Articles | Volume 15, issue 3
https://doi.org/10.5194/cp-15-1083-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-1083-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of atmospheric CO2 variability of the past 800 kyr on the biomes of southeast Africa
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
Thibaut Caley
EPOC, UMR 5805, CNRS, University of Bordeaux, Pessac,
France
Isla S. Castañeda
University of Massachusetts Amherst, Department of Geosciences,
Amherst, MA, USA
Related authors
Lydie M. Dupont, Xueqin Zhao, Christopher Charles, John Tyler Faith, and David Braun
Clim. Past, 18, 1–21, https://doi.org/10.5194/cp-18-1-2022, https://doi.org/10.5194/cp-18-1-2022, 2022
Short summary
Short summary
We studied the vegetation and climate of southwestern South Africa for the period of the past 300000 years. Vegetation and climate development in this region are interesting because the vegetation of the Western Cape is a global biodiversity hotspot and because the archeology of the region substantially contributed to the understanding of the origins of modern humans. We found that the influence of precession variability on the vegetation and climate of southwestern South Africa is strong.
Friederike Grimmer, Lydie Dupont, Frank Lamy, Gerlinde Jung, Catalina González, and Gerold Wefer
Clim. Past, 14, 1739–1754, https://doi.org/10.5194/cp-14-1739-2018, https://doi.org/10.5194/cp-14-1739-2018, 2018
Short summary
Short summary
We present the first marine pollen record of the early Pliocene from western equatorial South America. Our reconstruction of the vegetation aims to provide insights into hydrological changes related to tectonic events (Central American Seaway closure, uplift of the Northern Andes). We find stable humid conditions, suggesting a southern location of the Intertropical Convergence Zone. The presence of high montane vegetation indicates an early uplift of the Western Cordillera of the northern Andes.
Rony R. Kuechler, Lydie M. Dupont, and Enno Schefuß
Clim. Past, 14, 73–84, https://doi.org/10.5194/cp-14-73-2018, https://doi.org/10.5194/cp-14-73-2018, 2018
Short summary
Short summary
Measuring deuterium and stable carbon isotopes of higher plant wax extracted from marine sediments offshore of Mauritania, we recovered a record of hydrology and vegetation change in West Africa for two Pliocene intervals: 5.0–4.6 and 3.6–3.0 Ma. We find that changes in local summer insolation cannot fully explain the variations in the West African monsoon and that latitudinal insolation and temperature gradients are important drivers of tropical monsoon systems.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
S. Hoetzel, L. M. Dupont, F. Marret, G. Jung, and G. Wefer
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-1913-2015, https://doi.org/10.5194/cpd-11-1913-2015, 2015
Preprint withdrawn
I. Bouimetarhan, L. Dupont, H. Kuhlmann, J. Pätzold, M. Prange, E. Schefuß, and K. Zonneveld
Clim. Past, 11, 751–764, https://doi.org/10.5194/cp-11-751-2015, https://doi.org/10.5194/cp-11-751-2015, 2015
Short summary
Short summary
This study has great paleoclimatic and paleoecological significance, as it deals with the poorly documented tropical SE African ecosystem during the last deglaciation. Changes in the Rufiji upland vegetation evidenced the response of the regional hydrologic system to high-latitude climatic fluctuations associated with ITCZ shifts, while changes in sensitive tropical salt marshes and mangrove communities in the Rufiji lowland evidenced the impact of sea level changes on the intertidal ecosystem.
D. Handiani, A. Paul, M. Prange, U. Merkel, L. Dupont, and X. Zhang
Clim. Past, 9, 1683–1696, https://doi.org/10.5194/cp-9-1683-2013, https://doi.org/10.5194/cp-9-1683-2013, 2013
Thomas Extier, Thibaut Caley, and Didier M. Roche
Geosci. Model Dev., 17, 2117–2139, https://doi.org/10.5194/gmd-17-2117-2024, https://doi.org/10.5194/gmd-17-2117-2024, 2024
Short summary
Short summary
Stable water isotopes are used to infer changes in the hydrological cycle for different time periods in climatic archive and climate models. We present the implementation of the δ2H and δ17O water isotopes in the coupled climate model iLOVECLIM and calculate the d- and 17O-excess. Results of a simulation under preindustrial conditions show that the model correctly reproduces the water isotope distribution in the atmosphere and ocean in comparison to data and other global circulation models.
Kurt R. Lindberg, William C. Daniels, Isla S. Castañeda, and Julie Brigham-Grette
Clim. Past, 18, 559–577, https://doi.org/10.5194/cp-18-559-2022, https://doi.org/10.5194/cp-18-559-2022, 2022
Short summary
Short summary
Earth experiences regular ice ages resulting in shifts between cooler and warmer climates. Around 1 million years ago, the ice age cycles grew longer and stronger. We used bacterial and plant lipids preserved in an Arctic lake to reconstruct temperature and vegetation during this climate transition. We find that Arctic land temperatures did not cool much compared to ocean records from this period, and that vegetation shifts correspond with a long-term drying previously reported in the region.
