Relation to environment and scale, Sedimentology, 57, 883–911,
2010.
Romaniello, S. J., Herrmann, A. D., and Anbar, A. D.: Uranium concentrations and
238U∕235U isotope ratios in modern carbonates from the Bahamas:
Assessing a novel paleoredox proxy, Chem. Geol., 362, 305–316,
https://doi.org/10.1016/j.chemgeo.2013.10.002, 2013.
Schlagintweit, F., Bover-Arnal, T., and Salas, R.: New insights into
Lithocodium aggregatum Elliott 1956 and Bacinella irregularis
Radoičić 1959 (Late Jurassic-Lower Cretaceous): two ulvophycean
green algae (?Order Ulotrichales) with a heteromorphic life cycle
(epilithic/euendolithic), Facies, 56, 509–547,
2010.
Schlanger, S. O. and Jenkyns, H. C.: Cretaceous Oceanic Anoxic Events: causes
and consequences, Geol. Mijnbouw, 55, 179–184, 1976.
Shields, G. and Stille, P.: Diagenetic constraints on the use of cerium
anomalies as palaeoseawater redox proxies: an isotopic and REE study of
Cambrian phosphorites, Chem. Geol., 175, 29–48,
https://doi.org/10.1016/S0009-2541(00)00362-4, 2001.
Sholkovitz, E. R. and Schneider, D. L.: Cerium redox cycles and rare earth
elements in the Sargasso Sea, Geochim. Cosmochim. Ac., 55, 2737–2743,
https://doi.org/10.1016/0016-7037(91)90440-G, 1991.
Skelton, P. W. and Gili, E.: Rudists and carbonate platforms in the Aptian: a
case study on biotic interactions with ocean chemistry and climate,
Sedimentology, 59, 81–117, https://doi.org/10.1111/j.1365-3091.2011.01292.x,
2012.
Stylo, M., Neubert, N., Wang, Y., Monga, N., Romaniello, S. J., Weyer, S., and
Bernier-Latmani, R.: Uranium isotopes fingerprint biotic reduction, P.
Natl. Acad. Sci. USA, 112, 5619–5624,
https://doi.org/10.1073/pnas.1421841112, 2015.
Turpin, M., Emmanuel, L., Immenhauser, A., and Renard, M.: Geochemical and
petrographical characterization of fine-grained carbonate particles along
proximal to distal transects, Sed. Geol., 281, 1–20,
https://doi.org/10.1016/j.sedgeo.2012.06.008, 2012.
Turpin, M., Gressier, V., Bahamonde, J.R. and Immenhauser, A.:
Component-specific petrographic and geochemical characterization of
fine-grained carbonate along Carboniferous and Jurassic platform-to-basin
transects, Sed. Geol., 300, 62–85,
https://doi.org/10.1016/j.sedgeo.2013.11.004, 2014.
Tyson, R. V. and Pearson, T. H.: Modern and ancient continental shelf anoxia,
Geol. Soc. Spec. Publ., 58, 1–24,
1991.
Velić, I.: Stratigraphy and palaeobiogeography of Mesozoic benthic
foraminifera of the karst dinarides (SE Europe), Geol. Croat., 60, 1–113,
2007.
Velić, I., Tišljar, J., Matičec, D., and Vlahović, I.:
Opći prikaz geološke građe Istre (a review of the geology of
Istria), in: First Croatian Geological Congress, Excursion Guide-Book, edited by:
Vlahović, I. and Velić, I., Institute of Geology and
Croatian Geological Society, Zagreb, 5–30, 1995.
Vlahović, I., Tišljar, J., Velić, I., Matičec, D., Skelton,
P. W., Korbar, T., and Fuček, L.: Main events recorded in the sedimentary
succession of the Adriatic Carbonate platform from the Oxfordian to the
Upper Santonian in Istria (Croatia), in: Evolution of Depositional
Environments from the Palaeozoic to the Quarternary in the Karst Dinarides
and the Pannonian basin, edited by: Vlahović, I. and Tišljar, J.,
Institute of Geology, Zagreb, 22nd IAS Meeting of Sedimentology,
Opatija, Croatia, 19–56, 2003.
Webb, G. E. and Kamber, B. S.: Rare earth elements in Holocene reefal
microbialites: A new shallow seawater proxy, Geochim. Cosmochim. Ac.,
64, 1557–1565, 2000.
Weissert, H. and Erba, E.: Volcanism, CO2 and paleoclimate: a Late
Jurassic–Early Cretaceous oxygen isotope record, J. Geol. Soc. London, 161,
695–702, https://doi.org/10.1144/0016-764903-087, 2004.
Weissert, H., McKenzie, J., and Hochuli, P.: Cyclic anoxic events in the
Early Cretaceous Tethys Ocean, Geology, 7, 147–151, 1979.
Wenger, R. H.: Mammalian oxygen sensing, signaling and gene regulation, J.
Exp. Biol., 203, 1253–1263, 2000.
Weyer S., Anbar, A. D., Gerdes, A., Gordon, G. W., Algeo, T. J., and Boyle, E. A.:
Natural fractionation of 238U∕235U, Geochim. Cosmochim. Ac., 72,
345–359, https://doi.org/10.1016/j.gca.2007.11.012, 2008.
Wissler, L., Funk, H., and Weissert, H.: Response of Early Cretaceous
carbonate platforms to changes in atmospheric carbon dioxide levels,
Palaeogeogr. Palaeocl., 200, 187–205,
2003.
Wu, R. S. S.: Hypoxia: from molecular responses to ecosystem responses, Mar.
Pollut. Bull., 45, 35–45, https://doi.org/10.1016/S0025-326X(02)00061-9,
2002.
Zenkevich, L. A.: Biology of the seas of USSR, Publ. Academy of Sciences of
USSR, Nauka, Moscow, 738 pp., 1963.
Short summary
In this multi-proxy study we present and critically discuss the hypothesis that during the early Aptian, platform-top hypoxia temporarily established in some of the vast epeiric seas of the central Tethys and triggered significant changes in reefal ecosystems. Data shown here shed light on the driving mechanisms that control poorly understood faunal patterns during OAE 1a in the neritic realm and provide evidence on the intricate relation between basinal and platform-top water masses.
In this multi-proxy study we present and critically discuss the hypothesis that during the early...