Articles | Volume 15, issue 3
https://doi.org/10.5194/cp-15-1171-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-1171-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A reconstruction of warm-water inflow to Upernavik Isstrøm since 1925 CE and its relation to glacier retreat
Flor Vermassen
CORRESPONDING AUTHOR
Department of Glaciology and Climate, Geological Survey of Denmark and
Greenland (GEUS), Copenhagen, Denmark
Centre for GeoGenetics, Natural History Museum, University of
Copenhagen, Copenhagen, Denmark
Nanna Andreasen
Department of Glaciology and Climate, Geological Survey of Denmark and
Greenland (GEUS), Copenhagen, Denmark
Department of Geosciences and Natural Resource Management, University
of Copenhagen, Copenhagen, Denmark
David J. Wangner
Department of Glaciology and Climate, Geological Survey of Denmark and
Greenland (GEUS), Copenhagen, Denmark
Centre for GeoGenetics, Natural History Museum, University of
Copenhagen, Copenhagen, Denmark
Nicolas Thibault
Department of Geosciences and Natural Resource Management, University
of Copenhagen, Copenhagen, Denmark
Marit-Solveig Seidenkrantz
Centre for Past Climate Studies, Arctic Research Centre, and Climate
Aarhus University Interdisciplinary Centre for Climate Change, Department of
Geoscience, Aarhus University, Aarhus, Denmark
Rebecca Jackson
Department of Glaciology and Climate, Geological Survey of Denmark and
Greenland (GEUS), Copenhagen, Denmark
Sabine Schmidt
CNRS, OASU, EPOC, UMR5805, Pessac Cedex, France
Kurt H. Kjær
Centre for GeoGenetics, Natural History Museum, University of
Copenhagen, Copenhagen, Denmark
Camilla S. Andresen
Department of Glaciology and Climate, Geological Survey of Denmark and
Greenland (GEUS), Copenhagen, Denmark
Related authors
No articles found.
Anna Bang Kvorning, Marie-Alexandrine Sicre, Gregor Luetzenburg, Sabine Schmidt, Thorbjørn Joest Andersen, Vincent Klein, Eleanor Georgiadis, Audrey Limoges, Jacques Giraudeau, Anders Anker Bjørk, Nicolaj Krog Larsen, and Sofia Ribeiro
EGUsphere, https://doi.org/10.5194/egusphere-2025-2641, https://doi.org/10.5194/egusphere-2025-2641, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We compare two marine sediment cores collected from contrasting locations in Kane Basin, northwest Greenland. The two sites differ in terms of sedimentation rates, primary production, and organic matter composition and source. Despite these spatial differences, both records reveal a similar long-term trend, a shift from cold, heavy sea ice influenced conditions between ca. 1750–1900 CE, towards more open, fresher, and biologically productive waters beginning around 1950 CE.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Joanna Davies, Kirsten Fahl, Matthias Moros, Alice Carter-Champion, Henrieka Detlef, Ruediger Stein, Christof Pearce, and Marit-Solveig Seidenkrantz
The Cryosphere, 18, 3415–3431, https://doi.org/10.5194/tc-18-3415-2024, https://doi.org/10.5194/tc-18-3415-2024, 2024
Short summary
Short summary
Here, we evaluate the use of biomarkers for reconstructing sea ice between 1880 and 2017 from three sediment cores located in a transect across the Northeast Greenland continental shelf. We find that key changes, specifically the decline in sea-ice cover identified in observational records between 1971 and 1984, align with our biomarker reconstructions. This outcome supports the use of biomarkers for longer reconstructions of sea-ice cover in this region.
Sabine Schmidt and Ibrahima Iris Diallo
Biogeosciences, 21, 1785–1800, https://doi.org/10.5194/bg-21-1785-2024, https://doi.org/10.5194/bg-21-1785-2024, 2024
Short summary
Short summary
Along the French coast facing the Bay of Biscay, the large Gironde and Loire estuaries suffer from hypoxia. This prompted a study of the small Charente estuary located between them. This work reveals a minimum oxygen zone in the Charente estuary, which extends for about 25 km. Temperature is the main factor controlling the hypoxia. This calls for the monitoring of small turbid macrotidal estuaries that are vulnerable to hypoxia, a risk expected to increase with global warming.