Lydie M. Dupont, Xueqin Zhao, Christopher Charles, John Tyler Faith, and David Braun
Clim. Past, 18, 1–21, https://doi.org/10.5194/cp-18-1-2022, https://doi.org/10.5194/cp-18-1-2022, 2022
Short summary
Short summary
We studied the vegetation and climate of southwestern South Africa for the period of the past 300000 years. Vegetation and climate development in this region are interesting because the vegetation of the Western Cape is a global biodiversity hotspot and because the archeology of the region substantially contributed to the understanding of the origins of modern humans. We found that the influence of precession variability on the vegetation and climate of southwestern South Africa is strong.
Friederike Grimmer, Lydie Dupont, Frank Lamy, Gerlinde Jung, Catalina González, and Gerold Wefer
Clim. Past, 14, 1739–1754, https://doi.org/10.5194/cp-14-1739-2018, https://doi.org/10.5194/cp-14-1739-2018, 2018
Short summary
Short summary
We present the first marine pollen record of the early Pliocene from western equatorial South America. Our reconstruction of the vegetation aims to provide insights into hydrological changes related to tectonic events (Central American Seaway closure, uplift of the Northern Andes). We find stable humid conditions, suggesting a southern location of the Intertropical Convergence Zone. The presence of high montane vegetation indicates an early uplift of the Western Cordillera of the northern Andes.
Daniel R. Miller, M. Helen Habicht, Benjamin A. Keisling, Isla S. Castañeda, and Raymond S. Bradley
Clim. Past, 14, 1653–1667, https://doi.org/10.5194/cp-14-1653-2018, https://doi.org/10.5194/cp-14-1653-2018, 2018
Short summary
Short summary
We measured biomarker production over a year in a small inland lake in the northeastern USA. Understanding biomarkers in the modern environment helps us improve reconstructions of past climate from lake sediment records. We use these results to interpret a 900-year decadally resolved temperature record from this lake. Our record highlights multi-decadal oscillations in temperature superimposed on a long-term cooling trend, providing novel insight into climate dynamics of the region.
Didier M. Roche, Claire Waelbroeck, Brett Metcalfe, and Thibaut Caley
Geosci. Model Dev., 11, 3587–3603, https://doi.org/10.5194/gmd-11-3587-2018, https://doi.org/10.5194/gmd-11-3587-2018, 2018
Short summary
Short summary
The oxygen-18 signal recorded in fossil planktonic foraminifers has been used for over 50 years in many geoscience applications. However, different planktonic foraminifer species from the same sediment core generally yield distinct oxygen-18 signals, as a consequence of their specific living habitat in the water column and along the year. To explicitly take into account this variability for five common planktonic species, we developed the portable module FAME (Foraminifers As Modeled Entities).
Rony R. Kuechler, Lydie M. Dupont, and Enno Schefuß
Clim. Past, 14, 73–84, https://doi.org/10.5194/cp-14-73-2018, https://doi.org/10.5194/cp-14-73-2018, 2018
Short summary
Short summary
Measuring deuterium and stable carbon isotopes of higher plant wax extracted from marine sediments offshore of Mauritania, we recovered a record of hydrology and vegetation change in West Africa for two Pliocene intervals: 5.0–4.6 and 3.6–3.0 Ma. We find that changes in local summer insolation cannot fully explain the variations in the West African monsoon and that latitudinal insolation and temperature gradients are important drivers of tropical monsoon systems.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Julie Lattaud, Denise Dorhout, Hartmut Schulz, Isla S. Castañeda, Enno Schefuß, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 13, 1049–1061, https://doi.org/10.5194/cp-13-1049-2017, https://doi.org/10.5194/cp-13-1049-2017, 2017
Short summary
Short summary
The study of past sedimentary records from coastal margins allows us to reconstruct variations in terrestrial input into the marine realm and to gain insight into continental climatic variability. The study of two sediment cores close to river mouths allowed us to show the potential of long-chain diols as riverine input proxy.
S. Hoetzel, L. M. Dupont, F. Marret, G. Jung, and G. Wefer
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-1913-2015, https://doi.org/10.5194/cpd-11-1913-2015, 2015
Preprint withdrawn
I. Bouimetarhan, L. Dupont, H. Kuhlmann, J. Pätzold, M. Prange, E. Schefuß, and K. Zonneveld
Clim. Past, 11, 751–764, https://doi.org/10.5194/cp-11-751-2015, https://doi.org/10.5194/cp-11-751-2015, 2015
Short summary
Short summary
This study has great paleoclimatic and paleoecological significance, as it deals with the poorly documented tropical SE African ecosystem during the last deglaciation. Changes in the Rufiji upland vegetation evidenced the response of the regional hydrologic system to high-latitude climatic fluctuations associated with ITCZ shifts, while changes in sensitive tropical salt marshes and mangrove communities in the Rufiji lowland evidenced the impact of sea level changes on the intertidal ecosystem.
