Articles | Volume 13, issue 7
https://doi.org/10.5194/cp-13-855-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-13-855-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Water-mass evolution in the Cretaceous Western Interior Seaway of North America and equatorial Atlantic
James S. Eldrett
CORRESPONDING AUTHOR
Shell International Exploration & Production B.V, Kesslerpark 1,
2288 GS Rijswijk, the Netherlands
Paul Dodsworth
StrataSolve Ltd, 42 Gaskell Street, Stockton Heath, Warrington, WA4
2UN, UK
Steven C. Bergman
Shell International Exploration and Production Inc, 200 N. Dairy Ashford, Houston, TX 77079, USA
Milly Wright
Chemostrat Inc., 3760 Westchase Drive, Houston, Texas, TX 77042, USA
Daniel Minisini
Shell International Exploration and Production Inc, 200 N. Dairy Ashford, Houston, TX 77079, USA
Related authors
Niels A. G. M. van Helmond, Appy Sluijs, Nina M. Papadomanolaki, A. Guy Plint, Darren R. Gröcke, Martin A. Pearce, James S. Eldrett, João Trabucho-Alexandre, Ireneusz Walaszczyk, Bas van de Schootbrugge, and Henk Brinkhuis
Biogeosciences, 13, 2859–2872, https://doi.org/10.5194/bg-13-2859-2016, https://doi.org/10.5194/bg-13-2859-2016, 2016
Short summary
Short summary
Over the past decades large changes have been observed in the biogeographical dispersion of marine life resulting from climate change. To better understand present and future trends it is important to document and fully understand the biogeographical response of marine life during episodes of environmental change in the geological past.
Here we investigate the response of phytoplankton, the base of the marine food web, to a rapid cold spell, interrupting greenhouse conditions during the Cretaceous.
J. S. Eldrett, D. R. Greenwood, M. Polling, H. Brinkhuis, and A. Sluijs
Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, https://doi.org/10.5194/cp-10-759-2014, 2014
Niels A. G. M. van Helmond, Appy Sluijs, Nina M. Papadomanolaki, A. Guy Plint, Darren R. Gröcke, Martin A. Pearce, James S. Eldrett, João Trabucho-Alexandre, Ireneusz Walaszczyk, Bas van de Schootbrugge, and Henk Brinkhuis
Biogeosciences, 13, 2859–2872, https://doi.org/10.5194/bg-13-2859-2016, https://doi.org/10.5194/bg-13-2859-2016, 2016
Short summary
Short summary
Over the past decades large changes have been observed in the biogeographical dispersion of marine life resulting from climate change. To better understand present and future trends it is important to document and fully understand the biogeographical response of marine life during episodes of environmental change in the geological past.
Here we investigate the response of phytoplankton, the base of the marine food web, to a rapid cold spell, interrupting greenhouse conditions during the Cretaceous.
J. S. Eldrett, D. R. Greenwood, M. Polling, H. Brinkhuis, and A. Sluijs
Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, https://doi.org/10.5194/cp-10-759-2014, 2014
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Pre-Cenozoic
Warming drove the expansion of marine anoxia in the equatorial Atlantic during the Cenomanian leading up to Oceanic Anoxic Event 2
Driving mechanisms of organic carbon burial in the Early Cretaceous South Atlantic Cape Basin (DSDP Site 361)
Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks
Dynamic climate-driven controls on the deposition of the Kimmeridge Clay Formation in the Cleveland Basin, Yorkshire, UK
Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation
Late Cretaceous (late Campanian–Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea
Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany)
"OAE 3" – regional Atlantic organic carbon burial during the Coniacian–Santonian
Bridging the Faraoni and Selli oceanic anoxic events: late Hauterivian to early Aptian dysaerobic to anaerobic phases in the Tethys
Mohd Al Farid Abraham, Bernhard David A. Naafs, Vittoria Lauretano, Fotis Sgouridis, and Richard D. Pancost
Clim. Past, 19, 2569–2580, https://doi.org/10.5194/cp-19-2569-2023, https://doi.org/10.5194/cp-19-2569-2023, 2023
Short summary
Short summary
Oceanic Anoxic Event 2 (OAE 2), about 93.5 million years ago, is characterized by widespread deoxygenated ocean and massive burial of organic-rich sediments. Our results show that the marine deoxygenation at the equatorial Atlantic that predates the OAE 2 interval was driven by global warming and associated with the nutrient status of the site, with factors like temperature-modulated upwelling and hydrology-induced weathering contributing to enhanced nutrient delivery over various timescales.
Wolf Dummann, Sebastian Steinig, Peter Hofmann, Matthias Lenz, Stephanie Kusch, Sascha Flögel, Jens Olaf Herrle, Christian Hallmann, Janet Rethemeyer, Haino Uwe Kasper, and Thomas Wagner
Clim. Past, 17, 469–490, https://doi.org/10.5194/cp-17-469-2021, https://doi.org/10.5194/cp-17-469-2021, 2021
Short summary
Short summary
This study investigates the climatic mechanism that controlled the deposition of organic matter in the South Atlantic Cape Basin during the Early Cretaceous. The presented geochemical and climate modeling data suggest that fluctuations in riverine nutrient supply were the main driver of organic carbon burial on timescales < 1 Myr. Our results have implications for the understanding of Cretaceous atmospheric circulation patterns and climate-land-ocean interactions in emerging ocean basins.
