Articles | Volume 14, issue 8
https://doi.org/10.5194/cp-14-1147-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-1147-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mid-Cretaceous paleoenvironmental changes in the western Tethys
Dipartimento di Scienze della Terra “A. Desio”, Università degli
Studi di Milano, 20133 Milan, Italy
Elisabetta Erba
Dipartimento di Scienze della Terra “A. Desio”, Università degli
Studi di Milano, 20133 Milan, Italy
Related authors
Giulia Faucher, Linn Hoffmann, Lennart T. Bach, Cinzia Bottini, Elisabetta Erba, and Ulf Riebesell
Biogeosciences, 14, 3603–3613, https://doi.org/10.5194/bg-14-3603-2017, https://doi.org/10.5194/bg-14-3603-2017, 2017
Short summary
Short summary
The main goal of this study was to understand if, similarly to the fossil record, high quantities of toxic metals induce coccolith dwarfism in coccolithophore species. We investigated, for the first time, the effects of trace metals on coccolithophore species other than E. huxleyi and on coccolith morphology and size. Our data show a species-specific sensitivity to trace metal concentration, allowing the recognition of the most-, intermediate- and least-tolerant taxa to trace metal enrichments.
C. Bottini, E. Erba, D. Tiraboschi, H. C. Jenkyns, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 11, 383–402, https://doi.org/10.5194/cp-11-383-2015, https://doi.org/10.5194/cp-11-383-2015, 2015
Elisabetta Erba, Gabriele Gambacorta, Stefano Visentin, Liyenne Cavalheiro, Dario Reolon, Giulia Faucher, and Matteo Pegoraro
Sci. Dril., 26, 17–27, https://doi.org/10.5194/sd-26-17-2019, https://doi.org/10.5194/sd-26-17-2019, 2019
Short summary
Short summary
The Toarcian Oceanic Anoxic Event (T-OAE) was cored at Colle di Sogno and Gajum in the Lombardy Basin (northern Italy), where pelagic successions guarantee a continuous record of this paleoenvironmental perturbation. The Sogno and Gajum cores recovered high-quality sediments deposited prior to, during, and after the T-OAE. Ongoing research is devoted to reconstructing the marine ecosystem dynamics and resilience under short- and long-term perturbations analogous to current global changes.
Giulia Faucher, Linn Hoffmann, Lennart T. Bach, Cinzia Bottini, Elisabetta Erba, and Ulf Riebesell
Biogeosciences, 14, 3603–3613, https://doi.org/10.5194/bg-14-3603-2017, https://doi.org/10.5194/bg-14-3603-2017, 2017
Short summary
Short summary
The main goal of this study was to understand if, similarly to the fossil record, high quantities of toxic metals induce coccolith dwarfism in coccolithophore species. We investigated, for the first time, the effects of trace metals on coccolithophore species other than E. huxleyi and on coccolith morphology and size. Our data show a species-specific sensitivity to trace metal concentration, allowing the recognition of the most-, intermediate- and least-tolerant taxa to trace metal enrichments.
C. Bottini, E. Erba, D. Tiraboschi, H. C. Jenkyns, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 11, 383–402, https://doi.org/10.5194/cp-11-383-2015, https://doi.org/10.5194/cp-11-383-2015, 2015
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Milankovitch
Accurately calibrated X-ray fluorescence core scanning (XRF-CS) record of Ti ∕ Al reveals Early Pleistocene aridity and humidity variability over North Africa and its close relationship to low-latitude insolation
The C32 alkane-1,15-diol as a proxy of late Quaternary riverine input in coastal margins
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Julie Lattaud, Denise Dorhout, Hartmut Schulz, Isla S. Castañeda, Enno Schefuß, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 13, 1049–1061, https://doi.org/10.5194/cp-13-1049-2017, https://doi.org/10.5194/cp-13-1049-2017, 2017
Short summary
Short summary
The study of past sedimentary records from coastal margins allows us to reconstruct variations in terrestrial input into the marine realm and to gain insight into continental climatic variability. The study of two sediment cores close to river mouths allowed us to show the potential of long-chain diols as riverine input proxy.
Cited articles
Ando, A., Kaiho, K., Kawahata, H., and Kakegawa, T.: Timing and magnitude of
early Aptian extreme warming: Unraveling primary δ18O variation
in indurated pelagic carbonates at Deep Sea Drilling Project Site 463,
central Pacific Ocean, Palaeogeogr. Palaeocl., 260, 463–476, 2008.