Lara F. Pérez, Paul C. Knutz, John R. Hopper, Marit-Solveig Seidenkrantz, Matt O'Regan, and Stephen Jones
Sci. Dril., 33, 33–46, https://doi.org/10.5194/sd-33-33-2024, https://doi.org/10.5194/sd-33-33-2024, 2024
Short summary
Short summary
The Greenland ice sheet is highly sensitive to global warming and a major contributor to sea level rise. In Northeast Greenland, ice–ocean–tectonic interactions are readily observable today, but geological records that illuminate long-term trends are lacking. NorthGreen aims to promote scientific drilling proposals to resolve key scientific questions on past changes in the Northeast Greenland margin that further affected the broader Earth system.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Alistair J. Monteath, Matthew S. M. Bolton, Jordan Harvey, Marit-Solveig Seidenkrantz, Christof Pearce, and Britta Jensen
Geochronology, 5, 229–240, https://doi.org/10.5194/gchron-5-229-2023, https://doi.org/10.5194/gchron-5-229-2023, 2023
Short summary
Short summary
Accurately dating ocean cores is challenging because the radiocarbon age of water masses varies substantially. We identify ash fragments from eruptions more than 4000 km from their source and use these time markers to develop a new age–depth model for an ocean core in Placentia Bay, North Atlantic. Our results show that the radiocarbon age of waters masses in the bay varied considerably during the last 10 000 years and highlight the potential of using ultra-distal ash deposits in this region.
Mimmi Oksman, Anna Bang Kvorning, Signe Hillerup Larsen, Kristian Kjellerup Kjeldsen, Kenneth David Mankoff, William Colgan, Thorbjørn Joest Andersen, Niels Nørgaard-Pedersen, Marit-Solveig Seidenkrantz, Naja Mikkelsen, and Sofia Ribeiro
The Cryosphere, 16, 2471–2491, https://doi.org/10.5194/tc-16-2471-2022, https://doi.org/10.5194/tc-16-2471-2022, 2022
Short summary
Short summary
One of the questions facing the cryosphere community today is how increasing runoff from the Greenland Ice Sheet impacts marine ecosystems. To address this, long-term data are essential. Here, we present multi-site records of fjord productivity for SW Greenland back to the 19th century. We show a link between historical freshwater runoff and productivity, which is strongest in the inner fjord – influenced by marine-terminating glaciers – where productivity has increased since the late 1990s.
Teodora Pados-Dibattista, Christof Pearce, Henrieka Detlef, Jørgen Bendtsen, and Marit-Solveig Seidenkrantz
Clim. Past, 18, 103–127, https://doi.org/10.5194/cp-18-103-2022, https://doi.org/10.5194/cp-18-103-2022, 2022
Short summary
Short summary
We carried out foraminiferal, stable isotope, and sedimentological analyses of a marine sediment core retrieved from the Northeast Greenland shelf. This region is highly sensitive to climate variability because it is swept by the East Greenland Current, which is the main pathway for sea ice and cold waters that exit the Arctic Ocean. The palaeoceanographic reconstruction reveals significant variations in the water masses and in the strength of the East Greenland Current over the last 9400 years.
Kate E. Ashley, Xavier Crosta, Johan Etourneau, Philippine Campagne, Harry Gilchrist, Uthmaan Ibraheem, Sarah E. Greene, Sabine Schmidt, Yvette Eley, Guillaume Massé, and James Bendle
Biogeosciences, 18, 5555–5571, https://doi.org/10.5194/bg-18-5555-2021, https://doi.org/10.5194/bg-18-5555-2021, 2021
Short summary
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
Cited articles
Andresen, C. S., Nørgaard-Pedersen, N., Jensen, J. B., Larsen, B., and
Nørgaard-Pedersen, N.: Bathymetry, shallow seismic profiling and sediment
coring in Sermilik near Helheimgletscher, South-East Greenland, Geol. Surv.