Sebastian Beil, Wolfgang Kuhnt, Ann Holbourn, Florian Scholz, Julian Oxmann, Klaus Wallmann, Janne Lorenzen, Mohamed Aquit, and El Hassane Chellai
Clim. Past, 16, 757–782, https://doi.org/10.5194/cp-16-757-2020, https://doi.org/10.5194/cp-16-757-2020, 2020
Short summary
Short summary
Comparison of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates shows that long-lasting negative δ13C excursions precede the positive δ13C excursions and that the evolution of the marine δ13C positive excursions is similar during both OAEs, although the durations of individual phases differ substantially. Phosphorus speciation data across OAE2 and the Mid-Cenomanian Event suggest a positive feedback loop, enhancing marine productivity during OAEs.
Elizabeth Atar, Christian März, Andrew C. Aplin, Olaf Dellwig, Liam G. Herringshaw, Violaine Lamoureux-Var, Melanie J. Leng, Bernhard Schnetger, and Thomas Wagner
Clim. Past, 15, 1581–1601, https://doi.org/10.5194/cp-15-1581-2019, https://doi.org/10.5194/cp-15-1581-2019, 2019
Short summary
Short summary
We present a geochemical and petrographic study of the Kimmeridge Clay Formation from the Cleveland Basin (Yorkshire, UK). Our results indicate that deposition during this interval was very dynamic and oscillated between three distinct modes of sedimentation. In line with recent modelling results, we propose that these highly dynamic conditions were driven by changes in climate, which affected continental weathering, enhanced primary productivity, and led to organic carbon enrichment.
Martin Schobben, Sebastiaan van de Velde, Jana Gliwa, Lucyna Leda, Dieter Korn, Ulrich Struck, Clemens Vinzenz Ullmann, Vachik Hairapetian, Abbas Ghaderi, Christoph Korte, Robert J. Newton, Simon W. Poulton, and Paul B. Wignall
Clim. Past, 13, 1635–1659, https://doi.org/10.5194/cp-13-1635-2017, https://doi.org/10.5194/cp-13-1635-2017, 2017
Short summary
Short summary
Stratigraphic trends in the carbon isotope composition of calcium carbonate rock can be used as a stratigraphic tool. An important assumption when using these isotope chemical records is that they record a globally universal signal of marine water chemistry. We show that carbon isotope scatter on a confined centimetre stratigraphic scale appears to represent a signal of microbial activity. However, long-term carbon isotope trends are still compatible with a primary isotope imprint.
Nicolas Thibault, Rikke Harlou, Niels H. Schovsbo, Lars Stemmerik, and Finn Surlyk
Clim. Past, 12, 429–438, https://doi.org/10.5194/cp-12-429-2016, https://doi.org/10.5194/cp-12-429-2016, 2016
Short summary
Short summary
We present here for the first time a very high-resolution record of sea-surface temperature changes in the Boreal Chalk Sea for the last 8 million years of the Cretaceous. This record was obtained from 1932 bulk oxygen isotope measurements, and their interpretation into temperature trends is validated by similar trends observed from changes in phytoplankton assemblages.
N. A. G. M. van Helmond, A. Sluijs, J. S. Sinninghe Damsté, G.-J. Reichart, S. Voigt, J. Erbacher, J. Pross, and H. Brinkhuis
Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015, https://doi.org/10.5194/cp-11-495-2015, 2015
Short summary
Short summary
Based on the chemistry and microfossils preserved in sediments deposited in a shallow sea, in the current Lower Saxony region (NW Germany), we conclude that changes in Earth’s orbit around the Sun led to enhanced rainfall and organic matter production. The additional supply of organic matter, depleting oxygen upon degradation, and freshwater, inhibiting the mixing of oxygen-rich surface waters with deeper waters, caused the development of oxygen-poor waters about 94 million years ago.
M. Wagreich
Clim. Past, 8, 1447–1455, https://doi.org/10.5194/cp-8-1447-2012, https://doi.org/10.5194/cp-8-1447-2012, 2012
K. B. Föllmi, M. Bôle, N. Jammet, P. Froidevaux, A. Godet, S. Bodin, T. Adatte, V. Matera, D. Fleitmann, and J. E. Spangenberg
Clim. Past, 8, 171–189, https://doi.org/10.5194/cp-8-171-2012, https://doi.org/10.5194/cp-8-171-2012, 2012
Cited articles
Adams, D. D., Hurtgen, M. T., and Sageman, B. B.: Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2, Nat. Geosci., 3, 201–204, 2010.
Akyuz, I., Warny, S., Famubode, O., and Bhattacharya, J. P.: Palynology of the Turonian Ferron-Notom Sandstone, Utah: Identification of marine flooding surfaces and Milankovitch cycles in subtropical, ever-wet, paralic to non-marine paleoenvironments, Palynology, 40, 122–136, 2016.
Algeo, T. J. and Lyons, T. W.: Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions, Paleoceanography, 21, PA1016, https://doi.org/10.1029/2004PA001112, 2006.
