Articles | Volume 15, issue 3
https://doi.org/10.5194/cp-15-1171-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-1171-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A reconstruction of warm-water inflow to Upernavik Isstrøm since 1925 CE and its relation to glacier retreat
Flor Vermassen
CORRESPONDING AUTHOR
Department of Glaciology and Climate, Geological Survey of Denmark and
Greenland (GEUS), Copenhagen, Denmark
Centre for GeoGenetics, Natural History Museum, University of
Copenhagen, Copenhagen, Denmark
Nanna Andreasen
Department of Glaciology and Climate, Geological Survey of Denmark and
Greenland (GEUS), Copenhagen, Denmark
Department of Geosciences and Natural Resource Management, University
of Copenhagen, Copenhagen, Denmark
David J. Wangner
Department of Glaciology and Climate, Geological Survey of Denmark and
Greenland (GEUS), Copenhagen, Denmark
Centre for GeoGenetics, Natural History Museum, University of
Copenhagen, Copenhagen, Denmark
Nicolas Thibault
Department of Geosciences and Natural Resource Management, University
of Copenhagen, Copenhagen, Denmark
Marit-Solveig Seidenkrantz
Centre for Past Climate Studies, Arctic Research Centre, and Climate
Aarhus University Interdisciplinary Centre for Climate Change, Department of
Geoscience, Aarhus University, Aarhus, Denmark
Rebecca Jackson
Department of Glaciology and Climate, Geological Survey of Denmark and
Greenland (GEUS), Copenhagen, Denmark
Sabine Schmidt
CNRS, OASU, EPOC, UMR5805, Pessac Cedex, France
Kurt H. Kjær
Centre for GeoGenetics, Natural History Museum, University of
Copenhagen, Copenhagen, Denmark
Camilla S. Andresen
Department of Glaciology and Climate, Geological Survey of Denmark and
Greenland (GEUS), Copenhagen, Denmark
Related authors
No articles found.
Joanna Davies, Kirsten Fahl, Matthias Moros, Alice Carter-Champion, Henrieka Detlef, Ruediger Stein, Christof Pearce, and Marit-Solveig Seidenkrantz
The Cryosphere, 18, 3415–3431, https://doi.org/10.5194/tc-18-3415-2024, https://doi.org/10.5194/tc-18-3415-2024, 2024
Short summary
Short summary
Here, we evaluate the use of biomarkers for reconstructing sea ice between 1880 and 2017 from three sediment cores located in a transect across the Northeast Greenland continental shelf. We find that key changes, specifically the decline in sea-ice cover identified in observational records between 1971 and 1984, align with our biomarker reconstructions. This outcome supports the use of biomarkers for longer reconstructions of sea-ice cover in this region.
Sabine Schmidt and Ibrahima Iris Diallo
Biogeosciences, 21, 1785–1800, https://doi.org/10.5194/bg-21-1785-2024, https://doi.org/10.5194/bg-21-1785-2024, 2024
Short summary
Short summary
Along the French coast facing the Bay of Biscay, the large Gironde and Loire estuaries suffer from hypoxia. This prompted a study of the small Charente estuary located between them. This work reveals a minimum oxygen zone in the Charente estuary, which extends for about 25 km. Temperature is the main factor controlling the hypoxia. This calls for the monitoring of small turbid macrotidal estuaries that are vulnerable to hypoxia, a risk expected to increase with global warming.
Lara F. Pérez, Paul C. Knutz, John R. Hopper, Marit-Solveig Seidenkrantz, Matt O'Regan, and Stephen Jones
Sci. Dril., 33, 33–46, https://doi.org/10.5194/sd-33-33-2024, https://doi.org/10.5194/sd-33-33-2024, 2024
Short summary
Short summary
The Greenland ice sheet is highly sensitive to global warming and a major contributor to sea level rise. In Northeast Greenland, ice–ocean–tectonic interactions are readily observable today, but geological records that illuminate long-term trends are lacking. NorthGreen aims to promote scientific drilling proposals to resolve key scientific questions on past changes in the Northeast Greenland margin that further affected the broader Earth system.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Alistair J. Monteath, Matthew S. M. Bolton, Jordan Harvey, Marit-Solveig Seidenkrantz, Christof Pearce, and Britta Jensen
Geochronology, 5, 229–240, https://doi.org/10.5194/gchron-5-229-2023, https://doi.org/10.5194/gchron-5-229-2023, 2023
Short summary
Short summary
Accurately dating ocean cores is challenging because the radiocarbon age of water masses varies substantially. We identify ash fragments from eruptions more than 4000 km from their source and use these time markers to develop a new age–depth model for an ocean core in Placentia Bay, North Atlantic. Our results show that the radiocarbon age of waters masses in the bay varied considerably during the last 10 000 years and highlight the potential of using ultra-distal ash deposits in this region.