Denmark Greenl. Bull., 20, 83–86, 2010.
Andresen, C. S., McCarthy, D. J., Valdemar Dylmer, C., Seidenkrantz, M.-S.,
Kuijpers, A., and Lloyd, J. M.: Interaction between subsurface ocean waters
and calving of the Jakobshavn Isbrae during the late Holocene, The Holocene,
21, 211–224, https://doi.org/10.1177/0959683610378877, 2011.
Andresen, C. S., Hansen, M. J., Seidenkrantz, M.-S., Jennings, A. E.,
Knudsen, M. F., Norgaard-Pedersen, N., Larsen, N. K., Kuijpers, A., and
Pearce, C.: Mid- to late-Holocene oceanographic variability on the Southeast
Greenland shelf, The Holocene, 23, 167–178,
https://doi.org/10.1177/0959683612460789, 2012a.
Andresen, C. S., Straneo, F., Ribergaard, M. H., Bjørk, A. A., Andersen,
T. J., Kuijpers, A., Nørgaard-Pedersen, N., Kjær, K. H., Schjøth,
F., Weckström, K., and Ahlstrøm, A. P.: Rapid response of Helheim
Glacier in Greenland to climate variability over the past century, Nat.
Geosci., 5, 37–41, 2012b.
Andresen, C. S., Kjeldsen, K. K., Harden, B., Nørgaard-Pedersen, N., and
Kjær, K. H.: Outlet glacier dynamics and bathymetry at Upernavik
Isstrøm and Upernavik Isfjord, North-West Greenland, Geol. Surv. Denmark
Greenl. Bull., 79–82, 2014.
Andresen, C. S., Kokfelt, U., Sicre, M.-A., Knudsen, M. F., Dyke, L. M.,
Klein, V., Kaczmar, F., Miles, M. W., and Wangner, D. J.: Exceptional 20th
century glaciological regime of a major SE Greenland outlet glacier, Sci.
Rep., 7, 13626, https://doi.org/10.1038/s41598-017-13246-x, 2017.
Bjørk, A. A., Kjær, K. H., Korsgaard, N. J., Khan, S. A., Kjeldsen,
K. K., Andresen, C. S., Box, J. E., Larsen, N. K., and Funder, S.: An aerial
view of 80 years of climate-related glacier fluctuations in southeast
Greenland, Nat. Geosci., 5, 427–432, https://doi.org/10.1038/ngeo1481, 2012.
Cappelen, J.: DMI Monthly Climate Data Collection 1768–2010: Denmark, The
Faroe Islands and Greenland, Danish Meteorological Institute Centre for
Ocean and Ice, 2011.
Carroll, D., Sutherland, D. A., Hudson, B., Moon, T., Catania, G. A.,
Shroyer, E. L., Nash, J. D., Bartholomaus, T. C., Felikson, D., Stearns, L.
A., Noël, B. P. Y., and van den Broeke, M. R.: The impact of glacier
geometry on meltwater plume structure and submarine melt in Greenland
fjords, Geophys. Res. Lett., 43, 9739–9748, https://doi.org/10.1002/2016GL070170,
2016.
Carstens, J., Hebbeln, D., and Wefer, G.: Distribution of planktic
foraminifera at the ice margin in the Arctic (Fram Strait), Mar.
Micropaleontol., 29, 257–269, https://doi.org/10.1016/S0377-8398(96)00014-X,
1997.
Christoffersen, P., Mugford, R. I., Heywood, K. J., Joughin, I., Dowdeswell, J. A., Syvitski, J. P. M., Luckman, A., and Benham, T. J.: Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions, The Cryosphere, 5, 701–714, https://doi.org/10.5194/tc-5-701-2011, 2011.
Dowdeswell, J. A., Elverhøi, A., and Spielhagen, R.: Glacimarine
sedimentary processes and facies on the Polar North Atlantic margins, Quaternary Sci. Rev., 17, 243–272, 1998.
