Articles | Volume 14, issue 6
https://doi.org/10.5194/cp-14-887-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-887-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Arctic warming induced by the Laurentide Ice Sheet topography
Johan Liakka
CORRESPONDING AUTHOR
Nansen Environmental and Remote Sensing Center, Bjerknes Centre for Climate Research, Thormøhlensgate 47, Bergen 5006, Norway
Marcus Lofverstrom
National Center for Atmospheric Research, 3090 Center Green Dr., 80301, Boulder, Colorado, USA
Related authors
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Christian Werner, Manuel Schmid, Todd A. Ehlers, Juan Pablo Fuentes-Espoz, Jörg Steinkamp, Matthew Forrest, Johan Liakka, Antonio Maldonado, and Thomas Hickler
Earth Surf. Dynam., 6, 829–858, https://doi.org/10.5194/esurf-6-829-2018, https://doi.org/10.5194/esurf-6-829-2018, 2018
Short summary
Short summary
Vegetation is crucial for modulating rates of denudation and landscape evolution, and is directly influenced by climate conditions and atmospheric CO2 concentrations. Using transient climate data and a state-of-the-art dynamic vegetation model we simulate the vegetation composition and cover from the Last Glacial Maximum to present along the Coastal Cordillera of Chile. In part 2 we assess the landscape response to transient climate and vegetation cover using a landscape evolution model.
Marcus Lofverstrom and Johan Liakka
The Cryosphere, 12, 1499–1510, https://doi.org/10.5194/tc-12-1499-2018, https://doi.org/10.5194/tc-12-1499-2018, 2018
Johan Liakka, Marcus Löfverström, and Florence Colleoni
Clim. Past, 12, 1225–1241, https://doi.org/10.5194/cp-12-1225-2016, https://doi.org/10.5194/cp-12-1225-2016, 2016
Short summary
Short summary
The present study explains why Scandinavia was ice-covered 20 000 years ago, while Siberia was mostly ice free. The authors show that the ice-sheet extent in Eurasia was to a large extent controlled by atmospheric circulation changes due to the ice sheet in North America. As the North American ice sheet becomes larger, it induces a cooling in Europe and a warming in Siberia: this climatic pattern forces the Eurasian ice sheet to migrate westward until it is centered over Scandinavia.
J. Liakka, J. T. Eronen, H. Tang, and F. T. Portmann
Clim. Past Discuss., https://doi.org/10.5194/cpd-10-4535-2014, https://doi.org/10.5194/cpd-10-4535-2014, 2014
Preprint withdrawn
Sarah L. Bradley, Raymond Sellevold, Michele Petrini, Miren Vizcaino, Sotiria Georgiou, Jiang Zhu, Bette L. Otto-Bliesner, and Marcus Lofverstrom
Clim. Past, 20, 211–235, https://doi.org/10.5194/cp-20-211-2024, https://doi.org/10.5194/cp-20-211-2024, 2024
Short summary
Short summary
The Last Glacial Maximum (LGM) was the most recent period with large ice sheets in Europe and North America. We provide a detailed analysis of surface mass and energy components for two time periods that bracket the LGM: 26 and 21 ka BP. We use an earth system model which has been adopted for modern ice sheets. We find that all Northern Hemisphere ice sheets have a positive surface mass balance apart from the British and Irish ice sheets and the North American ice sheet complex.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Kira Rehfeld, Raphaël Hébert, Juan M. Lora, Marcus Lofverstrom, and Chris M. Brierley
Earth Syst. Dynam., 11, 447–468, https://doi.org/10.5194/esd-11-447-2020, https://doi.org/10.5194/esd-11-447-2020, 2020
Short summary
Short summary
Under continued anthropogenic greenhouse gas emissions, it is likely that global mean surface temperature will continue to increase. Little is known about changes in climate variability. We analyze surface climate variability and compare it to mean change in colder- and warmer-than-present climate model simulations. In most locations, but not on subtropical land, simulated temperature variability up to decadal timescales decreases with mean temperature, and precipitation variability increases.