Algeo, T. J. and Tribovillard, N.: Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation, Chem. Geol., 268, 211–225, 2009.
Arthur, M. A. and Sageman, B. B.: Sea level control on source rock development: perspectives from the Holocene Black Sea, the mid-Cretaceous Western Interior Basin of North America, and the Late Devonian Appalachian Basin, in: The Deposition of Organic Carbon-rich Sediments: Models, Mechanisms and Consequences, edited by: Harris, N. B., Society for Sedimentary Geology, Tulsa, 35–59, 2005.
Bloch, J. D., Schroder-Adams, C. J., Leckie, D. A., Craig, J., and McIntyre, D. J.: Sedimentology, micropaleontology, geochemistry, and hydrocarbon potential of shale from the Cretaceous Lower Colorado Group in western Canada, Geological Survey of Canada, Bulletin 531, 1999.
Bralower, T. J. and Bergen, J. A.: Cenomanian-Santonian calcareous nannofossil biostratigraphy of a transect of cores drilled across theWestern Interior Seaway, in: Stratigraphy and paleoenvironments of the Cretaceous Western Interior Seaway, USA, edited by: Dean, W. E. and Arthur, M. A., SEPM Concepts of Sedimentology and Paleontology, 6, 59–77, 1998.
Brinkhuis, H. and Zachariasse, W. J.: Dinoflagellate cysts, sea level changes and planktonic foraminifers across the Cretaceous-Tertiary boundary at El Haria, N.W. Tunisia, Mar. Micropaleontol., 13, 153–191, 1988.
Brown, C. W. and Pierce, R. L.: Palynologic correlations in Cretaceous Eagle Ford group, northeast Texas, Bulletin of the American Association of Petroleum Geologists, 46, 2133–2147, 1962.
Burchfiel, B. C., Cowan, D. S., and Davis, G .A.: Tectonic overview of the Cordilleran orogeny in the Western United States, in: The Cordilleran Orogon: Conterminous, US Geological Society of America, edited by: Burchfiel, B. C., Lipman, P. W., and Zoback, M. L., The Geology of North America, G-3,407–480, 1992.
Caldwell, W. G. E., Diner, R., Eicher, D. L., Fowler, S. P., North, B. R., Stelk, C. R., and von Holdt, W. L.: Foraminiferal biostratigraphy of Cretaceous marine cyclothems, in: Evolution of the Western Interior basin: Geological Association of Canada Special Paper, edited by: Caldwell, W. G. E. and Kauffman, E. G., 39, 477–520, 1993.
Christopher, R. A.: The occurrence of the Complexiopollis-Atlanopollis zone (Palynomorphs) in the Eagle Ford group (Upper Cretaceous) of Texas, J. Paleontol., 56, 525–541, 1982.
Cobban, W. A.: Diversity and distribution of Late Cretaceous ammonites, Western Interior, United States, in: Evolution of the Western Interior Basin, edited by: Caldwell, W. G. E. and Kauffman, E. G., St. John's, NL: The Geological Association of Canada Special Paper, 39, 435–451, 1993.
Cookson, I. C. and Hughes, N. F.: Microplankton from the Cambridge Greensand (mid-Cretaceous), Palaeontology, 7, 37–59, 1964.
Corbett, M. J., Watkins, D. K., and Popspichal, J. J.: A quantitative analysis of calcareous nannofossil bioevents of the Late Cretaceous (Late Cenomanian-Coniacian) Western Interior Seaway and their reliability in established zonation schemes, Mar. Micropaleontol., 109, 30–45, 2014.
Cornell, W. C.: Dinoflagellate cysts from the Buda limestone (Cenomanian), Cerro de Cristo Rey, Dona Ana county, New Mexico, Rev. Palaeobot. Palyno., 98, 153–157, 1997.
Courtinat, B.: The significance of palynofacies fluctuations in the greenhorn formation (Cenomanian-Turonian) of the western interior basin, USA, Mar. Micropaleontol., 21, 249–257, 1993.
Dickinson, W. R.: Evolution of the North American Cordillera, Annu. Rev. Earth Pl. Sc., 32, 13–45, 2004.
Dickson, A. J., Saker-Clark, M., Jenkyns, H. C., Bottini, C., Erba, E., Russo, F., Gorbanenko, O., Naafs, B. D. A., Pancost, R. D., Robinson, S. A., van den Boorn, S., and Idiz, E.: A Southern Hemisphere record of global trace-metal drawdown and orbital modulation of organic-matter burial across the Cenomanian-Turonian boundary (Ocean Drilling Program Site 1138, Kerguelen Plateau), Sedimentology, https://doi.org/10.1111/sed.12303, accepted, 2016.
Dodsworth, P.: Stratigraphy, microfossils and depositional environments of the lowermost part of the Welton Chalk Formation (late Cenomanian to early Turonian, Cretaceous) in eastern England, P. Yorks. Geol. Soc., 51, 45–64, 1996.
Dodsworth, P.: Trans-Atlantic dinoflagellate cyst stratigraphy across the Cenomanian-Turonian (Cretaceous) stage boundary, J. Micropalaeontol., 19, 69–84, 2000.