Beaudoin, B., M'Ban, E. P., Montanari, A., and Pinault, M.: Lithostratigraphie
haute résolution (< 20 ka) dans le Cénomanien du bassin
d'Ombrie-Marches (Italie), CR Acad. Sci.,
Paris, 323, Série Ila, 689–696, 1996.
Bellanca, A., Claps, M., Erba, E., Masetti, D., Neri, R., Premoli Silva, I.,
and Venezia, F.: Orbitally induced limestone/marlstone rhythms in the
Albian-Cenomanian Cismon section (Venetian region, northern Italy):
sedimentology, calcareous and siliceous plankton distribution, elemental and
isotope geochemistry, Palaeogeogr. Palaeocl., 126, 227–260, 1996.
Bodin, S., Meissner, P., Janssen, N. M., Steuber, T., and Mutterlose, J.: Large
igneous provinces and organic carbon burial: Controls on global temperature
and continental weathering during the Early Cretaceous, Global Planet.
Change, 133, 238–253, 2015.
Bonarelli, G.: Il territorio di Gubbio: Notizie geologiche, Tipografia
Economica, Roma, Italy, p. 38, 1891.
Bornemann, A., Pross, J., Reichelt, K., Herrle, J. O., Hemleben, C., and
Mutterlose, J.: Reconstruction of short term palaeoceanographic changes
during the formation of the Late Albian – Niveau Breistroffer – black shales
(Oceanic Anoxic Event 1d, SE France), J. Geol. Soc., 162, 623–639, 2005.
Bottini, C., Erba, E., Tiraboschi, D., Jenkyns, H. C., Schouten, S., and
Sinninghe Damsté, J. S.: Climate variability and ocean fertility during the
Aptian Stage, Clim. Past, 11, 383–402,
https://doi.org/10.5194/cp-11-383-2015, 2015.
Bralower, T. J.: Calcareous nannofossil biostratigraphy assemblages of the
Cenomanian-Turonian boundary interval: Implications for the origin and
timing of oceanic anoxia, Paleoceanography, 3, 275–316, 1988.
Bralower, T. J., Leckie, R. M., Sliter, W. V., Thierstein, H. R.: An
integrated Cretaceous timescale, in: Geochronology Time Scales and Global
Stratigraphic Correlation, edited by: Berggren, W. A., Kent, D. V., Aubry,
M.-P., and Hardenbol, J., SEPM Spec. P., 54, 65–79, 1995.
Browning, E. L. and Watkins, D. K.: Elevated primary productivity of
calcareous nannoplankton associated with ocean anoxic event 1b during the
Aptian/Albian transition (Early Cretaceous), Paleoceanography, 23, PA2213, https://doi.org/10.1029/2007PA001413, 2008.
Burnett, J. A.: Upper Cretaceous, in: Calcareous
Nannofossil Biostratigraphy, edited by: Bown, P. R., Chapman and Hall, London, UK, 132–199, 1998.
Clarke, L. J. and Jenkyns, H. C.: New oxygen isotope evidence for long-term
Cretaceous climatic change in the Southern Hemisphere, Geology, 27, 699–702,
1999.
Coccioni, R.: The Pialli Level from the latest Albian of the Umbria–Marche
Apennines (Italy), GeoItalia, 38 Forum FIST, 192–193, 2001.
Coccioni, R. and Galeotti, S.: The mid-Cenomanian Event: prelude to OAE 2,
Palaeogeogr. Palaeocl., 190, 427–440, 2003.
Coccioni, R., Nesci, O., Tramontana, M., Wezel, C. F., and Moretti, E.:
Descrizione di un livelloguida “Radiolaritico-Bituminoso-Ittiolitico” alla
base delle Marne a Fucoidi nell'Appennino Umbro-Marchigiano, Boll. Soc.
Geol. Ital., 106, 183–192, 1987.
Coccioni, R., Franchi, R., Nesci, O., Wezel, F. C., Battistini, F., and
Pallecchi, P.: Stratigraphy and mineralogy of the Selli Level (Early Aptian)
at the base of the Marne a Fucoidi in the Umbro-Marchean Apennines, Italy.
in: Cretaceous of the Western Tethys, edited by: Wiedmann, J., Proceedings 3rd
International Cretaceous Symposium, Tübingen 1987, E. Schweizerbart'sche
Verlagsbuchhandlung, Stuttgart, Germany, 563–584, 1989.