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Christian Werner, Manuel Schmid, Todd A. Ehlers, Juan Pablo Fuentes-Espoz, Jörg Steinkamp, Matthew Forrest, Johan Liakka, Antonio Maldonado, and Thomas Hickler
Earth Surf. Dynam., 6, 829–858, https://doi.org/10.5194/esurf-6-829-2018, https://doi.org/10.5194/esurf-6-829-2018, 2018
Short summary
Short summary
Vegetation is crucial for modulating rates of denudation and landscape evolution, and is directly influenced by climate conditions and atmospheric CO2 concentrations. Using transient climate data and a state-of-the-art dynamic vegetation model we simulate the vegetation composition and cover from the Last Glacial Maximum to present along the Coastal Cordillera of Chile. In part 2 we assess the landscape response to transient climate and vegetation cover using a landscape evolution model.
Marcus Lofverstrom and Johan Liakka
The Cryosphere, 12, 1499–1510, https://doi.org/10.5194/tc-12-1499-2018, https://doi.org/10.5194/tc-12-1499-2018, 2018
Johan Liakka, Marcus Löfverström, and Florence Colleoni
Clim. Past, 12, 1225–1241, https://doi.org/10.5194/cp-12-1225-2016, https://doi.org/10.5194/cp-12-1225-2016, 2016
Short summary
Short summary
The present study explains why Scandinavia was ice-covered 20 000 years ago, while Siberia was mostly ice free. The authors show that the ice-sheet extent in Eurasia was to a large extent controlled by atmospheric circulation changes due to the ice sheet in North America. As the North American ice sheet becomes larger, it induces a cooling in Europe and a warming in Siberia: this climatic pattern forces the Eurasian ice sheet to migrate westward until it is centered over Scandinavia.
J. Liakka, J. T. Eronen, H. Tang, and F. T. Portmann
Clim. Past Discuss., https://doi.org/10.5194/cpd-10-4535-2014, https://doi.org/10.5194/cpd-10-4535-2014, 2014
Preprint withdrawn
M. Löfverström, R. Caballero, J. Nilsson, and J. Kleman
Clim. Past, 10, 1453–1471, https://doi.org/10.5194/cp-10-1453-2014, https://doi.org/10.5194/cp-10-1453-2014, 2014
Related subject area
Subject: Atmospheric Dynamics | Archive: Modelling only | Timescale: Milankovitch
Extratropical cyclones over the North Atlantic and western Europe during the Last Glacial Maximum and implications for proxy interpretation
The impact of the North American glacial topography on the evolution of the Eurasian ice sheet over the last glacial cycle
Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle
A critical humidity threshold for monsoon transitions
Joaquim G. Pinto and Patrick Ludwig
Clim. Past, 16, 611–626, https://doi.org/10.5194/cp-16-611-2020, https://doi.org/10.5194/cp-16-611-2020, 2020
Short summary
Short summary
The statistics and characteristics of cyclones over the North Atlantic and Europe are analysed for Last Glacial Maximum (LGM) climate conditions. LGM extreme cyclones were more frequent and characterised by less precipitation and stronger wind speeds than pre-industrial analogues. These results agree with the view of a colder and drier Europe during LGM, with little vegetation and affected by frequent dust storms, leading to the buildup of thick loess deposits in Europe.
Johan Liakka, Marcus Löfverström, and Florence Colleoni
Clim. Past, 12, 1225–1241, https://doi.org/10.5194/cp-12-1225-2016, https://doi.org/10.5194/cp-12-1225-2016, 2016
Short summary
Short summary
The present study explains why Scandinavia was ice-covered 20 000 years ago, while Siberia was mostly ice free. The authors show that the ice-sheet extent in Eurasia was to a large extent controlled by atmospheric circulation changes due to the ice sheet in North America. As the North American ice sheet becomes larger, it induces a cooling in Europe and a warming in Siberia: this climatic pattern forces the Eurasian ice sheet to migrate westward until it is centered over Scandinavia.