Drinkwater, K. F., Miles, M., Medhaug, I., Otterå, O. H., Kristiansen,
T., Sundby, S., and Gao, Y.: The Atlantic Multidecadal Oscillation: Its
manifestations and impacts with special emphasis on the Atlantic region
north of 60∘ N, J. Mar. Syst., 133, 117–130,
https://doi.org/10.1016/j.jmarsys.2013.11.001, 2014.
Dyke, L. M., Andresen, C. S., Seidenkrantz, M.-S., Hughes, A. L. C.,
Hiemstra, J. F., Murray, T., Bjørk, A. A., Sutherland, D. A., and
Vermassen, F.: Minimal Holocene retreat of large tidewater glaciers in
Køge Bugt, southeast Greenland, Sci. Rep., 7, 12330,
https://doi.org/10.1038/s41598-017-12018-x, 2017.
Ellis, B. F. and Messina, A.: Catalogue of Foraminifera (Supplements, including 2007), American Museum of Natural History and Micropaleontology Press, New York, 1949.
Enfield, D. B., Mestas-Nuñez, A. M., and Trimble, P. J.: The Atlantic
multidecadal oscillation and its relation to rainfall and river flows in the
continental U.S, Geophys. Res. Lett., https://doi.org/10.1029/2000GL012745, 2001.
Fenty, I., Willis, J., Khazendar, A., Dinardo, S., Forsberg, R., Fukumori,
I., Holland, D., Jakobsson, M., Moller, D., Morison, J., Münchow, A.,
Rignot, E., Schodlok, M., Thompson, A., Tinto, K., Rutherford, M., and
Trenholm, N.: Oceans Melting Greenland: Early Results from NASA's Ocean-Ice
Mission in Greenland, Oceanography, 29, 72–83, 2016.
Frajka-Williams, E., Beaulieu, C., and Duchez, A.: Emerging negative Atlantic
Multidecadal Oscillation index in spite of warm subtropics, Sci. Rep., 7,
11224, https://doi.org/10.1038/s41598-017-11046-x, 2017.
Haubner, K., Box, J. E., Schlegel, N. J., Larour, E. Y., Morlighem, M., Solgaard, A. M., Kjeldsen, K. K., Larsen, S. H., Rignot, E., Dupont, T. K., and Kjær, K. H.: Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849–2012 by forcing prescribed terminus positions in ISSM, The Cryosphere, 12, 1511–1522, https://doi.org/10.5194/tc-12-1511-2018, 2018.
Höglund, H.: Foraminifera in the Gullmar Fjord and the Skagerak, PhD Thesis, Zool. Bidr. fran Uppsala, Apelbergs Boktr., 1947
Holland, D. M., Thomas, R. H., de Young, B., Ribergaard, M. H., and Lyberth,
B.: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean
waters, Nat. Geosci., 1, 659–664, https://doi.org/10.1038/ngeo316, 2008.
Jamieson, S. S. R., Vieli, A., Livingstone, S. J., Cofaigh, C. Ó.,
Stokes, C., Hillenbrand, C.-D., and Dowdeswell, J. A.: Ice-stream stability
on a reverse bed slope, Nat. Geosci., 5, 799–802, 2012.
Jennings, A. E., Andrews, J. T., Ó Cofaigh, C., Onge, G. S., Sheldon,
C., Belt, S. T., Cabedo-Sanz, P., and Hillaire-Marcel, C.: Ocean forcing of
Ice Sheet retreat in central west Greenland from LGM to the early Holocene,
Earth Planet. Sc. Lett., 472, 1–13, https://doi.org/10.1016/j.epsl.2017.05.007, 2017.
Joughin, I., Alley, R. B., and Holland, D. M.: Ice-Sheet Response to Oceanic
Forcing, Science, 338, 1172–1176, https://doi.org/10.1126/science.1226481, 2013.
Kerr, R. A.: A North Atlantic climate pacemaker for the centuries, Science,
288, 1984–1985, https://doi.org/10.1126/science.288.5473.1984, 2000.