Mimmi Oksman, Anna Bang Kvorning, Signe Hillerup Larsen, Kristian Kjellerup Kjeldsen, Kenneth David Mankoff, William Colgan, Thorbjørn Joest Andersen, Niels Nørgaard-Pedersen, Marit-Solveig Seidenkrantz, Naja Mikkelsen, and Sofia Ribeiro
The Cryosphere, 16, 2471–2491, https://doi.org/10.5194/tc-16-2471-2022, https://doi.org/10.5194/tc-16-2471-2022, 2022
Short summary
Short summary
One of the questions facing the cryosphere community today is how increasing runoff from the Greenland Ice Sheet impacts marine ecosystems. To address this, long-term data are essential. Here, we present multi-site records of fjord productivity for SW Greenland back to the 19th century. We show a link between historical freshwater runoff and productivity, which is strongest in the inner fjord – influenced by marine-terminating glaciers – where productivity has increased since the late 1990s.
Teodora Pados-Dibattista, Christof Pearce, Henrieka Detlef, Jørgen Bendtsen, and Marit-Solveig Seidenkrantz
Clim. Past, 18, 103–127, https://doi.org/10.5194/cp-18-103-2022, https://doi.org/10.5194/cp-18-103-2022, 2022
Short summary
Short summary
We carried out foraminiferal, stable isotope, and sedimentological analyses of a marine sediment core retrieved from the Northeast Greenland shelf. This region is highly sensitive to climate variability because it is swept by the East Greenland Current, which is the main pathway for sea ice and cold waters that exit the Arctic Ocean. The palaeoceanographic reconstruction reveals significant variations in the water masses and in the strength of the East Greenland Current over the last 9400 years.
Kate E. Ashley, Xavier Crosta, Johan Etourneau, Philippine Campagne, Harry Gilchrist, Uthmaan Ibraheem, Sarah E. Greene, Sabine Schmidt, Yvette Eley, Guillaume Massé, and James Bendle
Biogeosciences, 18, 5555–5571, https://doi.org/10.5194/bg-18-5555-2021, https://doi.org/10.5194/bg-18-5555-2021, 2021
Short summary
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
Katrine Elnegaard Hansen, Jacques Giraudeau, Lukas Wacker, Christof Pearce, and Marit-Solveig Seidenkrantz
Clim. Past, 16, 1075–1095, https://doi.org/10.5194/cp-16-1075-2020, https://doi.org/10.5194/cp-16-1075-2020, 2020
Short summary
Short summary
In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting, which was trained to predict continuous precipitation intensities at a lead time of 5 min. RainNet significantly outperformed the benchmark models at all lead times up to 60 min. Yet an undesirable property of RainNet predictions is the level of spatial smoothing. Obviously, RainNet learned an optimal level of smoothing to produce a nowcast at 5 min lead time.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Katixa Lajaunie-Salla, Aldo Sottolichio, Sabine Schmidt, Xavier Litrico, Guillaume Binet, and Gwenaël Abril
Nat. Hazards Earth Syst. Sci., 19, 2551–2564, https://doi.org/10.5194/nhess-19-2551-2019, https://doi.org/10.5194/nhess-19-2551-2019, 2019
Eleanor Georgiadis, Jacques Giraudeau, Philippe Martinez, Patrick Lajeunesse, Guillaume St-Onge, Sabine Schmidt, and Guillaume Massé
Clim. Past, 14, 1991–2010, https://doi.org/10.5194/cp-14-1991-2018, https://doi.org/10.5194/cp-14-1991-2018, 2018
Short summary
Short summary
We present our results from a radiocarbon-dated core collected in central Nares Strait, NW Greenland. Sedimentological and geochemical data reveal that marine sedimentation began ca. 9.0 cal ka BP with the complete opening of the strait occurring at 8.3 cal ka BP. The collapse of the glacial buttress in central Nares Strait led to accelerated glacial fluxes of the bordering ice sheets between 8.3 and 7.5 cal ka BP, while the Humboldt Glacier retreated in eastern Kane Basin ca. 8.1 cal ka BP.
Andrea Fischel, Marit-Solveig Seidenkrantz, and Bent Vad Odgaard
J. Micropalaeontol., 37, 499–518, https://doi.org/10.5194/jm-37-499-2018, https://doi.org/10.5194/jm-37-499-2018, 2018
Short summary
Short summary
Benthic foraminifera often colonize marine underwater vegetation in tropical regions. We studied these so-called epiphytic foraminifera in a shallow bay in the Bahamas. Here the foraminifera differed between types of vegetation, but sedimentological processes seem to be the main controller of the dead foraminifera in the sediment. This indicates that in carbonate platform regions, epiphytic foraminifera should only be used cautiously as direct indicators of past in situ marine vegetation.