M. Löfverström, R. Caballero, J. Nilsson, and J. Kleman
Clim. Past, 10, 1453–1471, https://doi.org/10.5194/cp-10-1453-2014, https://doi.org/10.5194/cp-10-1453-2014, 2014
J. Schewe, A. Levermann, and H. Cheng
Clim. Past, 8, 535–544, https://doi.org/10.5194/cp-8-535-2012, https://doi.org/10.5194/cp-8-535-2012, 2012
Cited articles
Abe-Ouchi, A., Saito, F., Kageyama, M., Braconnot, P., Harrison, S. P.,
Lambeck, K., Otto-Bliesner, B. L., Peltier, W. R., Tarasov, L., Peterschmitt,
J.-Y., and Takahashi, K.: Ice-sheet configuration in the CMIP5/PMIP3
Last Glacial Maximum experiments, Geosci. Model Dev., 8,
3621–3637, https://doi.org/10.5194/gmd-8-3621-2015, 2015. a, b
Alexeev, V., Langen, P. L., and Bates, J. R.: Polar amplification of surface
warming on an aquaplanet in “ghost forcing” experiments without sea ice
feedbacks, Clim. Dynam., 24, 655–666, 2005. a
Bitz, C. M., Shell, K., Gent, P., Bailey, D., Danabasoglu, G., Armour, K.,
Holland, M., and Kiehl, J.: Climate sensitivity of the community climate
system model, version 4, J. Clim., 25, 3053–3070, 2012. a
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt,
J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt,
C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O.,
Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.:
Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial
Maximum – Part 1: experiments and large-scale features, Clim. Past, 3,
261–277, https://doi.org/10.5194/cp-3-261-2007, 2007. a
Braithwaite, R. J. and Olesen, O. B.: Calculation of glacier ablation from air
temperature, West Greenland, Glac. Quat. G., 6,
219–233, 1989. a
Calov, R. and Greve, R.: A semi-analytical solution for the positive degree-day
model with stochastic temperature variations, J. Glaciol., 51,
173–175, 2005. a
Clark, P. U. and Mix, A. C.: Ice sheets and sea level of the Last Glacial
Maximum, Quaternary Sci. Rev., 21, 1–7, 2002. a
Colleoni, F., Kirchner, N., Niessen, F., Quiquet, A., and Liakka, J.: An East
Siberian ice shelf during the Late Pleistocene glaciations: Numerical
reconstructions, Quaternary Sci. Rev., 147, 148–163,
https://doi.org/10.1016/j.quascirev.2015.12.023, 2016a. a
Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S.,
Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D., and Smith, R. D.:
The community climate system model version 3 (CCSM3), J. Clim., 19,
2122–2143, 2006a. a
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R.,
Williamson, D. L., Briegleb, B. P., Bitz, C. M., Lin, S.-J., and Zhang, M.:
The formulation and atmospheric simulation of the Community Atmosphere
Model: CAM3, J. Clim., 19, 2144–2161, https://doi.org/10.1175/jcli3760.1,
2006b. a
Donohoe, A. and Battisti, D. S.: Causes of reduced North Atlantic storm
activity in a CAM3 simulation of the Last Glacial Maximum, J.
Clim., 22, 4793–4808, 2009. a
Dyke, A., Andrews, J., Clark, P., England, J., Miller, G., Shaw, J., and
Veillette, J.: The Laurentide and Innuitian ice sheets during the Last
Glacial Maximum, Quaternary Sci. Rev., 21, 9–31,
https://doi.org/10.1016/s0277-3791(01)00095-6, 2002. a
Eisenman, I., Bitz, C. M., and Tziperman, E.: Rain driven by receding ice
sheets as a cause of past climate change, Paleoceanogr.