Khan, S. A., Wahr, J., Bevis, M., Velicogna, I., and Kendrick, E.: Spread of
ice mass loss into northwest Greenland observed by GRACE and GPS, Geophys.
Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL042460, 2010.
Khan, S. A., Kjær, K. H., Korsgaard, N. J., Wahr, J., Joughin, I. R.,
Timm, L. H., Bamber, J. L., Van Den Broeke, M. R., Stearns, L. A., Hamilton,
G. S., Csatho, B. M., Nielsen, K., Hurkmans, R., and Babonis, G.: Recurring
dynamically induced thinning during 1985 to 2010 on Upernavik Isstrøm,
West Greenland, J. Geophys. Res.-Earth, 118, 111–121,
https://doi.org/10.1029/2012JF002481, 2013.
Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori,
I., Wang, O., Zhang, H., Seroussi, H., Moller, D., Noël, B. P. Y., van
den Broeke, M. R., Dinardo, S., and Willis, J.: Interruption of two decades
of Jakobshavn Isbrae acceleration and thinning as regional ocean cools, Nat.
Geosci., 12, 277–283, https://doi.org/10.1038/s41561-019-0329-3, 2019.
Kjær, K. H., Khan, S. A., Korsgaard, N. J., Wahr, J., Bamber, J. L.,
Hurkmans, R., van den Broeke, M., Timm, L. H., Kjeldsen, K. K., Bjørk, A.
A., Larsen, N. K., Jorgensen, L. T., Faerch-Jensen, A., and Willerslev, E.:
Aerial Photographs Reveal Late-20th-Century Dynamic Ice Loss in Northwestern
Greenland, Science, 337, 569–573,
https://doi.org/10.1126/science.1220614, 2012.
Knudsen, K. L., Stabell, B., Seidenkrantz, M.-S., Eiríksson, J., and
Blake, W.: Deglacial and Holocene conditions in northernmost Baffin Bay:
sediments, foraminifera, diatoms and stable isotopes, Boreas, 37,
346–376, https://doi.org/10.1111/j.1502-3885.2008.00035.x, 2008.
Knudsen, M. F., Seidenkrantz, M. S., Jacobsen, B. H., and Kuijpers, A.:
Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years,
Nat. Commun., 2, 178, https://doi.org/10.1038/ncomms1186, 2011.
Larsen, S. H., Khan, S. A., Ahlstrøm, A. P., Hvidberg, C. S., Willis, M.
J., and Andersen, S. B.: Increased mass loss and asynchronous behavior of
marine-terminating outlet glaciers at Upernavik Isstrøm, NW Greenland, J.
Geophys. Res.-Earth, 121, 241–256, https://doi.org/10.1002/2015JF003507,
2016.
Kucera, M.: Planktonic Foraminifera as Tracers of Past Oceanic Environments,
chap. 6, in:
Proxies in Late Cenozoic Paleoceanography, edited by: Hillaire-Marcel, C. and Anne de Vernal, A., Developments in Marine Geology,
1, 213–262, https://doi.org/10.1016/S1572-5480(07)01011-1, 2007.
Lloyd, J. M.: Late Holocene environmental change in Disko Bugt, west
Greenland: interaction between climate, ocean circulation and Jakobshavn
Isbrae, Boreas, 35, 35–49, https://doi.org/10.1080/03009480500359061, 2006a.
Lloyd, J. M.: Modern Distribution of Benthic Foraminifera From Disko Bugt,
West Greenland, J. Foraminifer. Res., 36, 315–331,
https://doi.org/10.2113/gsjfr.36.4.315, 2006b.
Lloyd, J. M., Park, L. A., Kuijpers, A., and Moros, M.: Early Holocene
palaeoceanography and deglacial chronology of Disko Bugt, West Greenland,
Quaternary Sci. Rev., 24, 1741–1755,
https://doi.org/10.1016/j.quascirev.2004.07.024, 2005.