D. Handiani, A. Paul, M. Prange, U. Merkel, L. Dupont, and X. Zhang
Clim. Past, 9, 1683–1696, https://doi.org/10.5194/cp-9-1683-2013, https://doi.org/10.5194/cp-9-1683-2013, 2013
Related subject area
Subject: Vegetation Dynamics | Archive: Marine Archives | Timescale: Pleistocene
Impact of terrestrial biosphere on the atmospheric CO2 concentration across Termination V
Continuous vegetation record of the Greater Cape Floristic Region (South Africa) covering the past 300 000 years (IODP U1479)
Pliocene expansion of C4 vegetation in the Core Monsoon Zone on the Indian Peninsula
Increased aridity in southwestern Africa during the warmest periods of the last interglacial
Gabriel Hes, María F. Sánchez Goñi, and Nathaelle Bouttes
Clim. Past, 18, 1429–1451, https://doi.org/10.5194/cp-18-1429-2022, https://doi.org/10.5194/cp-18-1429-2022, 2022
Short summary
Short summary
Termination V (TV, ~ 404–433 kyr BP) marks a transition in the climate system towards amplified glacial–interglacial cycles. While the associated atmospheric CO2 changes are mostly attributed to the Southern Ocean, little is known about the terrestrial biosphere contribution to the carbon cycle. This study provides the first (model- and pollen-based) reconstruction of global forests highlighting the potential role of temperate and boreal forests in atmospheric CO2 sequestration during TV.
Lydie M. Dupont, Xueqin Zhao, Christopher Charles, John Tyler Faith, and David Braun
Clim. Past, 18, 1–21, https://doi.org/10.5194/cp-18-1-2022, https://doi.org/10.5194/cp-18-1-2022, 2022
Short summary
Short summary
We studied the vegetation and climate of southwestern South Africa for the period of the past 300000 years. Vegetation and climate development in this region are interesting because the vegetation of the Western Cape is a global biodiversity hotspot and because the archeology of the region substantially contributed to the understanding of the origins of modern humans. We found that the influence of precession variability on the vegetation and climate of southwestern South Africa is strong.
Ann G. Dunlea, Liviu Giosan, and Yongsong Huang
Clim. Past, 16, 2533–2546, https://doi.org/10.5194/cp-16-2533-2020, https://doi.org/10.5194/cp-16-2533-2020, 2020
Short summary
Short summary
Over the past 20 Myr, there has been a dramatic global increase in plants using C4 photosynthetic pathways. We analyze C and H isotopes in fatty acids of leaf waxes preserved in marine sediment from the Bay of Bengal to examine changes in photosynthesis in the Core Monsoon Zone of the Indian Peninsula over the past 6 Myr. The observed increase in C4 vegetation from 3.5 to 1.5 Ma is synchronous with C4 expansions in northwest Australia and East Africa, suggesting regional hydroclimate controls
D. H. Urrego, M. F. Sánchez Goñi, A.-L. Daniau, S. Lechevrel, and V. Hanquiez
Clim. Past, 11, 1417–1431, https://doi.org/10.5194/cp-11-1417-2015, https://doi.org/10.5194/cp-11-1417-2015, 2015
Short summary
Short summary
We present a new pollen-based palaeoclimatic reconstruction covering the period between 190,000 and 24,000 years ago from a marine sediment core located off the Namibian coast. Our work identifies increased dryness during the three warmest periods of the last interglacial involving atmospheric and oceanic reorganisations in southern Africa that are linked to precession minima.
Cited articles
Barth, A. M., Clark, P. U., Bill, N. S., He, F., and Pisias, N. G.: Climate evolution across the Mid-Brunhes Transition, Clim. Past, 14, 2071–2087, https://doi.org/10.5194/cp-14-2071-2018, 2018.
Beentje, H.: Kenya trees, shrubs and lianas, National Museum of Kenya,
Nairobi, Kenya, 722 pp., 1994.
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F.,
Fischer, H., Kipfstuhl, S., and Chappelaz, J.: Revision of the EPICA Dome C
CO2 record from 800 to 600 kyr before present, Geophys. Res.
Lett., 42, 542–549, https://doi.org/10.1002/2014GL061957, 2015.
Bonnefille, R. and Chalié, F.: Pollen-inferred precipitation time-series
from equatorial mountains, Africa, the last 40 kyr BP, Global Planet.