Paleoclimatol., 24, PA4209, https://doi.org/10.1029/2009PA001778, 2009. a, b, c
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins,
W. J., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, É., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.: Evaluation of
climate models, in: climate change 2013: the physical science basis.
Contribution of working group I to the fifth assessment report of the
intergovernmental panel on climate change, Climate Change, 5, 741–866, 2013. a
Fyke, J., Sergienko, O., Löfverström, M., Price, S., and Lenaerts, J.:
An overview of interactions and feedbacks between ice sheets and the Earth
system, Rev. Geophys., 56, https://doi.org/10.1029/2018RG000600, 2018. a
Gong, X., Zhang, X., Lohmann, G., Wei, W., Zhang, X., and Pfeiffer, M.: Higher
Laurentide and Greenland ice sheets strengthen the North Atlantic ocean
circulation, Clim. Dynam., 45, 139–150,
https://doi.org/10.1007/s00382-015-2502-8, 2015. a, b
Gregoire, L. J., Ivanovic, R. F., Maycock, A. C., Valdes, P. J., and Stevenson,
S.: Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre
circulation and climate, Clim. Dynam., https://doi.org/10.1007/s00382-018-4111-9, 2018. a, b, c
Greve, R.: Application of a polythermal three-dimensional ice sheet model to
the Greenland ice sheet: response to steady-state and transient climate
scenarios, J. Clim., 10, 901–918, 1997. a
Hall, N. M. J., Dong, B., and Valdes, P. J.: Atmospheric equilibrium,
instability and energy transport at the last glacial maximum, Clim.
Dynam., 12, 497–511, https://doi.org/10.1007/s003820050123, 1996. a
Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and climate response,
J. Geophys. Res.-Atmos., 102, 6831–6864, 1997. a
He, F.: Simulating transient climate evolution of the last deglaciation with
CCSM3, Ph.D. thesis, University of Wisconsin-Madison, 2011. a
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to
global warming, J. Clim., 19, 5686–5699, 2006. a
Herrington, A. R. and Poulsen, C. J.: Terminating the Last Interglacial: The
role of ice sheet–climate feedbacks in a GCM asynchronously coupled to an
ice sheet model, J. Clim., 25, 1871–1882, 2011. a
Hewitt, C., Stouffer, R., Broccoli, A., Mitchell, J., and Valdes, P. J.: The
effect of ocean dynamics in a coupled GCM simulation of the Last Glacial
Maximum, Clim. Dynam., 20, 203–218, 2003. a
Jakobsson, M., Nilsson, J., Anderson, L., Backman, J., Björk, G., Cronin,
T. M., Kirchner, N., Koshurnikov, A., Mayer, L., Noormets, R., O'Regan, M.,
Stranne, C., Ananiev, R., Macho, N. B., Cherniykh, D., Coxall, H., Eriksson,
B., Flodén, T., Gemery, L., Örjan Gustafsson, Jerram, K., Johansson,
C., Khortov, A., Mohammad, R., and Semiletov, I.: Evidence for an ice shelf
covering the central Arctic Ocean during the penultimate glaciation, Nat.
Commun., 7, 10365, https://doi.org/10.1038/ncomms10365, 2016. a, b
Justino, F., Timmermann, A., Merkel, U., and Souza, E. P.: Synoptic
Reorganization of Atmospheric Flow during the Last Glacial Maximum, J.
Clim., 18, 2826–2846, https://doi.org/10.1175/jcli3403.1, 2005. a
Justino, F., Timmermann, A., Merkel, U., and Peltier, W. R.: An Initial
Intercomparison of Atmospheric and Oceanic Climatology for the ICE-5G and
ICE-4G Models of LGM Paleotopography, J. Clim., 19, 3–14,
https://doi.org/10.1175/jcli3603.1, 2006. a, b
Kageyama, M. and Valdes, P. J.: Impact of the North American ice-sheet
orography on the Last Glacial Maximum eddies and snowfall, Geophys.