Lloyd, J. M., Kuijpers, A., Long, A., Moros, M., and Park, L. A.:
Foraminiferal reconstruction of mid- to late-Holocene ocean circulation and
climate variability in Disko Bugt, West Greenland, The Holocene, 17,
1079–1091, https://doi.org/10.1177/0959683607082548, 2007.
Lloyd, J. M., Moros, M., Perner, K., Telford, R. J., Kuijpers, A., Jansen,
E., and McCarthy, D.: A 100 yr record of ocean temperature control on the
stability of Jakobshavn Isbrae, West Greenland, Geology, 39, 867–870,
https://doi.org/10.1130/G32076.1, 2011.
Meire, L., Mortensen, J., Meire, P., Juul-Pedersen, T., Sejr, M. K.,
Rysgaard, S., Nygaard, R., Huybrechts, P., and Meysman, F. J. R.:
Marine-terminating glaciers sustain high productivity in Greenland fjords,
Glob. Chang. Biol., 23, 5344–5357, https://doi.org/10.1111/gcb.13801, 2017.
Munsell, A. H.: A Pigment Color System and Notation, Am. J. Psychol., 23,
236–244, 1912.
Murray, J. W.: Ecology and applications of benthic foraminifera, Cambridge
University Press, 2006.
Myers, P. G., Kulan, N., and Ribergaard, M. H.: Irminger water variability in
the West Greenland Current, Geophys. Res. Lett., 34, 2–7,
https://doi.org/10.1029/2007GL030419, 2007.
Nick, F. M., Vieli, A., Andersen, M. L., Joughin, I., Payne, A., Edwards, T.
L., Pattyn, F., and Van De Wal, R. S. W.: Future sea-level rise from
Greenland's main outlet glaciers in a warming climate, Nature, 497,
235–238, https://doi.org/10.1038/nature12068, 2013.
Perner, K., Moros, M., Lloyd, J. M., Kuijpers, A., Telford, R. J., and Harff,
J.: Centennial scale benthic foraminiferal record of late Holocene
oceanographic variability in Disko Bugt, West Greenland, Quatenary Sci. Rev.,
30, 2815–2826, https://doi.org/10.1016/j.quascirev.2011.06.018, 2011.
Perner, K., Moros, M., Jennings, A. E., Lloyd, J. M., and Knudsen, K.:
Holocene palaeoceanographic evolution off West Greenland, The Holocene,
23, 374–387, https://doi.org/10.1177/0959683612460785, 2013.
Polovodova Asteman, I., Nordberg, K., and Filipsson, H. L.: The Little Ice Age: evidence from a sediment record in Gullmar Fjord, Swedish west coast, Biogeosciences, 10, 1275–1290, https://doi.org/10.5194/bg-10-1275-2013, 2013.
Ribergaard, M. H., Olsen, S. M., and Mortensen, J.: Oceanographic
Investigations off West Greenland 2007, Danish Meteorological Institute
Centre for Ocean and Ice, Copenhagen, 2008.
Rignot, E., Braaten, D., Gogineni, S. P., Krabill, W. B., and McConnell, J.
R.: Rapid ice discharge from southeast Greenland glaciers, Geophys. Res.
Lett., 31, 2–5, https://doi.org/10.1029/2004GL019474, 2004.
Schiebel, R., Spielhagen, R. F., Garnier, J., Hagemann, J., Howa, H.,
Jentzen, A., Martínez-garcia, A., Meilland, J., Michel, E.,
Repschläger, J., Salter, I., Yamasaki, M., and Haug, G.: Modern planktic
foraminifers in the high-latitude ocean, Mar. Micropaleontol.,
136, 1–13, https://doi.org/10.1016/j.marmicro.2017.08.004, 2017.
Schlesinger, M. E. and Ramankutty, N.: An oscillation in the global climate
system of period 65–70 years, Nature, 367, 723–726,
https://doi.org/10.1038/367723a0, 1994.