Change, 26, 25–50, https://doi.org/10.1016/S0921-8181(00)00032-1, 2000.
Bonnefille, R. and Riollet, G.: Pollens des savanes d'Afrique orientale,
Éditions du Centre National de la Recherche Scientifique, Paris, France, 140 pp., 1980.
Bonnefille, R. and Riollet, G.: The Kashiru pollen sequence (Burundi).
Palaeoclimatic implications for the last 40 000 yr BP in tropical Africa,
Quaternary Res., 30, 19–35, https://doi.org/10.1016/0033-5894(88)90085-3, 1988.
Botha, G. A., Scott, L., Vogel, J. C., and Von Brunn, V.: Palaeosols and
palaeoenvironments during the Late Pleistocene Hypothermal in northern
Natal, S. Afr. J. Sci., 88, 508–512, 1992.
Bouttes, N., Swingedouw, D., Roche, D. M., Sanchez-Goni, M. F., and Crosta, X.: Response of the carbon cycle in an intermediate complexity model to the different climate configurations of the last nine interglacials, Clim. Past, 14, 239–253, https://doi.org/10.5194/cp-14-239-2018, 2018.
Caley, T., Kim, J.-H., Malaizé, B., Giraudeau, J., Laepple, T., Caillon, N., Charlier, K., Rebaubier, H., Rossignol, L., Castañeda, I. S., Schouten, S., and Sinninghe Damsté, J. S.: High-latitude obliquity as a dominant forcing in the Agulhas current system, Clim. Past, 7, 1285–1296, https://doi.org/10.5194/cp-7-1285-2011, 2011.
Caley, T., Extier, T., Collins, J. A., Schefuß, E., Dupont, L.,
Malaizé, B., Rossignol, L., Souron, A., Mcclymont, E. L., Jiminez-Espejo,
F. J., García-Comas, C., Eynaud, F., Martinez, P., Roche, D. M., Jorry,
S. J., Charlier, K., Wary, M., Gouvers, P.-Y., Billy, I., and Giraudeau, J.: A
two-million-year-long hydroclimatic context for hominin evolution in
southeastern Africa, Nature, 560, 76–79, https://doi.org/10.1038/s41586-018-0309-6,
2018a.
Caley, T., Extier, T., Collins, J. A., Schefuß, E., Dupont, L. M., Malaizé, B., Rossignol, L., Souron, A., McClymont, E. L., Jiménez-Espejo, F. J., García-Comas, C., Eynaud, F., Martinez, P., Roche, D. M., Jorry, S., Charlier, K., Wary, M., Gourves, P.-I., Billy, I., and Giraudeau, J.: Planulina wuellerstorfi δ18O analyses of sediment core MD96-2048, https://doi.org/10.1594/PANGAEA.895364, PANGAEA, 2018b.
Caley, T., Extier, T., Collins, J. A., Schefuß, E., Dupont, L. M., Malaizé, B., Rossignol, L., Souron, A., McClymont, E. L., Jiménez-Espejo, F. J., García-Comas, C., Eynaud, F., Martinez, P., Roche, D. M., Jorry, S., Charlier, K., Wary, M., Gourves, P.-I., Billy, I., and Giraudeau, J.: XRF ln(Fe/Ca) record of sediment core MD96-2048, https://doi.org/10.1594/PANGAEA.895361, PANGAEA, 2018c.
Caley, T., Extier, T., Collins, J. A., Schefuß, E., Dupont, L. M., Malaizé, B., Rossignol, L., Souron, A., McClymont, E. L., Jiménez-Espejo, F. J., García-Comas, C., Eynaud, F., Martinez, P., Roche, D. M., Jorry, S., Charlier, K., Wary, M., Gourves, P.-I., Billy, I., and Giraudeau, J.: SST first principal component of sediment core MD96-2048, https://doi.org/10.1594/PANGAEA.895362, PANGAEA, 2018d.
Caley, T., Extier, T., Collins, J. A., Schefuß, E., Dupont, L. M., Malaizé, B., Rossignol, L., Souron, A., McClymont, E. L., Jiménez-Espejo, F. J., García-Comas, C., Eynaud, F., Martinez, P., Roche, D. M., Jorry, S., Charlier, K., Wary, M., Gourves, P.-I., Billy, I., and Giraudeau, J.: Stable carbon isotopes of sediment core MD96-2048, https://doi.org/10.1594/PANGAEA.895357, PANGAEA, 2018e.
Castañeda, I. S., Caley, T., Dupont, L., Kim, J.-H., Malaizé, B., and
Sschouten, S: Middle to Late Pleistocene vegetation and climate change
insubtropical southern East Africa, Earth Planet. Sc. Lett.,
450, 306–316, https://doi.org/10.1016/j.epsl.2016.06.049, 2016a.