Konstanze Haubner, Jason E. Box, Nicole J. Schlegel, Eric Y. Larour, Mathieu Morlighem, Anne M. Solgaard, Kristian K. Kjeldsen, Signe H. Larsen, Eric Rignot, Todd K. Dupont, and Kurt H. Kjær
The Cryosphere, 12, 1511–1522, https://doi.org/10.5194/tc-12-1511-2018, https://doi.org/10.5194/tc-12-1511-2018, 2018
Short summary
Short summary
We investigate the effect of neglecting calving on Upernavik Isstrøm, West Greenland, between 1849 and 2012.
Our simulation is forced with observed terminus positions in discrete time steps and is responsive to the prescribed ice front changes.
Simulated frontal retreat is needed to obtain a realistic ice surface elevation and velocity evolution of Upernavik.
Using the prescribed terminus position change we gain insight to mass loss partitioning during different time periods.
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
Martin Bartels, Jürgen Titschack, Kirsten Fahl, Rüdiger Stein, Marit-Solveig Seidenkrantz, Claude Hillaire-Marcel, and Dierk Hebbeln
Clim. Past, 13, 1717–1749, https://doi.org/10.5194/cp-13-1717-2017, https://doi.org/10.5194/cp-13-1717-2017, 2017
Short summary
Short summary
Multi-proxy analyses (i.a., benthic foraminiferal assemblages and sedimentary properties) of a marine record from Woodfjorden at the northern Svalbard margin (Norwegian Arctic) illustrate a significant contribution of relatively warm Atlantic water to the destabilization of tidewater glaciers, especially during the deglaciation and early Holocene (until ~ 7800 years ago), whereas its influence on glacier activity has been fading during the last 2 millennia, enabling glacier readvances.
Kristian Kjellerup Kjeldsen, Reimer Wilhelm Weinrebe, Jørgen Bendtsen, Anders Anker Bjørk, and Kurt Henrik Kjær
Earth Syst. Sci. Data, 9, 589–600, https://doi.org/10.5194/essd-9-589-2017, https://doi.org/10.5194/essd-9-589-2017, 2017
Short summary
Short summary
Here we present bathymetric and hydrographic measurements from two fjords in southeastern Greenland surveyed in 2014, leading to improved knowledge of the fjord morphology and an assessment of the variability in water masses in the fjords systems. Data were collected as part of a larger field campaign in which we targeted marine and terrestrial observations to assess the long-term behavior of the Greenland ice sheet and provide linkages to modern observations.
Nicolas Thibault, Rikke Harlou, Niels H. Schovsbo, Lars Stemmerik, and Finn Surlyk
Clim. Past, 12, 429–438, https://doi.org/10.5194/cp-12-429-2016, https://doi.org/10.5194/cp-12-429-2016, 2016
Short summary
Short summary
We present here for the first time a very high-resolution record of sea-surface temperature changes in the Boreal Chalk Sea for the last 8 million years of the Cretaceous. This record was obtained from 1932 bulk oxygen isotope measurements, and their interpretation into temperature trends is validated by similar trends observed from changes in phytoplankton assemblages.
I. Jalón-Rojas, S. Schmidt, and A. Sottolichio
Hydrol. Earth Syst. Sci., 19, 2805–2819, https://doi.org/10.5194/hess-19-2805-2015, https://doi.org/10.5194/hess-19-2805-2015, 2015
Short summary
Short summary
This study aims to analyse for the first time suspended sediment dynamics in the fluvial Gironde through a unique set of a 10-year continuous turbidity record. We demonstrate the following: the interest of turbidity-discharge hysteresis loops to evaluate the presence of sediment depositions; the relationships between features of the turbidity maximum zone (TMZ) and river flow; and the definition of hydrological indicators of the persistence and concentration of the TMZ.
G. Milzer, J. Giraudeau, S. Schmidt, F. Eynaud, and J. Faust
Clim. Past, 10, 305–323, https://doi.org/10.5194/cp-10-305-2014, https://doi.org/10.5194/cp-10-305-2014, 2014
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Centennial-Decadal
The climate of the Common Era off the Iberian Peninsula
Freshening of the Labrador Sea as a trigger for Little Ice Age development
Variability in terrigenous sediment supply offshore of the Río de la Plata (Uruguay) recording the continental climatic history over the past 1200 years
Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation
The response of the Peruvian Upwelling Ecosystem to centennial-scale global change during the last two millennia
The Impact of the Little Ice Age on Coccolithophores in the Central Mediterranea Sea
Fátima Abrantes, Teresa Rodrigues, Marta Rufino, Emília Salgueiro, Dulce Oliveira, Sandra Gomes, Paulo Oliveira, Ana Costa, Mário Mil-Homens, Teresa Drago, and Filipa Naughton
Clim. Past, 13, 1901–1918, https://doi.org/10.5194/cp-13-1901-2017, https://doi.org/10.5194/cp-13-1901-2017, 2017
Short summary
Short summary
Reconstructions of the last 2000-year climatic conditions along the Iberian Margin, a vulnerable region regarding current global warming, reveal a long-term cooling in sea surface temperature (SST) ending with the 19th century and centennial-scale variability that exposes warm SSTs throughout the first 1300 years followed by the colder Little Ice Age. The Industrial Era starts by 1800 CE, with an SST rise and a second increase in SST at ca. 1970 CE, particularly marked in the southern region.
