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Abstract. The Late Cretaceous Epoch was characterized by
major global perturbations in the carbon cycle, the most
prominent occurring near the Cenomanian—Turonian (CT)
transition marked by Oceanic Anoxic Event 2 (OAE-2)
at 94.9-93.7Ma. The Cretaceous Western Interior Sea-
way (KWIS) was one of several epicontinental seas in which
a complex water-mass evolution was recorded in widespread
sedimentary successions. This contribution integrates new
data on the main components of organic matter, geochem-
istry, and stable isotopes along a north—south transect from
the KWIS to the equatorial western Atlantic and Southern
Ocean. In particular, cored sedimentary rocks from the Eagle
Ford Group of west Texas ( ~90-98 Ma) demonstrate sub-
tle temporal and spatial variations in palaeoenvironmental
conditions and provide an important geographic constraint
for interpreting water-mass evolution. High-latitude (boreal—
austral), equatorial Atlantic Tethyan and locally sourced
Western Interior Seaway water masses are distinguished by
distinct palynological assemblages and geochemical signa-
tures. The northward migration of an equatorial Atlantic
Tethyan water mass into the KWIS occurred during the
early-middle Cenomanian (98-95Ma) followed by a ma-
jor re-organization during the latest Cenomanian—Turonian
(95-94 Ma) as a full connection with a northerly boreal wa-
ter mass was established during peak transgression. This
oceanographic change promoted de-stratification of the wa-
ter column and improved oxygenation throughout the KWIS
and as far south as the Demerara Rise off Suriname. In ad-
dition, the recorded decline in redox-sensitive trace metals
during the onset of OAE-2 likely reflects a genuine oxygena-

tion event related to open water-mass exchange and may have
been complicated by variable contribution of organic matter
from different sources (e.g. refractory/terrigenous material),
requiring further investigation.

1 Introduction

The Late Cretaceous Epoch was characterized by sus-
tained global warming, emplacement of several large igneous
provinces (LIPs), global extinctions, global sea-level high-
stands leading to several epicontinental seaways, and ma-
jor global perturbations in the carbon cycle termed oceanic
anoxic events (OAEs), the most prominent occurring at
the Cenomanian—Turonian transition, and termed OAE-2
(Schlanger and Jenkins, 1976). This event is globally recog-
nized by a positive carbon isotope excursion (CIE) reflecting
the widespread sequestration of '>C-enriched organic mat-
ter in marine sediments under global anoxic conditions (see
Jenkyns, 2010, and references therein). Proposed hypotheses
for initiation of global anoxia and enhanced carbon seques-
tration include long-term triggers such as changes in ocean
circulation and eustatic sea level rise, flooding large areas
of continental shelves, promoting global stratification and
stagnation in greenhouse climates (Erbacher et al., 2001),
abrupt episodes of volcanogenic activity and emplacement
of LIPs (Orth et al., 1993; Snow et al., 2005; Turgeon and
Creaser, 2008; Kuroda et al., 2007; Du Vivier et al., 2014),
releasing large quantities of CO; into the atmosphere and
increasing delivery of hydrothermally derived and weath-
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ered nutrients into the photic zone, enhancing primary pro-
duction (e.g. Adams et al., 2010) or a combination of both
(e.g. Kidder and Worsley, 2010). However, increasing evi-
dence indicates a decoupling in the precise timing of the CIE
(hence OAE-2) and the location of organic-rich sediment de-
position, reflecting that deposition of organic-rich sediment
was modulated and ultimately dependent on local and re-
gional processes (basin restriction, water stratification, bot-
tom currents, sediment input) although favoured by global
phenomena (sea level change, orbital forcing) (e.g. Trabucho
Alexandre et al., 2010). This is particularly apparent within
shallow epicontinental seaways such as the southern Creta-
ceous Western Interior Seaway (KWIS), where parts of the
seaway experienced anoxia and recorded organic-rich black
shales prior to the OAE-2 interval; in addition, in contrast
to other globally recognized sections that recorded organic-
rich sediments during the OAE-2 interval (e.g. Plenus Marl
and Bonarelli intervals in Europe), the KWIS recorded rela-
tively organic-lean and oxygenated sediments (e.g. Meyers,
2007; Eldrett et al., 2014). Thus, the oceanographic regime
of the southern KWIS and its influence on the geologic ex-
pression of OAE-2 in this shallow epicontinental sea has
been considered unique. It has been proposed that ocean
circulation in the KWIS was restricted during the Cenoma-
nian, promoting anoxia due to a sill in the southern gate-
way (i.e.Texas/Mexico) and that late Cenomanian sea level
rise (Greenhorn cyclothem of Kauffman, 1977, 1984) was
sufficient to reach a critical sill depth allowing a breach of
the southern end of the seaway, and the rapid incursion of
warm, normal saline Tethyan waters (Arthur and Sageman,
2005). Previous publications have characterized the inflow of
Tethyan waters at this time by the (i) improved environmen-
tal conditions as indicated by the sharp increase in abundance
and diversity of foraminiferal/molluscan and ammonite as-
semblages reaching far north into the KWIS (McNeil and
Caldwell, 1981; Kauffman, 1984, 1985; Eicher and Diner,
1985; Elder, 1985; Leckie et al., 1998; Caldwell et al., 1993;
Kauffman and Caldwell, 1993, Elderbak and Leckie, 2016)
and (ii) the lithologic transition from organic-rich mudrocks
to a highly bioturbated limestone dominated facies (Corbett
et al., 2014; Lowery et al., 2014).

