Articles | Volume 14, issue 4
https://doi.org/10.5194/cp-14-515-2018
https://doi.org/10.5194/cp-14-515-2018
Research article
 | Highlight paper
 | 
20 Apr 2018
Research article | Highlight paper |  | 20 Apr 2018

Moving beyond the age–depth model paradigm in deep-sea palaeoclimate archives: dual radiocarbon and stable isotope analysis on single foraminifera

Bryan C. Lougheed, Brett Metcalfe, Ulysses S. Ninnemann, and Lukas Wacker

Abstract. Late-glacial palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past rapid changes in ocean chemistry. Unfortunately, only a small proportion of the ocean floor with sufficiently high sediment accumulation rate (SAR) is suitable for such reconstructions using the long-standing age–depth model approach. We employ ultra-small radiocarbon (14C) dating on single microscopic foraminifera to demonstrate that the long-standing age–depth model method conceals large age uncertainties caused by post-depositional sediment mixing, meaning that existing studies may underestimate total geochronological error. We find that the age–depth distribution of our 14C-dated single foraminifera is in good agreement with existing bioturbation models only after one takes the possibility of Zoophycos burrowing into account. To overcome the problems associated with the age–depth paradigm, we use the first ever dual 14C and stable isotope (δ18O and δ13C) analysis on single microscopic foraminifera to produce a palaeoclimate time series independent of the age–depth paradigm. This new state of the art essentially decouples single foraminifera from the age–depth paradigm to provide multiple floating, temporal snapshots of ocean chemistry, thus allowing for the successful extraction of temporally accurate palaeoclimate data from low-SAR deep-sea archives. This new method can address large geographical gaps in late-glacial benthic palaeoceanographic reconstructions by opening up vast areas of previously disregarded, low-SAR deep-sea archives to research, which will lead to an improved understanding of the global interaction between oceans and climate.

Download
Short summary
Palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past rapid climate change, but only a small proportion of the ocean is suitable for such reconstructions using the existing state of the art, i.e. the age–depth approach. We use dual radiocarbon (14C) and stable isotope analysis on single foraminifera to bypass the long-standing age–depth approach, thus facilitating past ocean chemistry reconstructions from vast, previously untapped ocean areas.