Montserrat Alonso-Garcia, Helga (Kikki) F. Kleiven, Jerry F. McManus, Paola Moffa-Sanchez, Wallace S. Broecker, and Benjamin P. Flower
Clim. Past, 13, 317–331, https://doi.org/10.5194/cp-13-317-2017, https://doi.org/10.5194/cp-13-317-2017, 2017
Short summary
Short summary
This study focuses on understanding climatic and oceanographic variations that took place during the last 1000 years. We studied sediment samples from the Labrador Sea, looking for evidence of events of freshwater and iceberg discharges to this region. The importance of this study is to evaluate when these events happened and their consequences. The freshening of the Labrador Sea region may have played a major role in promoting cooling during the 15th to 19th centuries.
Laura Perez, Felipe García-Rodríguez, and Till J. J. Hanebuth
Clim. Past, 12, 623–634, https://doi.org/10.5194/cp-12-623-2016, https://doi.org/10.5194/cp-12-623-2016, 2016
Short summary
Short summary
The observed changes in the presented proxy records indicate variations in both the continental runoff and the marine influence, related to regional climatic variability. Therefore, we put forward the suggestion that global atmospheric changes (related to changes in SAMS and SACZ intensity) have made an impact on the hydrodynamics and, consequently, on the local sedimentation regime and the inner Uruguayan continental shelf over the past 1200 cal yr BP (AD 750–2000).
H. Kuehn, L. Lembke-Jene, R. Gersonde, O. Esper, F. Lamy, H. Arz, G. Kuhn, and R. Tiedemann
Clim. Past, 10, 2215–2236, https://doi.org/10.5194/cp-10-2215-2014, https://doi.org/10.5194/cp-10-2215-2014, 2014
Short summary
Short summary
Annually laminated sediments from the NE Bering Sea reveal a decadal-scale correlation to Greenland ice core records during termination I, suggesting an atmospheric teleconnection. Lamination occurrence is tightly coupled to Bølling-Allerød and Preboreal warm phases. Increases in export production, closely coupled to SST and sea ice changes, are hypothesized to be a main cause of deglacial anoxia, rather than changes in overturning/ventilation rates of mid-depth waters entering the Bering Sea.
R. Salvatteci, D. Gutiérrez, D. Field, A. Sifeddine, L. Ortlieb, I. Bouloubassi, M. Boussafir, H. Boucher, and F. Cetin
Clim. Past, 10, 715–731, https://doi.org/10.5194/cp-10-715-2014, https://doi.org/10.5194/cp-10-715-2014, 2014
A. Incarbona, P. Ziveri, E. Di Stefano, F. Lirer, G. Mortyn, B. Patti, N. Pelosi, M. Sprovieri, G. Tranchida, M. Vallefuoco, S. Albertazzi, L. G. Bellucci, A. Bonanno, S. Bonomo, P. Censi, L. Ferraro, S. Giuliani, S. Mazzola, and R. Sprovieri
Clim. Past, 6, 795–805, https://doi.org/10.5194/cp-6-795-2010, https://doi.org/10.5194/cp-6-795-2010, 2010
Cited articles
Andresen, C. S., Nørgaard-Pedersen, N., Jensen, J. B., Larsen, B., and
Nørgaard-Pedersen, N.: Bathymetry, shallow seismic profiling and sediment
coring in Sermilik near Helheimgletscher, South-East Greenland, Geol. Surv.
Denmark Greenl. Bull., 20, 83–86, 2010.
Andresen, C. S., McCarthy, D. J., Valdemar Dylmer, C., Seidenkrantz, M.-S.,
Kuijpers, A., and Lloyd, J. M.: Interaction between subsurface ocean waters
and calving of the Jakobshavn Isbrae during the late Holocene, The Holocene,
21, 211–224, https://doi.org/10.1177/0959683610378877, 2011.
Andresen, C. S., Hansen, M. J., Seidenkrantz, M.-S., Jennings, A. E.,
Knudsen, M. F., Norgaard-Pedersen, N., Larsen, N. K., Kuijpers, A., and
Pearce, C.: Mid- to late-Holocene oceanographic variability on the Southeast
Greenland shelf, The Holocene, 23, 167–178,
https://doi.org/10.1177/0959683612460789, 2012a.