Coccioni, R., Erba, E., and Premoli Silva, I.: Barremian-Aptian calcareous
plankton biostratigraphy from the Gorgo a Cerbara section (Marche, Central
Italy) and implication for planktonic evolution, Cretaceous Res., 13, 517–537,
1992.
Dumitrescu, M., Brassell, S. C., Schouten, S., Hopmans, E. C., and Sinninghe
Damsté, J. S.: Instability in tropical Pacific seasurface temperatures
during the early Aptian, Geology, 34, 833–866, 2006.
Erba, E.: Aptian-Albian calcareous nannofossil biostratigraphy of the Scisti
a Fucoidi cored at Piobbico (central Italy), Riv. Ital. Paleontol.
S., 94, 249–284, 1988.
Erba, E.: Calcareous nannofossil distribution in pelagic rhythmic sediments
(Aptian-Albian Piobbico core, central Italy), Riv. Ital. Paleontol.
S., 97, 455–484, 1992a.
Erba, E.: Middle Cretaceous calcareous nannofossils from the Western Pacific
(ODP Leg 129), Evidence for paleoequatorial crossing, Proc. ODP Sci. Res.,
129, 189–201, 1992b.
Erba, E.: Nannofossils and superplumes: the early Aptian nannoconid crisis,
Paleoceanography, 9, 483–501, 1994.
Erba, E., Coccioni, R., and Premoli Silva, I.: The “Scisti a Fucoidi” in the
Umbria-Marche area: The Apecchiese road sections, Mem. Descr. Carta Geol.
Ital., 39, 146–164, 1989.
Erba, E., Castradori, D., Guasti, G., and Ripepe, M.: Calcareous nannofossil
and Milankovitch cycles: The example of the Albian Gault Clay Formation
(southern England), Palaeogeogr. Palaeocl., 93, 47–69,
1992.
Erba E., Duncan R. A., Bottini C., Tiraboschi D., Weissert H., Jenkyns H. C.,
and Malinverno, A.: Environmental Consequences of Ontong Java Plateau and
Kerguelen Plateau Volcanism, GSA Special Paper, 511, 271–303,
https://doi.org/10.1130/2015.2511(15), 2015.
Erbacher, J. and Thurow, J.: Influence of oceanic anoxic events on the
evolution of mid-Cretaceous radiolaria in the North Atlantic and western
Tethys, Mar. Micropaleontol., 30, 139–158, 1997.
Föllmi, K. B.: Early Cretaceous life, climate and anoxia, Cretaceous Res., 35,
230–257, 2012.
Friedrich, O., Erbacher, J., Wilson, P. A., Moriya, K., and Mutterlose, J.:
Paleoenvironmental changes across the Mid Cenomanian Event in the tropical
Atlantic Ocean (Demerara Rise, ODP Leg 207) inferred from benthic
foraminiferal assemblages, Mar. Micropaleontol., 71, 28–40, 2009.
Friedrich, O., Norris, R. D., and Erbacher, J.: Evolution of middle to Late
Cretaceous oceans – a 55 my record of Earth's temperature and carbon cycle,
Geology, 40, 107–110, 2012.
Galeotti, S., Sprovieni, M., Coccioni, R., Bellanca, A., Neri, R.: Orbitally
modulated black shale deposition in the upper Albian Amadeus Segment
(central Italy): A multi-proxy reconstruction, Palaeogeogr.
Palaeocl., 190, 441–458, 2003.
Gambacorta, G., Bersezio, R., and Erba, E.: Sedimentation in the Tethyan pelagic
realm during the Cenomanian: Monotonous settling or active redistribution?,
Paleoceanogr. Paleocl. 409, 301–319, 2014.
Gambacorta, G., Jenkyns, H. C., Russo, F., Tsikos, H., Wilson, P. A.,
Faucher, G., and Erba, E.: Carbon-and oxygen-isotope records of mid-Cretaceous
Tethyan pelagic sequences from the Umbria–Marche and Belluno Basins
(Italy), Newsl. Stratigr., 48, 299–323, 2015.
Gambacorta, G., Bersezio, R., Weissert, H., and Erba, E.: Onset and demise of
Cretaceous oceanic anoxic events: The coupling of surface and bottom oceanic
processes in two pelagic basins of the western Tethys, Paleoceanography,
31, 732–757, 2016.