Dodsworth, P.: The palynology of the Cenomanian-Turonian (Cretaceous) boundary succession at Aksudere in Crimea, Ukraine, Palynology, 28, 129–141, 2004.
Dodsworth, P.: Palynostratigraphy and palaeoenvironments of the Eagle Ford Group (Upper Cretaceous) at the Lozier Canyon outcrop reference section, west Texas, USA, Palynology, 40, 357–378, 2016.
Du Vivier, A. D. C., Selby, D., Sageman, B. B., Jarvis, I., Gröcke, D. R., and Voigt, S.: Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2, Earth Planet. Sci. Lett., 389, 23–33, https://doi.org/10.1016/j.epsl.2013.12.024, 2014.
Eicher, D. L. and Diner, R.: Foraminifera as indicators of watermass in the Cretaceous Greenhorn Sea, Western Interior, in: Fine-grained deposits and biofacies of the Cretaceous Western Interior Seaway: evidence of cyclic depositional processes, edited by: Pratt, L., Kauffman, E. G., and Zelt, F. B., SEPM Annual Mid-year Meeting, Field Trip No. 4, 122–134, 1985.
Eicher, D. L. and Worstell, P.: Cenomanian and Turonian foraminifera from the Great Plains, United States, Micropaleontology, 16, 269–324, 1970.
Elder, W. P.: Biotic patterns across the Cenomanian-Turonian extinction boundary near Pueblo, Colorado, in: Field Trip Guidebook No. 4, edited by: Pratt, L. M., Kauffman, E. G., and Zelt, F. B., 157e169, 1985.
Elderbak, K. and Leckie, M. R.: Paleocirculation and foraminiferal assemblages of the Cenomanian-Turonian Bridge Creek Limestone bedding couplets: Productivity vs. dilution during OAE2, Cretaceous Res., 60, 52–77,https://doi.org/10.1016/j.cretres.2015.11.009, 2016.
Eldrett, J. S., Minisini, D., and Bergman, S. C.: Decoupling of the carbon cycle during Oceanic Anoxic Event 2, Geology, 42, 567–570, https://doi.org/10.1130/G35520.1, 2014.
Eldrett, J. S., Ma, C., Bergman, S. C., Lutz, B., Gregory, F. J., Dodsworth, P., Phipps, M., Hardas, P., Minisini, D., Ozkan, A., and Ramezani, J.: An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: Implications for global chronostratigraphy, Cretaceous Res., 56, 316–344, 2015a.
Eldrett, J. S., Ma, C., Bergman, S. C., Ozkan, A., Minisini, D., Lutz, B., Jackett, S. J., Macaulay, C., and Kelly, A. E.: Origin of limestone–marlstone cycles: astronomic forcing of organic-rich sedimentary rocks from the Cenomanian to early Coniacian of the Cretaceous Western Interior Seaway, USA, Earth Planet. Sc. Lett., 423, 98–113, 2015b.
Erbacher, J., Huber, B. T., Norris, R. D., and Markey, M.: Intensified thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period, Nature, 409, 325–327, 2001.
Erbacher, J., Friedrich, O., Wilson, P., Birch, H., and Mutterlose, J.: Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic, Geochem. Geophys. Geosy., 6, 1–9, https://doi.org/10.1029/2004GC000850, 2005.
Ewing, T.: Eagle Ford–Colorado Connection: Cenomanian to Coniacian in Southwestern North America, AAPG Search and Discovery Article #30288, 2013.
Fitzpatrick, M. E. J.: Dinoflagellate cyst biostratigraphy of the Turonian (Upper Cretaceous) of southern England, Cretaceous Res., 16, 757–791, 1995.
Forster, A., Schouten, S., Moriya, K., Wilson, P. A., and Sinninghe Damsté, J. S.: Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: Sea surface temperature records from the equatorial Atlantic, Paleoceanography, 22, PA1219, https://doi.org/10.1029/2006PA001349, 2007.
Foucher, J.-C.: Dinoflagellés et acritarches dans le Crétacé du Bolonnais, 233, 288–297, 310–311 in Robaszynski et al., Synthèse biostratigraphique de l'Aptien au Santonien du Boulonnais à partir de sept groups paléontologiques: Foraminifères, nannoplancton, dinoflagellés et macrofaunes – Zonations micropaléontologiques integrées dans le cadre du Crétacé boreal nord-européen, Revue de Micropaléontologie, 22, 195–321; 28 fig.; 20pl, 1980.
Friedrich, O., Erbacher, J., and Mutterlose, J.: Paleoenvironmental change across the Cenomanian/Turonian Boundary Event [Oceanic Anoxic Event 2] as indicated by benthic foraminifera from the Demerara Rise [ODP Leg 207]. Revue de Micropaleontologie, 49, 121–139, https://doi.org/10.1016/j.revmic.2006.04.003, 2006.
Friedrich, O., Erbacher, J., Moriya, K., Wilson, P. A., and Kuhnert, H.: Warm saline intermediate waters in the Cretaceous tropical Atlantic Ocean, Nat. Geosci., 1, 453–457, 2008.