Res. Lett., 27, 1515–1518, https://doi.org/10.1029/1999gl011274, 2000. a, b, c
Kageyama, M., Albani, S., Braconnot, P., Harrison, S. P., Hopcroft, P. O.,
Ivanovic, R. F., Lambert, F., Marti, O., Peltier, W. R., Peterschmitt, J.-Y.,
Roche, D. M., Tarasov, L., Zhang, X., Brady, E. C., Haywood, A. M., LeGrande,
A. N., Lunt, D. J., Mahowald, N. M., Mikolajewicz, U., Nisancioglu, K. H.,
Otto-Bliesner, B. L., Renssen, H., Tomas, R. A., Zhang, Q., Abe-Ouchi, A.,
Bartlein, P. J., Cao, J., Li, Q., Lohmann, G., Ohgaito, R., Shi, X., Volodin,
E., Yoshida, K., Zhang, X., and Zheng, W.: The PMIP4 contribution to CMIP6 –
Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last
Glacial Maximum experiments and PMIP4 sensitivity experiments, Geosci. Model
Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, 2017. a, b, c
Klockmann, M., Mikolajewicz, U., and Marotzke, J.: The effect of greenhouse
gas concentrations and ice sheets on the glacial AMOC in a coupled climate
model, Clim. Past, 12, 1829–1846, https://doi.org/10.5194/cp-12-1829-2016,
2016. a, b
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level and
global ice volumes from the Last Glacial Maximum to the Holocene, P. Natl. Acad. Sci. USA, 111, 15296–15303, 2014. a
Langen, P. L. and Vinther, B. M.: Response in atmospheric circulation and
sources of Greenland precipitation to glacial boundary conditions, Clim.
Dynam., 32, 1035–1054, https://doi.org/10.1007/s00382-008-0438-y, 2008. a
Liakka, J.: Interactions between topographically and thermally forced
stationary waves: implications for ice-sheet evolution, Tellus A, 64,
11088, https://doi.org/10.3402/tellusa.v64i0.11088, 2012. a
Liakka, J. and Nilsson, J.: The impact of topographically forced stationary
waves on local ice-sheet climate, J. Glaciol., 56, 534–544,
https://doi.org/10.3189/002214310792447824, 2010. a
Liakka, J., Nilsson, J., and Löfverström, M.: Interactions between
stationary waves and ice sheets: linear versus nonlinear atmospheric
response, Clim. Dynam., 38, 1249–1262, https://doi.org/10.1007/s00382-011-1004-6,
2011. a, b
Lindeman, M. and Oerlemans, J.: Northern hemisphere ice sheets and planetary
waves: A strong feedback mechanism, J. Climatol., 7, 109–117,
https://doi.org/10.1002/joc.3370070202, 1987. a
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U.,
Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient Simulation of Last
Deglaciation with a New Mechanism for Bolling-Allerod Warming, Science, 325,
310–314, https://doi.org/10.1126/science.1171041, 2009. a
Löfverström, M. and Liakka, J.: On the limited ice intrusion in Alaska
at the LGM, Geophys. Res. Lett., 43, 11030–11038,
https://doi.org/10.1002/2016gl071012, 2016. a, b
Lofverstrom, M. and Liakka, J.: The influence of atmospheric grid resolution
in a climate model-forced ice sheet simulation, The Cryosphere, 12,
1499–1510, https://doi.org/10.5194/tc-12-1499-2018, 2018. a
Löfverström, M. and Lora, J. M.: Abrupt regime shifts in the North
Atlantic atmospheric circulation over the last deglaciation, Geophys.