Castañeda, I. S., Caley, T., Dupont, L. M., Kim, J.-H., Malaizé, B., and Schouten, S.: Plant leaf wax (n-alkane) data from sediment core MD96-2048, https://doi.org/10.1594/PANGAEA.863919, PANGAEA, 2016b.
Chapman, L. J., Balirwa, J., Bugenyi, F. W. B., Chapman, C., and Crisman, T. L.:
Wetlands of East Africa: biodiversity, exploitation, and policy
perspectives, edited by: Gopal, B., Junk, W. J., and Davis, J. A., Biodiversity in
Wetlands: Assessment, Funktion and Conservation, Backhuys
Publishers, Leiden, the Netherlands, 2, 101–131, 2001.
Clement, A. C., Hall, A., and Brocoli, A. J.: The importance of precessional
signals in the tropical climate, Clim. Dynam., 22, 327–341,
https://doi.org/10.1007/s00382-003-0375-8, 2004.
Coates Palgrave, K.: Trees of Southern Africa, 3rd edition, revised and
updated, Struik, Cape Town, South Africa, 1212 pp., 2002.
Coetzee, J. A.: Pollen analytical studies in east and southern Africa,
Palaeoecol. Afr., 3, 146 pp., 1967.
Cowling, S. A. and Sykes, M.: Physiological significance of low atmospheric
CO2 for plant-climate interactions, Quaternary Res., 52, 237–242,
https://doi.org/10.1006/qres.1999.2065, 1999.
Debusk, G. H.: A 37 500-year pollen record from Lake Malawi and implications
for the biogeography of afromontane forests, J. Biogeogr., 25,
479–500, https://doi.org/10.1046/j.1365-2699.1998.2530479.x, 1998.
Dupont, L. M.: Orbital scale vegetation change in Africa, Quaternary Sci.
Rev., 30, 3589–3602, https://doi.org/10.1016/j.quascirev.2011.09.019, 2011.
Dupont, L. M. and Hooghiemstra, H.: The Saharan-Sahelian boundary during the
Brunhes chron, Acta Bot. Neerl., 38, 405–415,
https://doi.org/10.1111/j.1438-8677.1989.tb01372.x, 1989.
Dupont, L. M. and Kuhlmann, H.: Glacial-interglacial vegetation change in the
Zambezi catchment, Quaternary Sci. Rev., 155, 127–135,
https://doi.org/10.1016/j.quascirev.2016.11.019, 2017.
Dupont, L. M., Beug, H.-J., Stalling, H., and Tiedemann, R.: First palynological
results from ODP Site 658 at 21∘ N west off Africa: pollen as
climate indicators, edited by: Ruddiman, W. F., Sarnthein, M., Baldauf, J., and Shipboard Scientists, Proc. ODP Sci.
Results, 108, College Station TX (Ocean Drilling Program), 93–111, 1989.
Dupont, L. M., Caley, T., Kim, J.-H., Castañeda, I., Malaizé, B., and Giraudeau, J.: Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean, Clim. Past, 7, 1209–1224, https://doi.org/10.5194/cp-7-1209-2011, 2011a.
Dupont, L. M., Caley, T., Kim, J.-H., Castañeda, I. S., Malaizé, B., and Giraudeau, J.: Pollen distribution of sediment core MD96-2048 from the Western Indian Ocean, https://doi.org/10.1594/PANGAEA.771285, PANGAEA, 2011b.
Dupont, L. M., Caley, T., and Castañeda, I. S.: Pollen and Spores of sediment core MD96-2048 Pleistocene, https://doi.org/10.1594/PANGAEA.897922, PANGEA, 2019
Ehleringer, J. R., Cerling, T. E., and Helliker, B. R.: C4 photosynthesis,
atmospheric CO2, and climate, Oecologia, 112, 285–299,
https://doi.org/10.1007/s004420050311, 1997.
Foley, J., Kutzbach, J. E., Coe, M. T., and Levis, S.: Feedbacks between climate
and boreal forests during the Holocene epoch, Nature, 371, 52–54,
https://doi.org/10.1038/371052a0, 1994.
Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles, Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011.
Gasse, F. and Van Campo, E.: Late Quaternary environmental changes from a
pollen and diatom record in the southern tropics (Lake Tritrivakely,
Madagascar), Palaeogeogr. Palaeocl., 167,
287–308, https://doi.org/10.1016/S0031-0182(00)00242-X, 2001.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
Statistics Software Package for Education and Data Analysis, Palaeontol.
Electron., 4, 1–9, 2001.
Ivory, S. J. and Russell, J.: Climate, herbivory, and fire controls on
tropical African forest for the last 60 ka, Quaternary Sci. Rev., 148,
101–114, https://doi.org/10.1016/j.quascirev.2016.07.015, 2016.