Friedrich, O., Voigt, S., Kuhnt, T., and Koch, M. J.: Repeated bottom-water oxygenation during OAE 2: Timing and duration of short-lived benthic foraminiferal repopulation events (Wunstorf, northern Germany), J. Micropalaeontol., 30, 119–128, 2011.
Gale, A. S. and Christensen, W. K.: Occurrence of the 5 belemnite Actinocamax plenus in the Cenomanian of SE France and its significance, B. Geol. Soc. Den., 43, 68–77, 1996.
Gambacorta, G., Bersezio, R., Weissert, H., and Erba, E.: Onset and demise ofCretaceous oceanic anoxic events: The coupling of surface and bottom oceanic processes in two pelagic basins of the western Tethys, Paleoceanography, 31, 732–757, https://doi.org/10.1002/2015PA002922, 2016.
Goldberg, T., Poulton, S. W., Wagner, T., Kolonic, S. F., and Rehkämper, M.: Molybdenum drawdown during Cretaceous Oceanic Anoxic Event 2, Earth Planet. Sc. Lett., 440, 81–91, https://doi.org/10.1016/j.epsl.2016.02.006, 2016.
Hancock, J. M., Kennedy, W. J., and Cobban, W. A.: A correlation of the Upper Albian to basal Coniacian sequences of northwest Europe, Texas and the United States Western Interior, in: Evolution of the Western Interior Basin, edited by: Caldwell, W. G. E. and Kauffman, E. G., Geological Association of Canada Special Paper, St. John's, 39, 453–476, 1993.
Harker, S. D., Gustav, S. H., and Riley, L. A.: Triassic to Cenomanian stratigraphy of the Witch Ground Graben, in: Petroleum geology of North-West Europe, edited by: Brooks, S. J. and Glennie, K., Graham & Trotman, London, UK, 809–818, 1990.
Harris A. J and Tocher B. A.: Palaeoenvironmental analysis of late Cretaceous dinoflagellate cyst assemblages using high-resolution sample correlation from the western interior basin, USA, Mar Micropaleontol., 48, 127–148, 2003.
Hay, W. W., Eicher, D. L., and Diner, R.: Physical oceanography and water masses of the Cretaceous Western Interior Seaway, in: Caldwell, W. E. G. and Kauffman, E. G., Evolution of the Western Interior Basin, Geological Association of Canada Special Paper, 39, 297–318, 1993.
Helz, G. R., Miller, C. V., Charnock, J. M., Mosselmans, J. F. W., Pattrick, R. A. D., Garner, C. D., and Vaughan, D. J.: Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence, Geochim. Cosmochim. Ac., 60, 3631–3642, 1996.
Herrle, J. O., Schröder-Adams, C. J., Davis, W., Pugh, A. T., Galloway, J. M., and Fath, J.: Mid-Cretaceous High Arctic stratigraphy, climate, and Oceanic Anoxic Events, Geology, 43, 403–406, https://doi.org/10.1130/G36439.1, 2016.
Hetzel, A., Böttcher, M. E., Wortmann, U. G., and Brumsack, H.: Paleo-redox conditions during OAE2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207), Palaeogeogr. Palaeoecl., 273, 302–328, 2009.
Holbourn, A. and Kuhnt, W.: Cenomanian-Turonian palaeoceanographic change on the Kerguelen Plateau: a comparison with Northern Hemisphere records, Cretaceous Res., 23, 333–349, 2002.
Jarvis, I., Carson, G. A., Cooper, K., Hart, M. B., Horne, D., Leary, P. N., Rosenfeld, A., and Tocher, B. A.: Chalk microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) oceanic anoxic event, new data from Dover, England, Cretaceous Res., 9, 3–103, 1988.
Jarvis, I., Gale, A. S., Jenkyns, H. C., and Pearce, M. A.: Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian-Campanian (99.6–70.6 Ma), Geol. Mag., 143, 561–608, 2006.
Jarvis, I., Lignum, J. S., Gröcke, D. R., Jenkyns, H. C., and Pearce, M. A.: Black Shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event, Paleoceanography, 26, PA3201, https://doi.org/10.1029/2010PA002081, 2011.
Jefferies, R. P. S.: The palaeoecology of the Actinocamax plenus Subzone (lowest Turonian) in the Anglo-Paris Basin, Palaeontology, 4, 609–647, 1962.
Jefferies, R. P. S.: The stratigraphy of the Actinocamax plenus Subzone (Turonian) in the Anglo-Paris Basin, P. Geologist. Assoc., 74, 1–33, 1963.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophys. Geosys., 11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
Jiménez Berrocoso, A., MacLeod, K. G., Martin, E. E., Bourbon, E., Isaza Londoño, C., and Basak, C.: Nutrient trap for the Late Cretaceous organic-rich black shales in the tropical North Atlantic, Geology, 38, 1111–1114, 2010.
Joo, Y. J. and Sageman, B. B.: Cenomanian to Campanian carbon isotope chemostratigraphy from the Western Interior Basin, USA, J. Sediment. Res., 84, 529–542, https://doi.org/10.2110/jsr.2014.38, 2014.
Kauffman, E. G.: Geological and biological overview: Western Interior Cretaceous Basin; in: Cretaceous facies, faunas and paleoenvironments across the Western Interior Basin, edited by: Kauffman, E. G., The Mountain Geologist, 14, 75–100, 1977.