Andresen, C. S., Straneo, F., Ribergaard, M. H., Bjørk, A. A., Andersen,
T. J., Kuijpers, A., Nørgaard-Pedersen, N., Kjær, K. H., Schjøth,
F., Weckström, K., and Ahlstrøm, A. P.: Rapid response of Helheim
Glacier in Greenland to climate variability over the past century, Nat.
Geosci., 5, 37–41, 2012b.
Andresen, C. S., Kjeldsen, K. K., Harden, B., Nørgaard-Pedersen, N., and
Kjær, K. H.: Outlet glacier dynamics and bathymetry at Upernavik
Isstrøm and Upernavik Isfjord, North-West Greenland, Geol. Surv. Denmark
Greenl. Bull., 79–82, 2014.
Andresen, C. S., Kokfelt, U., Sicre, M.-A., Knudsen, M. F., Dyke, L. M.,
Klein, V., Kaczmar, F., Miles, M. W., and Wangner, D. J.: Exceptional 20th
century glaciological regime of a major SE Greenland outlet glacier, Sci.
Rep., 7, 13626, https://doi.org/10.1038/s41598-017-13246-x, 2017.
Bjørk, A. A., Kjær, K. H., Korsgaard, N. J., Khan, S. A., Kjeldsen,
K. K., Andresen, C. S., Box, J. E., Larsen, N. K., and Funder, S.: An aerial
view of 80 years of climate-related glacier fluctuations in southeast
Greenland, Nat. Geosci., 5, 427–432, https://doi.org/10.1038/ngeo1481, 2012.
Cappelen, J.: DMI Monthly Climate Data Collection 1768–2010: Denmark, The
Faroe Islands and Greenland, Danish Meteorological Institute Centre for
Ocean and Ice, 2011.
Carroll, D., Sutherland, D. A., Hudson, B., Moon, T., Catania, G. A.,
Shroyer, E. L., Nash, J. D., Bartholomaus, T. C., Felikson, D., Stearns, L.
A., Noël, B. P. Y., and van den Broeke, M. R.: The impact of glacier
geometry on meltwater plume structure and submarine melt in Greenland
fjords, Geophys. Res. Lett., 43, 9739–9748, https://doi.org/10.1002/2016GL070170,
2016.
Carstens, J., Hebbeln, D., and Wefer, G.: Distribution of planktic
foraminifera at the ice margin in the Arctic (Fram Strait), Mar.
Micropaleontol., 29, 257–269, https://doi.org/10.1016/S0377-8398(96)00014-X,
1997.
Christoffersen, P., Mugford, R. I., Heywood, K. J., Joughin, I., Dowdeswell, J. A., Syvitski, J. P. M., Luckman, A., and Benham, T. J.: Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions, The Cryosphere, 5, 701–714, https://doi.org/10.5194/tc-5-701-2011, 2011.
Dowdeswell, J. A., Elverhøi, A., and Spielhagen, R.: Glacimarine
sedimentary processes and facies on the Polar North Atlantic margins, Quaternary Sci. Rev., 17, 243–272, 1998.
Drinkwater, K. F., Miles, M., Medhaug, I., Otterå, O. H., Kristiansen,
T., Sundby, S., and Gao, Y.: The Atlantic Multidecadal Oscillation: Its
manifestations and impacts with special emphasis on the Atlantic region
north of 60∘ N, J. Mar. Syst., 133, 117–130,
https://doi.org/10.1016/j.jmarsys.2013.11.001, 2014.
Dyke, L. M., Andresen, C. S., Seidenkrantz, M.-S., Hughes, A. L. C.,
Hiemstra, J. F., Murray, T., Bjørk, A. A., Sutherland, D. A., and
Vermassen, F.: Minimal Holocene retreat of large tidewater glaciers in
Køge Bugt, southeast Greenland, Sci. Rep., 7, 12330,
https://doi.org/10.1038/s41598-017-12018-x, 2017.
Ellis, B. F. and Messina, A.: Catalogue of Foraminifera (Supplements, including 2007), American Museum of Natural History and Micropaleontology Press, New York, 1949.
Enfield, D. B., Mestas-Nuñez, A. M., and Trimble, P. J.: The Atlantic
multidecadal oscillation and its relation to rainfall and river flows in the
continental U.S, Geophys. Res. Lett., https://doi.org/10.1029/2000GL012745, 2001.
Fenty, I., Willis, J., Khazendar, A., Dinardo, S., Forsberg, R., Fukumori,
I., Holland, D., Jakobsson, M., Moller, D., Morison, J., Münchow, A.,
Rignot, E., Schodlok, M., Thompson, A., Tinto, K., Rutherford, M., and
Trenholm, N.: Oceans Melting Greenland: Early Results from NASA's Ocean-Ice
Mission in Greenland, Oceanography, 29, 72–83, 2016.