Giorgioni, M., Weissert, H., Bernasconi, S. M., Hochuli, P. A., Coccioni,
R., and Keller, C. E.: Orbital control on carbon cycle and oceanography in the
mid-Cretaceous greenhouse, Paleoceanography, 27, PA1204,
https://doi.org/10.1029/2011PA002163, 2012.
Giorgioni, M., Weissert, H., Bernasconi, S. M., Hochuli, P. A., Keller, C. E.,
Coccioni, R., Petrizzo, M. R., Lukeneder, A., Garcia, T.I.: Paleoceanographic
changes during the Albian–Cenomanian in the Tethys and North Atlantic and
the onset of the Cretaceous chalk, Global Planet. Change 126, 46–61,
2015.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: The Geologic Time
Scale 2012, Elsevier B.V., Amsterdam, the Netherlands, 2, 793–853,
2012.
Hardas, P., Mutterlose, J., Friedrich, O., and Erbacher, J.: The Middle
Cenomanian Event in the equatorial Atlantic: the calcareous nannofossil and
benthic foraminiferal response, Mar. Micropaleontol., 96, 66–74, 2012.
Herbert, T. D. and Fischer, A. G.: Milankovitch climatic origin of
Mid-Cretaceous black shale rhythms in central Italy, Nature, 321, 739–743,
https://doi.org/10.1038/321739a0, 1986.
Herrle, J. O.: Paleoceanographic and paleoclimatic implications on
mid-Cretaceous black shale formation in the Vocontian Basin and the
Atlantic. Evidence from calcareous nannofossils and stable isotopes,
Tübinger Mikropaläontol. Mittell., 27, 1–114, 2002.
Herrle, J. O.: Reconstructing nutricline dynamics of Mid-Cretaceous oceans:
Evidence from calcareous nannofossils from the Niveau Paquier black shale
(SE France), Mar. Micropaleontol., 47, 307–321, 2003.
Herrle, J. O. and Mutterlose, J.: Calcareous nannofossils from the
Aptian–Lower Albian southeast France: paleoecological and biostratigraphic
implication, Cretaceous. Res., 24, 1–22, 2003.
Herrle, J. O., Pross, J., Friedrich, O., Kössler, P., and Hemleben, C.:
Forcing mechanisms for Mid-Cretaceous black shale formation: Evidence from
the upper Aptian and lower Albian of the Vocontian Basin (SE France),
Palaeogeogr. Palaeocl., 190, 399–426, 2003a.
Herrle, J. O., Pross, J., Friedrich, O., and Hemleben, C.: Short-term
productivity changes in the Cretaceous Tethyan ocean: Evidence from the
early Albian oceanic anoxic event 1b, Terra Nova, 15, 14–19, 2003b.
Herrle, J. O., Kosler, P., and Bollmann, J.: Palaeoceanographic differences of
early Late Aptian black shale events in the Vocontian Basin (SE France),
Palaeogeogr. Palaeocl., 297, 367–376, 2010.
Hochuli, P. A., Menegatti, A. P., Weissert, H., Riva, A., Erba, E., Premoli
and Silva, I.: Episodes of high productivity and cooling in the early Aptian
Alpine Tethys, Geology, 27, 657–660, 1999.
Hu, X., Kuidong, Z., Yilmaz, I. O., and Yongxiang, L.: Stratigraphic transition
and palaeoenvironmental changes from the Aptian oceanic anoxic event 1a
(OAE1a) to the oceanic red bed 1 (ORB1) in the Yenicesihlar section, central
Turkey, Cretaceous Res., 38, 40–51, 2012.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophy. Geosy.,
11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
Kanungo, S., Bown, P. R., Young, J. R., and Gale, A. S.: A brief warming event in
the late Albian: evidence from calcareous nannofossils, macrofossils, and
isotope geochemistry of the Gault Clay Formation, Folkestone, southeastern
England, J. Micropalaeontol., 37, 231–247, 2018.
Kemper, E.: Das Klima der Kreide-Zeit, Geologisches Jahrbuch A, 96, 5–185,
1987 (in German).
Lanci, L., Muttoni, G., and Erba, E.: Astronomical tuning of the Cenomanian
Scaglia Bianca Formation at Furlo, Italy, Earth Planet. Sc.
Lett., 292, 231–237, 2010.
Malinverno, A., Erba, E., and Herbert, T. D.: Orbital tuning as an inverse
problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli
Level) in the Cismon APTICORE, Paleoceanography, 25, PA2203,
https://doi.org/10.1029/2009PA001769, 2010.