Kauffman, E. G.: Paleobiogeography and evolutionary response dynamic in the CretaceousWestern Interior Seaway of North America, in: Jurassic–Cretaceous biochronology and paleogeography of North America, edited by: Westermann, G. E. G., Geological Association of Canada Special Paper, 27, 273–306, 1984.
Kauffman, E. G.: Cretaceous evolution of the Western Interior Basin of the United States, in: Fine-grained Deposits and Biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes, edited by: Pratt, L. M., Kauffman, E. G., Zelt, F. B., Society of Economic Paleontologists and Mineralogists Guidebook 4, ivGuidebook 4, ivnce of Cyclic Sedimenta, 1985.
Kauffman, E. G. and Caldwell, W. G. E.: The Western Interior Basin in space and time, in: Evolution of the Western Interior Basin, edited by: Kauffman, E. G. and Caldwell, W. G. E., Geological Association of Canada Special Paper, 39, 1–30, 1993.
Keller, G. and Pardo, A.: Age and paleoenvironment of the Cenomanian-Turonian global stratotype section and point at Pueblo, Colorado, Mar. Micropaleontol., 51, 95–128, https://doi.org/10.1016/j.marmicro.2003.08.004, 2004.
Kennedy, W. J., Walaszczyk, I., Cobban, W. A., Dodsworth, P., Elder, W. P., Gale, A. S., Scott, G. R., Hancock, J. M., Voigt, S., and Kirkland, J. I.: The Global Boundary Stratotype Section and Point for the base of the Turonian Stage of the Cretaceous: Pueblo, Colorado, USA, Episodes, 28, 93–104, 2005.
Kidder, D. L. and Worsley, T. R.: Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) Episodes, and Mass Extinctions, Palaeogeography, 295, 162–191, https://doi.org/10.1016/j.palaeo.2010.05.036, 2010.
Kolonic, S., Wagner, T., Forster, A., Sinninghe Damsté, J. S., Walsworth-Bell, B., Erba, E., Turgeon, S., Brumsack, H. J., Chellai, E. H., Tsikos, H., and Kuhnt, W.: Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: Climate coupling and global organic carbon burial, Paleoceanography, 20, PA1006, https://doi.org/10.1029/2003PA000950, 2005.
Kump, L. R. and Slingerland, R. L.: Circulation and stratification of the early Turonian Western Interior Seaway: sensitivity to a variety of forcings, in: Evolution of Cretaceous Ocean-Climate System, edited by: Barrera, E. and Johnson, C., Geol. S. Am. S., 332, 181–190, 1999.
Kuroda, J., Ogawa, N. O., Tanimizu, M., Coffin, M. F., Tokuyama, H., Kitazato, H., and Ohkouchi, N.: Contemporaneous massive subaerial volcanism and late Cretaceous Oceanic Anoxic Event 2, Earth Planet. Sci. Lett., 256, 211–223, 2007.
Kuypers, M. M. M., Pancost, R. D., Nijenhuis, I. A., and Sinninghe Damsté, J. S.: Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event, Paleoceanography, 17, 1051, https://doi.org/10.1029/2000PA000569, 2002.
Leckie, R. M., Yuretich, R. F., West, O. L. O., Finkelstein, D., and Schmidt, M. G.: Paleo-ceanography of the southwestern Western Interior Sea during the time of the Cenomanian-Turonian boundary (Late Cretaceous), in: Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, edited by: Arthur, M. A. and Dean, W. E., Society of Economic Paleontologists and Mineralogists Concepts in Sedimentology and Paleontology, 6, 101–126, 1998.
Li, H. and Habib, D.: Dinoflagellate stratigraphy and its response to sea level change in Cenomanian-Turonian sections of the western interior of the United States, Palaios, 11, 15–30, 1996.
Lignum, J. S.: Cenomanian (upper Cretaceous) palynology and chemostratigraphy: Dinoflagellate cysts as indicators of palaeoenvironmental and sea-level change, PhD thesis, Kingston University London, Kingston upon Thames, UK, 582 pp., 2009.
Liu, L.: Constraining Cretaceous subduction polarity in eastern Pacific from seismic tomography and geodynamic modeling, Geophys. Res. Lett., 41, 8029–8036, 2014.
Liu, L., Gurnis, M., Seton, M., Saleeby, J., Muller, R. D., and Jackson, J. M.: The role of oceanic plateau subduction in the Laramide orogeny, Nat. Geosci., 3, 353–357, 2010.
Lowery, C. M., Corbett, M. J., Leckie, M., Watkins, D., Romero, A. M., and Pramudito, A.: Foraminiferal and nannofossil paleoecology and paleoceanography of the CenomanianeTuronian Eagle Ford Shale of southern Texas, Palaeogeogr. Palaeocl., 413, 49–65, 2014.
Marshall, K. L. and Batten, D. J.: Dinoflagellate cyst associations in Cenomanian-Turonian “Black Shale” sequences of northern Europe, Rev. Palaeobot. Palyno., 54, 85–103, 1988.