Frajka-Williams, E., Beaulieu, C., and Duchez, A.: Emerging negative Atlantic
Multidecadal Oscillation index in spite of warm subtropics, Sci. Rep., 7,
11224, https://doi.org/10.1038/s41598-017-11046-x, 2017.
Haubner, K., Box, J. E., Schlegel, N. J., Larour, E. Y., Morlighem, M., Solgaard, A. M., Kjeldsen, K. K., Larsen, S. H., Rignot, E., Dupont, T. K., and Kjær, K. H.: Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849–2012 by forcing prescribed terminus positions in ISSM, The Cryosphere, 12, 1511–1522, https://doi.org/10.5194/tc-12-1511-2018, 2018.
Höglund, H.: Foraminifera in the Gullmar Fjord and the Skagerak, PhD Thesis, Zool. Bidr. fran Uppsala, Apelbergs Boktr., 1947
Holland, D. M., Thomas, R. H., de Young, B., Ribergaard, M. H., and Lyberth,
B.: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean
waters, Nat. Geosci., 1, 659–664, https://doi.org/10.1038/ngeo316, 2008.
Jamieson, S. S. R., Vieli, A., Livingstone, S. J., Cofaigh, C. Ó.,
Stokes, C., Hillenbrand, C.-D., and Dowdeswell, J. A.: Ice-stream stability
on a reverse bed slope, Nat. Geosci., 5, 799–802, 2012.
Jennings, A. E., Andrews, J. T., Ó Cofaigh, C., Onge, G. S., Sheldon,
C., Belt, S. T., Cabedo-Sanz, P., and Hillaire-Marcel, C.: Ocean forcing of
Ice Sheet retreat in central west Greenland from LGM to the early Holocene,
Earth Planet. Sc. Lett., 472, 1–13, https://doi.org/10.1016/j.epsl.2017.05.007, 2017.
Joughin, I., Alley, R. B., and Holland, D. M.: Ice-Sheet Response to Oceanic
Forcing, Science, 338, 1172–1176, https://doi.org/10.1126/science.1226481, 2013.
Kerr, R. A.: A North Atlantic climate pacemaker for the centuries, Science,
288, 1984–1985, https://doi.org/10.1126/science.288.5473.1984, 2000.
Khan, S. A., Wahr, J., Bevis, M., Velicogna, I., and Kendrick, E.: Spread of
ice mass loss into northwest Greenland observed by GRACE and GPS, Geophys.
Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL042460, 2010.
Khan, S. A., Kjær, K. H., Korsgaard, N. J., Wahr, J., Joughin, I. R.,
Timm, L. H., Bamber, J. L., Van Den Broeke, M. R., Stearns, L. A., Hamilton,
G. S., Csatho, B. M., Nielsen, K., Hurkmans, R., and Babonis, G.: Recurring
dynamically induced thinning during 1985 to 2010 on Upernavik Isstrøm,
West Greenland, J. Geophys. Res.-Earth, 118, 111–121,
https://doi.org/10.1029/2012JF002481, 2013.
Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori,
I., Wang, O., Zhang, H., Seroussi, H., Moller, D., Noël, B. P. Y., van
den Broeke, M. R., Dinardo, S., and Willis, J.: Interruption of two decades
of Jakobshavn Isbrae acceleration and thinning as regional ocean cools, Nat.
Geosci., 12, 277–283, https://doi.org/10.1038/s41561-019-0329-3, 2019.
Kjær, K. H., Khan, S. A., Korsgaard, N. J., Wahr, J., Bamber, J. L.,
Hurkmans, R., van den Broeke, M., Timm, L. H., Kjeldsen, K. K., Bjørk, A.
A., Larsen, N. K., Jorgensen, L. T., Faerch-Jensen, A., and Willerslev, E.:
Aerial Photographs Reveal Late-20th-Century Dynamic Ice Loss in Northwestern
Greenland, Science, 337, 569–573,
https://doi.org/10.1126/science.1220614, 2012.
Knudsen, K. L., Stabell, B., Seidenkrantz, M.-S., Eiríksson, J., and
Blake, W.: Deglacial and Holocene conditions in northernmost Baffin Bay:
sediments, foraminifera, diatoms and stable isotopes, Boreas, 37,
346–376, https://doi.org/10.1111/j.1502-3885.2008.00035.x, 2008.
Knudsen, M. F., Seidenkrantz, M. S., Jacobsen, B. H., and Kuijpers, A.:
Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years,
Nat. Commun., 2, 178, https://doi.org/10.1038/ncomms1186, 2011.
Larsen, S. H., Khan, S. A., Ahlstrøm, A. P., Hvidberg, C. S., Willis, M.