Malinverno, A., Hildebrandt, J., Tominaga, M., and Channell, J. E. T.: M-sequence
geomagnetic polarity time scale (MHTC12) that steadies global spreading
rates and incorporates astrochronology constraints, J. Geophys. Res., 117,
B06104, https://doi.org/10.1029/2012JB009260, 2012.
McAnena, A., Flögel, S., Hofmann, P., Herrle, J. O., Griesand, A.,
Pross, J., Talbot, H. M., Rethemeyer, J., Wallmann, K., and Wagner, T.: Atlantic
cooling associated with a marine biotic crisis during the mid-Cretaceous
period, Nat. Geosci., 6, 558–651, 2013.
Millán, M. I., Weissert, H. J., and López-Horgue, M. A.: Expression of the
Late Aptian cold snaps and the OAE1b in a highly subsiding carbonate
platform (Aralar, northern Spain), Palaeogeogr. Palaeocl., 411, 167–179, 2014.
Mitchell, R. N., Bice, D. M., Montanari, A., Cleaveland, L. C., Christianson,
K. T., Coccioni, R., and Hinnov, L. A.: Oceanic anoxic cycles? Orbital prelude to
the Bonarelli Level (OAE 2), Earth Planet. Sc. Lett. 267, 1–16,
2008.
Mutterlose, J.: Migration and evolution patterns of floras and faunas in
marine Early Cretaceous sediments of NW Europe, Palaeogeogr. Palaeocl., 94,
261–282, 1992.
Mutterlose, J. and Bottini, C.: Early Cretaceous chalks from the North Sea
giving evidence for global change, Nat. Commun., 4, 1686, https://doi.org/10.1038/ncomms2698, 2013.
Mutterlose, J., Bornemann, A., and Herrle, J. O.: Mesozoic calcareous
nannofossils – state of the art, Palaeont. Z., 79,
113–133, 2005.
Mutterlose, J., Bornemann, A., and Herrle, J.: The Aptian–Albian cold snap:
Evidence for “mid” Cretaceous icehouse interludes, Neues Jahrb. Geol.
P.-A., 252, 217–225, 2009.
Mutterlose, J., Bottini, C., Schouten, S., and Sinninghe Damsté, J. S.: High
sea-surface temperatures during the early Aptian OAE 1a in the Boreal Realm,
Geology, 42, 439–442, 2014.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Damsté, J. S. S., Schouten,
S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C., Brassell, S. C.,
Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N., Jenkyns, H. C.,
Linnert, C., Littler, K., Markwick, P., McAnena, A., Mutterlose, J., Naafs,
B. D. A., Püttmann, W., Sluijs, A., van Helmond, A. G. M., Vellecoop, J.,
Wagner, T. and Wrobel, N. E.: Cretaceous sea-surface temperature evolution:
Constraints from TEX86 and planktonic foraminiferal oxygen isotopes,
Earth-Sci. Rev., 172, 224–247, 2017.
Pauly, S., Mutterlose, J., and Alsen, P.: Early Cretaceous palaeoceanography of
the Greenland–Norwegian Seaway evidenced by calcareous nannofossils, Mar.
Micropaleontol., 90, 72–85, 2012.
Poulsen, C. J., Barron, E. J., Arthur, M. A., and Peterson, W. H.: Response of the
mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings.
Paleoceanography, 16, 576–592, 2001.
Premoli Silva, I., Ripepe, M., and Tornaghi, M. E.: Planktonic foraminiferal
distribution record productivity cycles: evidence from the Aptian-Albian
Piobbico core (central Italy), Terra Nova, 1, 443–448, 1989a.
Premoli Silva, I., Erba, E., and Tornaghi, M. E.: Paleoenvironmental signals
and changes in surface fertility in mid-Cretaceous Corg-rich pelagic facies
of the Fucoid Marls (central Italy), Geobios, Mémoire Spécial, 11,
225–236, 1989b.
Price, G. D.: The evidence and implications of polar ice during the Mesozoic,
Earth-Sci. Rev., 48, 183–210, 1999.
Roth, P. H.: Cretaceous nannoplankton biostratigraphy and oceanography of the
northwestern Atlantic Ocean, Initial Reports of the Deep Sea Drilling Project, 44, 731–759, https://doi.org/10.2973/dsdp.proc.44.134.1978, 1978.