Res. Lett., 44, 8047–8055, https://doi.org/10.1002/2017GL074274, 2017. a, b
Löfverström, M., Liakka, J., and Kleman, J.: The North American
Cordillera – An impediment to growing the continent-wide Laurentide ice
sheet, J. Clim., 28, 9433–9450, https://doi.org/10.1175/jcli-d-15-0044.1, 2015. a
Löfverström, M., Caballero, R., Nilsson, J., and Messori, G.:
Stationary Wave Reflection as a Mechanism for Zonalizing the Atlantic Winter
Jet at the LGM, J. Atmos. Sci., 73, 3329–3342,
https://doi.org/10.1175/jas-d-15-0295.1, 2016. a, b, c
Margo Project Members, Waelbroeck, C., Paul, A., Kucera, M.,
Rosell-Melé, A., Weinelt, M., Schneider, R., Mix, A. C.,
Abelmann, A., Armand, L., Bard, E., Barker, S., Barrows, T. T.,
Benway, H., Cacho, I., Chen, M.-T., Cortijo, E., Crosta, X., de
Vernal, A., Dokken, T., Duprat, J., Elderfield, H., Eynaud, F.,
Gersonde, R., Hayes, A., Henry, M., Hillaire-Marcel, C., Huang,
C.-C., Jansen, E., Juggins, S., Kallel, N., Kiefer, T., Kienast,
M., Labeyrie, L., Leclaire, H., Londeix, L., Mangin, S.,
Matthiessen, J., Marret, F., Meland, M., Morey, A. E., Mulitza, S.,
Pflaumann, U., Pisias, N. G., Radi, T., Rochon, A., Rohling, E. J.,
Sbaffi, L., Schäfer-Neth, C., Solignac, S., Spero, H.,
Tachikawa, K., and Turon, J.-L.: Constraints on the magnitude and
patterns of ocean cooling at the Last Glacial Maximum, Nat. Geosci., 2,
127–132, https://doi.org/10.1038/ngeo411, 2009. a, b
Murakami, S., Ohgaito, R., Abe-Ouchi, A., Crucifix, M., and Otto-Bliesner,
B. L.: Global-Scale Energy and Freshwater Balance in Glacial Climate: A
Comparison of Three PMIP2 LGM Simulations, J. Clim., 21, 5008–5033,
https://doi.org/10.1175/2008jcli2104.1, 2008. a, b, c, d
Niessen, F., Hong, J. K., Hegewald, A., Matthiessen, J., Stein, R., Kim, H.,
Kim, S., Jensen, L., Jokat, W., Nam, S.-I., and Kang, S.-H.: Repeated
Pleistocene glaciation of the East Siberian continental margin, Nat.
Geosci., 6, 842–846, https://doi.org/10.1038/ngeo1904, 2013. a
Nilsson, J., Jakobsson, M., Borstad, C., Kirchner, N., Björk, G.,
Pierrehumbert, R. T., and Stranne, C.: Ice-shelf damming in the glacial
Arctic Ocean: dynamical regimes of a basin-covering kilometre-thick ice
shelf, The Cryosphere, 11, 1745–1765,
https://doi.org/10.5194/tc-11-1745-2017, 2017. a
Oleson, K., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R., Dirmeyer, P.,
Hoffman, F., Houser, P., Levis, S., Niu, G.-Y., Thornton, P., Vertenstein, M.,
Yang, Z.-L., and Zeng, X.: Technical Description of the Community Land Model
(CLM),
NCAR Tech. Note NCAR/TN-461+STR, Natl. Cent. for Atmos. Res., Boulder,
Colorado, 2004. a
Pausata, F. S. R., Li, C., Wettstein, J. J., Kageyama, M., and Nisancioglu,
K. H.: The key role of topography in altering North Atlantic atmospheric
circulation during the last glacial period, Clim. Past, 7,
1089–1101, https://doi.org/10.5194/cp-7-1089-2011, 2011. a, b
Peltier, W.: Global glacial isostasy and the surface of the ice-age Earth: the
ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Pl. Sc., 32, 111–149,
https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004. a, b, c
Peltier, W. and Fairbanks, R. G.: Global glacial ice volume and Last Glacial
Maximum duration from an extended Barbados sea level record, Quaternary
Sci. Rev., 25, 3322–3337, 2006. a
Petit, J.-R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile,