Martin, E. E., MacLeod, K. G., Berrocoso, A. J., and Bourbon, E. Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes: Earth Planet. Sc. Lett., 327–328, 111–120, https://doi.org/10.1016/j.epsl.2012.01.037, 2012.
McNeil, D. H. and Caldwell, W. G. E.: Cretaceous rocks and their foraminifera in the Manitoba escarpment, Geological Association of Canada Special Paper, 21, St. John's, 1981.
Meyers, S. R.: Production and preservation of organic matter: The significance of iron, Paleoceanography, 22, PA4211, https://doi.org/10.1029/2006PA001332, 2007.
Minisini, D., Eldrett, J., Bergman, S., and Forkner, R.: Chronostratigraphic Framework and Depositional Environments in the Organic-Rich Eagle Ford Group, Texas, USA, Sedimentology, in review, 2017.
Orth, C. J., Attrep, M., Quintana, L. R., Elder, W. P., Kauffman, E. G., Diner, R., and Villamil, T.: Elemental abundance anomalies in the late Cenomanian extinction interval: A search for the source(s): Earth Planet. Sc. Lett., 117, 189–204, https://doi.org/10.1016/0012-821X(93)90126-T, 1993.
Pearce, M. A., Jarvis, I., Swan, A. R. H., Murphy, A. M., Tocher, B. A., and Edmunds, W. M.: Integrating palynological and geochemical data in a new approach to palaeoecological studies: Upper Cretaceous of the Banterwick Barn Chalk borehole, Berkshire, UK, Mar. Micropaleontol., 47, 271–306, 2003.
Pearce, M. A., Jarvis, I., and Tocher, B. A.: The Cenomanian-Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: new insights from the dinocyst and geochemical records, Palaeogeogr. Palaeocl., 280, 207–234, 2009.
Pratt, L. M. and Threlkeld, C. N.: Stratigraphic Significance of 13C/12C Ratios in Mid-Cretaceous Rocks of the Western Interior, USA, The Mesozoic of Middle North America, edited by: Stott, D. F. and Glass, D. J., Canadian Society of Petroleum Geologists, 9, 305–312, 1985.
Prauss, M.: The Cenomanian/Turonian Boundary Event (CTBE) at Wunstorf, north-west Germany, as reflected by marine palynology, Cretaceous Res., 27, 872–886, 2006.
Prauss, M.: Availability of reduced nitrogen chemospecies in photic-zone waters as the ultimate cause of fossil prasinophyte prosperity, Palaios, 22, 489–499, 2007.
Prauss, M. L.: The Cenomanian/Turonian Boundary Event (CTBE) at Tarfaya, Morocco: palaeoecological aspects as reflected by marine palynology, Cretaceous Res., 34, 233–256, https://doi.org/10.1016/j.cretres.2011.11.004, 2012a.
Prauss, M. L.: The Cenomanian/Turonian Boundary Event (CTBE) at Tarfaya, Morocco, northwest Africa: Eccentricity controlled water column stratification as major factor for total organic carbon (TOC) accumulation: Evidence from marine palynology, Cretaceous Res., 37, 246–260, 2012b.
Prauss, M. L.: Potential freshwater dinocysts from marine upper Cenomanian to upper Coniacian strata of Tarfaya, northwest Africa: Three new species of Bosedinia, Cretaceous Res., 37, 285–290, 2012c.
Sageman, B. B., Meyers, S. R., and Arthur, M. A.: Orbital timescale for the Cenomanian-Turonian boundary stratotype and OAE II, central Colorado, USA, Geology, 34, 125–128, 2006.
Schlanger, S. O. and Jenkyns, H. C.: Cretaceous oceanic anoxic events: Causes and consequences, Geol. Mijnbouw, 55, 179–184, 1976.
Shipboard Scientific Party: Site 1138, in: Proc. ODP, Init. Repts., 183, Coffin, M. F., Frey, F. A., Wallace, P. J., et al., College Station, TX (Ocean Drilling Program), 1–205, https://doi.org/10.2973/odp.proc.ir.183.106.2000, 2000.
Shipboard Scientific Party: Site 1260, in: Proc. ODP, Init. Repts., 207, Erbacher, J., Mosher, D. C., Malone, M. J., et al., College Station, TX (Ocean Drilling Program), 1–113, https://doi.org/10.2973/odp.proc.ir.207.107.2004, 2004a.
Shipboard Scientific Party: Site 1261, in: Proc. ODP, Init. Repts., 207, Erbacher, J., Mosher, D. C., Malone, M. J., et al., College Station, TX (Ocean Drilling Program), 1–103, https://doi.org/10.2973/odp.proc.ir.207.108.2004, 2004b.
Singh, C.: Cenomanian microfloras of the Peace River area, northwestern Alberta, Alberta Research Council, Bulletin, 44, 317 pp., 1983.
Sinninghe Damsté, J. S. and Köster, J.: A euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event, Earth Planet. Sc. Lett., 158, 165–173, https://doi.org/10.1016/S0012-821X(98)00052-1, 1998.
Slingerland, R., Kump, L. R., Arthur, M. A., Fawcett, P. J., Sageman, B. B., and Barron, E. J.: Estuarine circulation in the Turonian Western Interior seaway of North America, Geol. Soc. Am. Bull.m, 108, 941–952, 1996.