J., and Andersen, S. B.: Increased mass loss and asynchronous behavior of
marine-terminating outlet glaciers at Upernavik Isstrøm, NW Greenland, J.
Geophys. Res.-Earth, 121, 241–256, https://doi.org/10.1002/2015JF003507,
2016.
Kucera, M.: Planktonic Foraminifera as Tracers of Past Oceanic Environments,
chap. 6, in:
Proxies in Late Cenozoic Paleoceanography, edited by: Hillaire-Marcel, C. and Anne de Vernal, A., Developments in Marine Geology,
1, 213–262, https://doi.org/10.1016/S1572-5480(07)01011-1, 2007.
Lloyd, J. M.: Late Holocene environmental change in Disko Bugt, west
Greenland: interaction between climate, ocean circulation and Jakobshavn
Isbrae, Boreas, 35, 35–49, https://doi.org/10.1080/03009480500359061, 2006a.
Lloyd, J. M.: Modern Distribution of Benthic Foraminifera From Disko Bugt,
West Greenland, J. Foraminifer. Res., 36, 315–331,
https://doi.org/10.2113/gsjfr.36.4.315, 2006b.
Lloyd, J. M., Park, L. A., Kuijpers, A., and Moros, M.: Early Holocene
palaeoceanography and deglacial chronology of Disko Bugt, West Greenland,
Quaternary Sci. Rev., 24, 1741–1755,
https://doi.org/10.1016/j.quascirev.2004.07.024, 2005.
Lloyd, J. M., Kuijpers, A., Long, A., Moros, M., and Park, L. A.:
Foraminiferal reconstruction of mid- to late-Holocene ocean circulation and
climate variability in Disko Bugt, West Greenland, The Holocene, 17,
1079–1091, https://doi.org/10.1177/0959683607082548, 2007.
Lloyd, J. M., Moros, M., Perner, K., Telford, R. J., Kuijpers, A., Jansen,
E., and McCarthy, D.: A 100 yr record of ocean temperature control on the
stability of Jakobshavn Isbrae, West Greenland, Geology, 39, 867–870,
https://doi.org/10.1130/G32076.1, 2011.
Meire, L., Mortensen, J., Meire, P., Juul-Pedersen, T., Sejr, M. K.,
Rysgaard, S., Nygaard, R., Huybrechts, P., and Meysman, F. J. R.:
Marine-terminating glaciers sustain high productivity in Greenland fjords,
Glob. Chang. Biol., 23, 5344–5357, https://doi.org/10.1111/gcb.13801, 2017.
Munsell, A. H.: A Pigment Color System and Notation, Am. J. Psychol., 23,
236–244, 1912.
Murray, J. W.: Ecology and applications of benthic foraminifera, Cambridge
University Press, 2006.
Myers, P. G., Kulan, N., and Ribergaard, M. H.: Irminger water variability in
the West Greenland Current, Geophys. Res. Lett., 34, 2–7,
https://doi.org/10.1029/2007GL030419, 2007.
Nick, F. M., Vieli, A., Andersen, M. L., Joughin, I., Payne, A., Edwards, T.
L., Pattyn, F., and Van De Wal, R. S. W.: Future sea-level rise from
Greenland's main outlet glaciers in a warming climate, Nature, 497,
235–238, https://doi.org/10.1038/nature12068, 2013.
Perner, K., Moros, M., Lloyd, J. M., Kuijpers, A., Telford, R. J., and Harff,
J.: Centennial scale benthic foraminiferal record of late Holocene
oceanographic variability in Disko Bugt, West Greenland, Quatenary Sci. Rev.,
30, 2815–2826, https://doi.org/10.1016/j.quascirev.2011.06.018, 2011.
Perner, K., Moros, M., Jennings, A. E., Lloyd, J. M., and Knudsen, K.:
Holocene palaeoceanographic evolution off West Greenland, The Holocene,
23, 374–387, https://doi.org/10.1177/0959683612460785, 2013.
Polovodova Asteman, I., Nordberg, K., and Filipsson, H. L.: The Little Ice Age: evidence from a sediment record in Gullmar Fjord, Swedish west coast, Biogeosciences, 10, 1275–1290, https://doi.org/10.5194/bg-10-1275-2013, 2013.
Ribergaard, M. H., Olsen, S. M., and Mortensen, J.: Oceanographic
Investigations off West Greenland 2007, Danish Meteorological Institute
Centre for Ocean and Ice, Copenhagen, 2008.
Rignot, E., Braaten, D., Gogineni, S. P., Krabill, W. B., and McConnell, J.
R.: Rapid ice discharge from southeast Greenland glaciers, Geophys. Res.
Lett., 31, 2–5, https://doi.org/10.1029/2004GL019474, 2004.