Ivory, S. J., Lézine, A.-M., Vincens, A., and Cohen, A. S.: Waxing and waning
of forests: Late Quaternary biogeography of southeast Africa, Glob. Change
Biol., 2018, 1–13, https://doi.org/10.1111/gcb.14150, 2018.
Izumi, K. and Lézine, A.-M.: Pollen-based biome reconstructions over the
past 18 000 years and atmospheric CO2 impacts on vegetation in
equatorial mountains of Africa, Quaternary Sci. Rev., 152, 93–103,
https://doi.org/10.1016/j.quascirev.2016.09.023, 2016.
Jansen, J. H. F., Kuijpers, A., and Troelstra, S. R.: A mid-Brunhes climatic
event: long-term changes in global atmosphere and ocean circulation,
Science, 232, 619–622, https://doi.org/10.1126/science.232.4750.619, 1986.
Johnson, T. C., Brown, E. T., Mcmanus, J., Barry, S., Barker, P., and Gasse, F.:
A high-resolution paleoclimate record spanning the past 25 000 years in
southern East Africa, Science, 296, 113–132, https://doi.org/10.1126/science.1070057,
2002.
Johnson, T. C., Werne, J. P., Brown, E. T., Abbott, A., Berke, M., Steinman,
B. A., Halbur, J., Conteras, S., Grosshuesch, S., Deino, A., Lyons, R. P.,
Scholz, C. A., Schouten, S., and Sinninghe Damsté, J. S.: A progressively
wetter climate in southern East Africa over the past 1.3 million years,
Nature, 537, 220–224, https://doi.org/10.1038/nature19065, 2016.
Jolly, D. and Haxeltine, A.: Effect of low glacial atmospheric CO2 on
tropical African montane vegetation, Science, 276, 786–788,
https://doi.org/10.1126/science.276.5313.786, 1997.
Jury, M. R., Valentine, H. R., and Lutjeharms, J. R.: Influence of the Agulhas
Current on summer rainfall along the southeast coast of South Africa,
J. Appl. Meteorol., 32, 1282–1287,
https://doi.org/10.1175/1520-0450(1993)032<1282:IOTACO>2.0.CO;2,
1993.
Kersberg, H.: Beiheft zu Afrika-Kartenwerk Serie S: Südafrika
(Moçambique, Swaziland, Republik Südafrika), Bl. 7,
Vegetationsgeographie, Gebrüder Bornträger, Berlin, Germany, 182 pp., 1996.
Köhler, E. and Brückner, P.: De Pollenmorphologie der afrikanischen
Buxus- und Notobuxus-Arten (Buxaceae) und ihre systemstische Bedeutung, Grana, 21, 71–82,
https://doi.org/10.1080/00173138209427683, 1982.
Köhler, E. and Brückner, P.: The genus Buxus (Buxaceae): aspects of its
differentiation in space and time, Plant Syst. Evol., 162,
267–283, https://doi.org/10.1007/978-3-7091-3972-1_14, 1989.
Kotze, D. and O'Connor, T. G.: Vegetation variation within and among
palustrine wetlands along an altitudinal gradient in KwaZulu-Natal, South
Africa, Plant Ecol., 146, 77–96, https://doi.org/10.1023/A:1009812300843, 2000.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20, 1–17, https://doi.org/10.1029/2004PA001071, 2005.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T. F.: High-resolution carbon dioxide concentration record
650 000–800 000 years before present, Nature, 453, 379–382,
https://doi.org/10.1038/nature06949, 2008.
Lyu, A., Lu, H., Zeng, L., Zhang, H., Zhang, E., and Yi, S.: Vegetation
variation of loess deposits in the southeastern Inner Mongolia, NE China
over the past ∼1.08 million years, J. Asian Earth Sci.,
155, 174–179, https://doi.org/10.1016/j.jseaes.2017.11.013, 2018.
Maher Jr., L. J.: Nomograms for computing 0.95 confidence limits of pollen
data, Rev. Palaeobot. Palyno., 13, 85–93,
https://doi.org/10.1016/0034-6667(72)90038-3, 1972.
Maher Jr., L. J.: Statistics for microfossil concentration measurements
employing samples spiked with marker grains, Rev. Palaeobot. Palyno., 32, 153–191, https://doi.org/10.1016/0034-6667(81)90002-6, 1981.
Marchant, R., Taylor, D., and Hamilton, A: Late Pleistocene and Holocene
history at Mubwindi Swamp, Southwest Uganda, Quaternary Res., 47,
316–328, https://doi.org/10.1006/qres.1997.1887, 1997.
Martin, A. K.: The influence of the Agulhas Current on the physiographic
development of the northernmost Natal Valley (S.W. Indian Ocean), Mar.