Seidenkrantz, M.-S., Aagaard-Sørensen, S., Sulsbruck, H., Kuijpers, A.,
Jensen, K. G., and Kunzendorf, H.: Hydrography and climate of the last 4400
years in a SW Greenland fjord: implications for Labrador Sea
palaeoceanography, The Holocene, 17, 387–401,
https://doi.org/10.1177/0959683607075840, 2007.
Seidenkrantz, M. S.: Benthic foraminifera as palaeo sea-ice indicators in
the subarctic realm – examples from the Labrador Sea-Baffin Bay region,
Quaternary Sci. Rev., 79, 135–144, https://doi.org/10.1016/j.quascirev.2013.03.014, 2013.
Sheldon, C., Jennings, A. E., Andrews, J. T., Ó Cofaigh, C., Hogan, K.,
Dowdeswell, J. A., and Seidenkrantz, M. S.: Ice stream retreat following the
LGM and onset of the west Greenland current in Uummannaq Trough, west
Greenland, Quaternary Sci. Rev., 147, 27–46,
https://doi.org/10.1016/j.quascirev.2016.01.019, 2016.
Straneo, F. and Heimbach, P.: North Atlantic warming and the retreat of
Greenland's outlet glaciers, Nature, 504, 36–43,
https://doi.org/10.1038/nature12854, 2013.
Straneo, F., Heimbach, P., Sergienko, O., Hamilton, G., Catania, G.,
Griffies, S., Hallberg, R., Jenkins, A., Joughin, I., Motyka, R., Pfeffer,
W. T., Price, S. F., Rignot, E., Scambos, T., Truffer, M.. and Vieli, A.:
Challenges to understanding the dynamic response of Greenland's marine
terminating glaciers to oceanic and atmospheric forcing, B. Am. Meteorol.
Soc., 94, 1131–1144, https://doi.org/10.1175/BAMS-D-12-00100.1, 2013.
Sutherland, D. A. and Pickart, R. S.: The East Greenland Coastal Current:
Structure, variability, and forcing, Prog. Oceanogr., 78. 58–77,
https://doi.org/10.1016/j.pocean.2007.09.006, 2008.
Trenberth, K. E. and Shea, D. J.: Atlantic hurricanes and natural
variability in 2005, Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894, 2006.
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016.
Vermassen, F., Wangner, D. J., Dyke, L. M., Schmidt, S., Cordua, A. E.,
Kjær, K. H., Haubner, K., and Andresen, C. S.: Evaluating ice-rafted
debris as a proxy for glacier calving in Upernavik Isfjord, NW Greenland, J.
Quat. Sci., 34, 258–267, https://doi.org/10.1002/jqs.3095, 2019a.
Vermassen, F., Andreasen, N., Wangner, D. J., Thibault, N., Seidenkrantz, M.-S., Jackson, R., Schmidt, S., Kjær, K. H., and Andresen, C. S.: Benthic foraminiferal abundances and age model from Upernavik Fjord, sediment core POR13-05, PANGAEA, https://doi.org/10.1594/PANGAEA.896945, 2019b.
Wangner, D. J., Jennings, A. E., Vermassen, F., Dyke, L. M., Hogan, K. A.,
Schmidt, S., Kjær, K. H., Knudsen, M. F., and Andresen, C. S.: A
2000-year record of ocean influence on Jakobshavn Isbræ calving
activity, based on marine sediment cores, Holocene, 28, 1731–1744,
https://doi.org/10.1177/0959683618788701, 2018.
Weidick, A.: Frontal Variations at Upernaviks Isstrøm in the Last 100
Years, Meddelser fra Dansk Geol. Foren. København, 14, 52–60, 1958.
Short summary
By studying microfossils from sediments in Upernavik Fjord we investigate the role of ocean warming on the retreat of Upernavik Isstrøm during the past ~90 years. The reconstruction of Atlantic-derived waters shows a pattern similar to that of the Atlantic Multidecadal Oscillation, corroborating previous studies. The response of Upernavik Isstrøm to ocean forcing has been variable in the past, but the current retreat may be temporarily tempered by cooling bottom waters in the coming decade.
By studying microfossils from sediments in Upernavik Fjord we investigate the role of ocean...