Roth, P. H. and Krumbach, K. R.: Middle Cretaceous calcareous Nannofossil
biogeography and preservation in the Atlantic and Indian oceans: implication
for paleogeography, Mar. Micropaleontol., 10, 235–266, 1986.
Schouten, S., Hopmans, S., Forster, A., Van Breugel, Y., Kuypers, M. M. M.,
and Sinninghe Damsté, J. S.: Extremely high seasurface temperatures at low
latitudes during the middle Cretaceous as revealed by archaeal membrane
lipids, Geology, 31, 1069–1072, 2003.
Schwarzacher, W.: Cyclostratigraphy of the Cenomanian in the Gubbio
district, Italy: a field study, in: Orbital forcing and cyclic sequences, edited by: de Boer, P. L. and Smith, D. G.,
Sp. Publ. Int., 19, 99–107, 1994.
Sissingh, W.: Biostratigraphy of Cretaceous calcareous nannoplankton, Geol.
Mijnbouw, 56, 37–65, 1977.
Thierstein, H. R. and Roth, P. H.: Stable isotopic and carbonate cyclicity in
Lower Cretaceous deep-sea sediments: Dominance of diagenetic effects, Mar.
Geol., 97, 1–34, 1991.
Tiraboschi, D., Erba, E., and Jenkyns, H. C.: Origin of rhythmic Albian black
shales (Piobbico core, central Italy) Calcareous nannofossil quantitative
and statistical analysis and paleoceanographic reconstructions,
Paleoceanography, 24, PA2222, https://doi.org/10.1029/2008PA001670, 2009.
Tremolada, F., Erba, E., and Bralower, T. J.: Late Barremian to Early Aptian
calcareous nannofossil paleoceanography and paleoecology from the Ocean
Drilling Program Hole 641C (Galicia Margin), Cretaceous. Res., 87, 887–897,
2006.
Tsikos, H., Jenkyns, H. C., Walsworth-Bell, B., Petrizzo, M. R., Forster, A.,
Kolonic, S., Erba, E., Premoli Silva, I., Baas, M., Wagner, T., and Sinninghe
Damsté, J. S.: Carbon- isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event:
correlation and implications based on three
key localities, J. Geol. Soc. London 161, 711–719,
2004.
Voigt, S., Gale, A. S., and Flögel, S.: Midlatitude shelf seas in the
Cenomanian-Turonian greenhouse world: Temperature evolution and North
Atlantic circulation, Paleoceanography, 19, PA4020, https://doi.org/10.1029/2004PA001015, 2004.
Watkins, D. K.: Nannoplankton productivity fluctuations and
rhythmically-bedded pelagic carbonates of the Greenhorn Limestone (Upper
Cretaceous), Palaeogeogr. Palaeocl., 74, 75–86, 1989.
Watkins, D. K., Cooper, M. J., and Wilson, P. A.: Calcareous nannoplankton response
to late Albian oceanic anoxic event 1d in the western North Atlantic,
Paleoceanography and Paleoclimatology, 20, PA2010, https://doi.org/10.1029/2004PA001097, 2005.
Weissert, H. and Erba, E.: Volcanism, CO2 and palaeoclimate: a Late
Jurassic–Early Cretaceous carbon and oxygen isotope record, J.
Geol. Soc. London, 161, 695–702, 2004.
Williams, J. R. and Bralower, T. J.: Nannofossil assemblage, fine fraction
stable isotopes, and the paleoceanography of the Valanginian-Barremian
(Early Cretaceous) North Sea Basin, Paleoceanography, 10, 815–839, 1995.
Wise, S. W. : Mesozoic-Cenozoic history of calcareous nannofossils in the
region of the Southern Ocean, Palaeogeogr. Palaeocl., 67, 157–179, 1988.
Zheng, D., Zhang, Q., Chang, S. C., and Wang, B.: A new damselfly (Odonata:
Zygoptera: Platystictidae) from mid-Cretaceous Burmese amber, Cretaceous
Res., 63, 142–147, 2016.
Short summary
The mid-Cretaceous (ca. 121 to 94 Ma) was characterized by a generally warm climate punctuated by supra-regional to global phenomena of widespread ocean anoxia. In this work we present the first complete record of temperature and fertility variations through the mid-Cretaceous in the western Tethys based on calcareous nannofossils. The new record indicates that temperatures and fertility were rather fluctuating but mostly independently, and they were not systematically associated with anoxia.
The mid-Cretaceous (ca. 121 to 94 Ma) was characterized by a generally warm climate punctuated...