Geol., 39, 259–276, https://doi.org/10.1016/0025-3227(81)90075-X, 1981.
Miller, S. M. and Gosling, W. D.: Quaternary forest associations in lowland
tropical West Africa, Quaternary Sci. Rev., 84, 7–25,
https://doi.org/10.1016/j.quascirev.2013.10.027, 2014.
Mucina, L. and Rutherford, M. C.: The vegetation of South Africa, Lesotho and
Swaziland.: Strelitzia, 19. South African National Biodiversity Institute,
Pretoria, South Africa, 807 pp., 2006.
Mudelsee, M. and Stattegger, K.: Exploring the structure of the
mid-Pleistocene revolution with advanced methods of time-series analysis,
Geol. Rundsch., 86, 499–511, https://doi.org/10.1007/s005310050157, 1997.
Owen, R. B., Muiruri, V. M., Lowenstein, T. K., Renaut, R. W., Rabideaux, N.,
Luo, S., Deino, A. L., Sier, M. J., Dupont-Nivet, G., Mcnulty, E. P., Leet, K.,
Cohen, A., Campisano, C., Deocampo, D., Shen, C.-C., Billingsley, A., and
Mbuthia, A.: Progressive aridification in East Africa over the last half
million years and implications for human evolution, P. Natl. Acad. Sci. USA, 115, 11174–11179, https://doi.org/10.1073/pnas.1801357115, 2018.
Paillard, D.: The Plio-Pleistocene climatic evolution as a consequence of orbital forcing on the carbon cycle, Clim. Past, 13, 1259–1267, https://doi.org/10.5194/cp-13-1259-2017, 2017.
Past Interglacials Working Group Of Pages: Interglacials of the last 800 000
years, Rev. Geophys., 54, 162–219, https://doi.org/10.1002/2015RG000482, 2016.
Prentice, I. C. and Harrison, S. P.: Ecosystem effects of CO2 concentration: evidence from past climates, Clim. Past, 5, 297–307, https://doi.org/10.5194/cp-5-297-2009, 2009.
Prentice, I. C., Cleator, S. F., Huang, Y. H., Harrison, S. P., and Roulstone, I.:
Reconstructing ice-age palaeoclimates: Quantifying low-CO2 effects on
plants, Global Planet. Change, 149, 166–176,
https://doi.org/10.1016/j.gloplacha.2016.12.012, 2017.
Reason, C. J. C. and Mulenga, H.: Relationships between South African rainfall
and SST anomalies in the Southwest Indian Ocean, Int. J.
Climatol., 19, 1651–1673,
https://doi.org/10.1002/(SICI)1097-0088(199912)19:15<1651::AID-JOC439>3.0.CO;2-U, 1999.
Sage, J. P.: The evolution of C4 Photosynthesis, New Phytol., 161,
341–370, https://doi.org/10.1111/j.1469-8137.2004.00974.x, 2004.
Schefuß, E., Kuhlmann, H., Mollenhauer, G., Prange, M., and Pätzold,
J.: Forcing of wet phases in southeast Africa over the past 17 000 years,
Nature, 480, 509–512, https://doi.org/10.1038/nature10685, 2011.
Scholz, C. A., Cohen, A. S., and Johson, T. C.: Southern hemisphere tropical
climate over the past 145 ka: Results of the Lake Malawi Scientific Drilling
Project, East Africa (preface to special issue): Palaeogeogr.
Palaeocl., 303, 1–2,
https://doi.org/10.1016/j.palaeo.2011.01.001, 2011.
Schüler, L. and Hemp, A.: Atlas of pollen and spores and their parent
taxa of Mt Kilimanjaro and tropical East Africa, Quatern. Int.,
425, 301–386, https://doi.org/10.1016/j.quaint.2016.07.038, 2016.
Scott, L.: Late Quaternary fossil pollen grains from the Transvaal, South
Africa, Rev. Palaeobot. Palynol., 36, 241–278,
https://doi.org/10.1016/0034-6667(82)90022-7, 1982.
Scott, L.: Vegetation history and climate in the Savanna biome South Africa
since 190 000 ka: a comparison of pollen data from the Tswaing Crater (the
Pretoria Saltpan) and Wonderkrater, Quatern. Int., 57–58,
215–223, https://doi.org/10.1016/S1040-6182(98)00062-7, 1999.
Scott, L.: Grassland development under glacial and interglacial conditions in
southern Africa: review of pollen, phytolith and isotope evidence,
Palaeogeogr. Palaeocl., 177, 47–57,
https://doi.org/10.1016/S0031-0182(01)00351-0, 2002.
Scott, L. and Thackeray, J. F.: Multivariate analysis of late Pleistocene and
Holocene pollen spectra from Wonderkrater, Transvaal, South Africa: S.