Schiebel, R., Spielhagen, R. F., Garnier, J., Hagemann, J., Howa, H.,
Jentzen, A., Martínez-garcia, A., Meilland, J., Michel, E.,
Repschläger, J., Salter, I., Yamasaki, M., and Haug, G.: Modern planktic
foraminifers in the high-latitude ocean, Mar. Micropaleontol.,
136, 1–13, https://doi.org/10.1016/j.marmicro.2017.08.004, 2017.
Schlesinger, M. E. and Ramankutty, N.: An oscillation in the global climate
system of period 65–70 years, Nature, 367, 723–726,
https://doi.org/10.1038/367723a0, 1994.
Seidenkrantz, M.-S., Aagaard-Sørensen, S., Sulsbruck, H., Kuijpers, A.,
Jensen, K. G., and Kunzendorf, H.: Hydrography and climate of the last 4400
years in a SW Greenland fjord: implications for Labrador Sea
palaeoceanography, The Holocene, 17, 387–401,
https://doi.org/10.1177/0959683607075840, 2007.
Seidenkrantz, M. S.: Benthic foraminifera as palaeo sea-ice indicators in
the subarctic realm – examples from the Labrador Sea-Baffin Bay region,
Quaternary Sci. Rev., 79, 135–144, https://doi.org/10.1016/j.quascirev.2013.03.014, 2013.
Sheldon, C., Jennings, A. E., Andrews, J. T., Ó Cofaigh, C., Hogan, K.,
Dowdeswell, J. A., and Seidenkrantz, M. S.: Ice stream retreat following the
LGM and onset of the west Greenland current in Uummannaq Trough, west
Greenland, Quaternary Sci. Rev., 147, 27–46,
https://doi.org/10.1016/j.quascirev.2016.01.019, 2016.
Straneo, F. and Heimbach, P.: North Atlantic warming and the retreat of
Greenland's outlet glaciers, Nature, 504, 36–43,
https://doi.org/10.1038/nature12854, 2013.
Straneo, F., Heimbach, P., Sergienko, O., Hamilton, G., Catania, G.,
Griffies, S., Hallberg, R., Jenkins, A., Joughin, I., Motyka, R., Pfeffer,
W. T., Price, S. F., Rignot, E., Scambos, T., Truffer, M.. and Vieli, A.:
Challenges to understanding the dynamic response of Greenland's marine
terminating glaciers to oceanic and atmospheric forcing, B. Am. Meteorol.
Soc., 94, 1131–1144, https://doi.org/10.1175/BAMS-D-12-00100.1, 2013.
Sutherland, D. A. and Pickart, R. S.: The East Greenland Coastal Current:
Structure, variability, and forcing, Prog. Oceanogr., 78. 58–77,
https://doi.org/10.1016/j.pocean.2007.09.006, 2008.
Trenberth, K. E. and Shea, D. J.: Atlantic hurricanes and natural
variability in 2005, Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894, 2006.
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016.
Vermassen, F., Wangner, D. J., Dyke, L. M., Schmidt, S., Cordua, A. E.,
Kjær, K. H., Haubner, K., and Andresen, C. S.: Evaluating ice-rafted
debris as a proxy for glacier calving in Upernavik Isfjord, NW Greenland, J.
Quat. Sci., 34, 258–267, https://doi.org/10.1002/jqs.3095, 2019a.
Vermassen, F., Andreasen, N., Wangner, D. J., Thibault, N., Seidenkrantz, M.-S., Jackson, R., Schmidt, S., Kjær, K. H., and Andresen, C. S.: Benthic foraminiferal abundances and age model from Upernavik Fjord, sediment core POR13-05, PANGAEA, https://doi.org/10.1594/PANGAEA.896945, 2019b.
Wangner, D. J., Jennings, A. E., Vermassen, F., Dyke, L. M., Hogan, K. A.,
Schmidt, S., Kjær, K. H., Knudsen, M. F., and Andresen, C. S.: A
2000-year record of ocean influence on Jakobshavn Isbræ calving
activity, based on marine sediment cores, Holocene, 28, 1731–1744,
https://doi.org/10.1177/0959683618788701, 2018.
Weidick, A.: Frontal Variations at Upernaviks Isstrøm in the Last 100
Years, Meddelser fra Dansk Geol. Foren. København, 14, 52–60, 1958.
Short summary
By studying microfossils from sediments in Upernavik Fjord we investigate the role of ocean warming on the retreat of Upernavik Isstrøm during the past ~90 years. The reconstruction of Atlantic-derived waters shows a pattern similar to that of the Atlantic Multidecadal Oscillation, corroborating previous studies. The response of Upernavik Isstrøm to ocean forcing has been variable in the past, but the current retreat may be temporarily tempered by cooling bottom waters in the coming decade.
By studying microfossils from sediments in Upernavik Fjord we investigate the role of ocean...