I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M.,
Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L.,
Ritz, C., Saltzman, E., and Stievenard, M.: Climate and
atmospheric history of the past 420,000 years from the Vostok ice core,
Antarctica, Nature, 399, 429–436, 1999. a, b
Reeh, N.: Parameterization of melt rate and surface temperature on the
Greenland ice sheet, Polarforschung, 59, 113–128, 1991. a
Rivière, G., Berthou, S., Lapeyre, G., and Kageyama, M.: On the reduced
North Atlantic storminess during the last glacial period: the role of
topography in shaping synoptic eddies, J. Clim., 31, 1637–1652,
2018. a
Roe, G. H. and Lindzen, R. S.: The mutual interaction between
continental-scale ice sheets and atmospheric stationary waves, J. Clim.,
14, 1450–1465, https://doi.org/10.1175/1520-0442(2001)014<1450:TMIBCS>2.0.CO;2, 2001. a, b, c, d
Serreze, M. C., Barrett, A. P., Slater, A. G., Steele, M., Zhang, J., and
Trenberth, K. E.: The large-scale energy budget of the Arctic, J.
Geophys. Res.-Atmos., 112, D11122, https://doi.org/10.1029/2006JD008230, 2007. a, b, c, d
Shin, S.-I., Liu, Z., Otto-Bliesner, B., Brady, E., Kutzbach, J., and Harrison,
S.: A simulation of the Last Glacial Maximum climate using the NCAR-CCSM,
Clim. Dynam., 20, 127–151, 2003. a
Spahni, R., Chappellaz, J., Stocker, T. F., Loulergue, L.,
Hausammann, G., Kawamura, K., Flückiger, J., Schwander, J.,
Raynaud, D., Masson-Delmotte, V., and Jouzel, J.: Atmospheric Methane
and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores, Science,
310, 1317–1321, https://doi.org/10.1126/science.1120132, 2005. a, b
Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell,
J. A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen,
M., Hubberten, H. W., Ingólfsson, Ó., Jakobsson, M., Kjær, K. H.,
Larsen, E., Lokrantz, H., Lunkka, J. P., Lyså, A., Mangerud, J.,
Matiouchkov, A., Murray, A., Möller, P., Niessen, F., Nikolskaya, O.,
Polyak, L., Saarnisto, M., Siegert, C., Siegert, M. J., Spielhagen, R. F.,
and Stein, R.: Late Quaternary ice sheet history of northern Eurasia,
Quaternary Sci. Rev., 23, 1229–1271,
https://doi.org/10.1016/s0277-3791(03)00342-1, 2004. a, b
Ullman, D., LeGrande, A., Carlson, A., Anslow, F., and Licciardi, J.:
Assessing the impact of Laurentide Ice Sheet topography on glacial climate,
Clim. Past, 10, 487–507, https://doi.org/10.5194/cp-10-487-2014, 2014. a, b, c, d
Wekerle, C., Colleoni, F., Näslund, J.-O., Brandefelt, J., and Masina, S.:
Numerical reconstructions of the penultimate glacial maximum Northern
Hemisphere ice sheets: sensitivity to climate forcing and model parameters,
J. Glaciol., 62, 607–622, https://doi.org/10.1017/jog.2016.45, 2016. a, b
Short summary
This study highlights the counterintuitive result that continental ice sheets can also induce a warming, in particular in the Arctic region. The warming is explained by an increased northward heat transport, resulting from interactions between the atmospheric circulation and ice sheet topography. There is thus an important feedback between ice sheets and temperature, which can help to explain the differences in ice distribution between the Last Glacial Maximum and earlier glacial periods.
This study highlights the counterintuitive result that continental ice sheets can also induce a...