Afr. J. Sci., 83, 93–98, 1987.
Simon, M. H., Ziegler, M., Bosmans, J., Barker, S., Reason, C. J. C., and Hall, I. R.: Eastern South African hydroclimate over the past 270 000 years,
Sci. Rep.-UK, 5, 1–10, https://doi.org/10.1038/srep18153, 2015.
Singarayer, J. S. and Burrough, S. L.: Interhemispheric dynamics of the African
rainbelt during the late Quaternary, Quaternary Sci. Rev., 124, 48–67,
https://doi.org/10.1016/j.quascirev.2015.06.021, 2015.
Stock, W. D., Chuba, D. K., and Verboom, G. A.: Distribution of South African C3
and C4 species of Cyperaceae in relation to climate and phylogeny, Austral
Ecol., 29, 313–319, https://doi.org/10.1111/j.1442-9993.2004.01368.x, 2004.
Sun, Y., An, Z., Clemens, S. C., Bloemendal, J., and Vandenberghe, J.: Seven
million years of wind and precipitation variability on the Chinese Loess
Plateau, Earth Planet. Sc. Lett., 297, 525–535,
https://doi.org/10.1016/j.epsl.2010.07.004, 2010.
Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B., and Doney, S. C.: Changes in
Arctic vegetation amplify high-latitude warming through the greenhouse
effect, P. Natl. Acad. Sci. USA, 107, 1295–1300, https://doi.org/10.1073/pnas.0913846107, 2010.
Torres, V., Hooghiemstra, H., Lourens, L., and Tzedakis, P. C.: Astronomical
tuning of long pollen records reveals the dynamic history of montane biomes
and lake levels in the tropical high Andes during the Quaternary, Quaternary
Sci. Rev., 63, 59–72, https://doi.org/10.1016/j.quascirev.2012.11.004, 2013.
Tyson, P. D. and Preston-Whyte, R. A.: The weather and climate of Southern
Africa, Oxford University Press, Cape Town, South Africa, 396 pp., 2000.
Tzedakis, P. C., Hooghiemstra, H., and Pälike, H.: The last 1.35 million
years at Tenaghi Philippon: revised chronostratigraphy and long-term
vegetation trends, Quaternary Sci. Rev., 25, 3416–3430,
https://doi.org/10.1016/j.quascirev.2006.09.002, 2006.
Tzedakis, P. C., Raynaud, D., Mcmanus, J. F., Berger, A., Brovkin, V., and
Kiefer, T.: Interglacial diversity, Nat. Geosci., 2, 753–755,
https://doi.org/10.1038/ngeo660, 2009.
Vincens, A., Lézine, A.-M., Buchet, G., Lewden, D., Le Thomas, A., and
Contributors: African pollen database inventory of tree and shrub pollen
types, Rev. Palaeobot. Palyno., 145, 135–141,
https://doi.org/10.1016/j.revpalbo.2006.09.004, 2007.
Weltje, G. J.: End-member modeling of compositional data:
numerical-statistical algorithms for solving the explicit mixing problem,
Math. Geol., 29, 503–549, https://doi.org/10.1007/BF02775085, 1997.
White, F.: The vegetation of Africa, Natural Rescourses Research, 20. UNESCO, Paris, France,
356 pp., 3maps, 1983.
Wu, H., Guiot, J., Brewer, S., and Guo, Z.: Climatic changes in Eurasia and
Africa at the last glacial maximum and mid-Holocene: reconstruction from
pollen data using inverse vegetation modelling, Clim. Dynam., 29,
211–229, https://doi.org/10.1007/s00382-007-0231-3, 2007.
Yin, Q. Z.: Insolation-induced mid-Brunhes transition in Southern Ocean
ventilation and deep-ocean temperature, Nature, 494, 222–225,
https://doi.org/10.1038/nature11790, 2013.
Yin, Q. Z. and Berger, A.: Insolation and CO2 contribution to the
interglacial climate before and after the Mid-Brunhes Event, Nat.
Geosci., 3, 243–246, https://doi.org/10.1038/ngeo771, 2010.
Yin, Q. Z. and Berger, A.: Individual contribution of insolation and CO2
to the interglacial climates of the past 800,000 years, Clim. Dynam.,
38, 709–724, https://doi.org/10.1007/s00382-011-1013-5, 2012.
Short summary
Multiproxy study of marine sediments off the Limpopo River mouth spanning the Late Pleistocene reveals the impact of atmospheric carbon dioxide on the development of the vegetation of southeast Africa and indicates changes in the interglacial vegetation before and after the Mid-Brunhes Event (430 ka).
Multiproxy study of marine sediments off the Limpopo River mouth spanning the Late Pleistocene...