Sluijs, A., Pross, J., and Brinkhuis, H.: From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene, Earth Sci. Rev., 68, 281–315, 2005.
Snow, L. J., Duncan, R. A., and Bralower, T. J.: Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and Oxygen Anoxic Event 2, Paleoceanography, 20, PA3005, https://doi.org/10.1029/2004PA001093, 2005.
Sun, X., Zhang, T., Sun, Y., Milliken, K. L., and Sun, D.: Geochemical evidence of organic matter source input and depositional environments in the lower and upper Eagle Ford Formation, south Texas, Org. Geochem., 98, 66–81, https://doi.org/10.1016/j.orggeochem.2016.05.018, 2016.
Trabucho Alexandre, J., Tuenter, E., Henstra, G. A., van der Zwan, K. J., van de Wal, R. S. W., Dijkstra, H. A., and de Boer, P. L.: The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs, Paleoceanography, 25, PA4201, https://doi.org/10.1029/2010PA001925, 2010.
Tribovillard, N., Riboulleau, A., Lyons, T., and Baudin, F.: Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales, Chem. Geology, 213, 385–401, 2004.
Tribovillard, N., Algeo, T. J., Baudin, F., and Riboulleau, A.: Analysis of marine environmental conditions based on molybdenum–uranium covariation – Applications to Mesozoic paleoceanography, Chemi. Geol., 324–325, 46–58, https://doi.org/10.1016/j.chemgeo.2011.09.009, 2012.
Turgeon, S. C. and Creaser, R. A.: Cretaceous Anoxic Event 2 triggered by a massive magmatic episode, Nature, 454, 323–326, 2008.
Tyson, R. V.: Sedimentary Organic Matter; Organic Facies and Palynofacies, Chapman and Hall, London, UK, 615 pp., 1995.
van Helmond, N. A. G. M., Sluijs, A., Reichart, G.-J., Sinninghe Damsté, J. S., Slomp, C. P., and Brinkhuis, H.: A perturbed hydrological cycle during Oceanic Anoxic Event 2, Geology, 42, 123–126, https://doi.org/10.1130/G34929.1, 2014.
van Helmond, N. A. G. M., Sluijs, A., Papadomanolaki, N. M., Plint, A. G., Gröcke, D. R., Pearce, M. A., Eldrett, J. S., Trabucho Alexandre, J., Walaszczyk, I., van de Schootbrugge, B., and Brinkhuis, H.: Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse, Biogeosciences, 13, 2859–2872, https://doi.org/10.5194/bg-13-2859-2016, 2016.
Voigt, S., Gale, A. S., and Voigt, T.: Sea-Level Change, Carbon Cycling and Palaeoclimate during the Late Cenomanian of Northwest Europe: An Integrated Palaeoenvironmental Analysis, Cretaceous Res., 27, 836–858, 2006.
Wall, D., Dale, B., Lohmann, G. P., and Smith, W. K.: The environment and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and adjacent seas, Mar. Micropaleontol., 2, 121–200, 1977.
Zheng, X.-Y., Jenkyns, H. C., Gale, A. S., Ward, D. J., and Henderson, G. M.: A climatic control on reorganization of ocean circulation during the mid-Cenomanian event and Cenomanian-Turonian oceanic anoxic event (OAE 2): Nd isotope evidence, Geology, 44, 151–154, 2016.
Zippi, P. A.: Freshwater algae from the Mattagami Formation (Albian), Ontario: paleoecology, botanical affinities, and systematic taxonomy, Micropaleontology, 44, 1–78, 1998.
Zonneveld, K. A. F., Marret, F., Versteegh, G. J. M., Bogus, K., Bonnet, S., Bouimetarhan, I., Crouch, E., de Vernal, A., Elshanawany, R., Edwards, L., Esper, O., Forke, S., Grøsfjeld, K., Henry, M., Holzwarth, U., Kielt, J.-F., Kim, S.-Y., Ladouceur, S., Ledu, D., Chen, L., Limoges, A., Londeix, L., Lu, S.-H., Mahmoud, M. S., Marino, G., Matsouka, K., Matthiessen, J., Mildenhal, D. C., Mudie, P., Neil, H. L., Pospelova, V., Qi, Y., Radi, T., Richerol, T., Rochon, A., Sangiorgi, F., Solignac, S., Turon, J.-L., Verleye, T., Wang, Y., Wang, Z., and Young, M.: Atlas of modern dinoflagellate cyst distribution based on 2405 data points, Rev. Palaeobot. Palyno., 191, 1–197, https://doi.org/10.1016/j.revpalbo.2012.08.003, 2013.
Short summary
This contribution integrates new data on the main components of organic matter, geochemistry, and stable isotopes for the Cenomanian to Coniacian stages of the Late Cretaceous, along a north–south transect from the Cretaceous Western Interior Seaway to the equatorial western Atlantic and Southern Ocean. Distinct palynological assemblages and geochemical signatures allow insights into palaeoenvironmental conditions and water-mass evolution during this greenhouse climate period.
This contribution integrates new data on the main components of organic matter, geochemistry,...