The inflow of southern, more saline waters into the south-
ern KWIS during the latest Cenomanian has been proposed
to either promote overturning of the water column or mix-
ing with a northern water mass resulting in “caballing” and
the production of a third more dense water mass (Hay et al.,
1993; Slingerland et al., 1996). In either scenario, the inflow
of Tethyan water during OAE-2 was interpreted to have cu-
mulated in the abrupt oxygenation of the seafloor as recorded
by development and persistent abundance of benthic fauna
(i.e. Elderbak and Leckie, 2016). However, this interval
of benthic faunal abundance in the KWIS was originally
termed the benthonic zone by Eicher and Worstell (1970),
who demonstrated that the benthonic foraminifera zone was
best expressed in northerly sections, where it spanned the
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entire Cenomanian—Turonian Bridge Creek Limestone, and
is less developed in the central KWIS sections, where it
is stratigraphically restricted to the uppermost Cenomanian
(i.e. beds 68-78 at Rock Canyon, Pueblo, Colorado; Eicher
and Worstell, 1970), where it spans only part of the OAE-2
interval and was subsequently termed the benthic oxic zone
by Keller and Pardo (2004). It should be noted that the ben-
thonic/benthic oxic zone in the KWIS has also been shown to
correspond with the equatorial migration of boreal dinoflag-
ellate cyst (dinocyst) taxa (Eldrett et al., 2014; van Helmond
et al., 2016) and has been correlated with a short-lived cli-
mate cooling episode termed the Plenus Cold Event (PCE;
Eldrett et al., 2014; van Helmond et al., 2014, 2016; Elder-
bak and Leckie, 2016), whereby similarly cool boreal waters
invaded northern and central Europe (Jefferies, 1963; Gale
and Christensen, 1996; Voigt et al., 2006; Jarvis et al., 2011)
and equatorial waters cooled by up to 4°C (Forster et al.,
2007). It is therefore difficult to reconcile the late Cenoma-
nian northerly inflow of a warm Tethyan water mass into the
southern KWIS, at a time of global cooling, southerly restric-
tion in benthic fauna, and coeval equatorial migration of bo-
real taxa and associated water mass in the KWIS and Europe.
It is plausible that a much more complex oceanographic sys-
tem existed in the KWIS, such as that modelled by Slinger-
land et al. (1996) and Kump and Slingerland (1999), whereby
a strong cyclonic gyre developed in the central KWIS, draw-
ing both Tethyan waters northward along the eastern margin
and boreal waters southward along the western margin of the
seaway (see also discussions in Elderbak and Leckie, 2016).
In order to better understand and constrain the nature
and timing of water-mass evolution in the southern gate-
way to the KWIS, and the associated palacoenvironmental
and palaeoclimatic processes, this contribution presents de-
tailed palynological and geochemical analyses within a mul-
tidisciplinary framework from the Eagle Ford Group (Gr.)
and bounding formations of the Buda Limestone and Austin
Chalk from southwest Texas, USA. Furthermore, to place the
southern gateway of the KWIS into a more supra-regional
understanding we also analysed correlative materials from
the central KWIS (Portland-1 core, Colorado) and to the
south in the tropical Atlantic (ODP Leg 207, Demerara Rise)
and Southern Ocean (ODP Leg 183, Kerguelen Plateau).

1.1 Geological setting

The Eagle Ford Gr. was deposited during the Cenomanian to
Turonian across the broad Comanche Platform in the south-
ern intersection of the KWIS and northern Gulf of Mex-
ico (Fig. 1), which represented part of the >3000km long
foreland basin that formed behind the greater Cordilleran
retro-arc fold-and-thrust belt during Late Mesozoic through
Eocene times along the inboard side of the Cordilleran
magmatic arc and accreted allochthonous terranes of North
America (e.g. Burchfiel et al., 1992; Dickinson, 2004). The
regional tectonic setting was influenced during the Creta-
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Figure 1. Site locations. (a) Present-day position of the study areas and (b) Turonian palacogeographic reconstruction with site locations:
grey shaded area, landmass; dotted line, palaeo-shelf; CLIP, Caribbean large igneous province; HALIP, high-Arctic large igneous province.

Boxes show study area as presented in Fig. 2

ceous by the subduction of the conjugate oceanic plateau to
the Shatsky Rise (Liu et al., 2010) dynamic topography from
the subducting Farallon Plate (Liu, 2014) and thermally sub-
siding Gulf of Mexico margin, resulting in the development
of broad ramp shelves including the Comanche Platform with
reactivated basement structures defining intra-shelf basins,
such as the Maverick Basin and structural highs such as the
Terrell Arch. The Cenomanian—Turonian Trans-Pecos region
(Fig. 2) was deposited in a distal sediment starved setting
>500km from the nearest shoreline during a locally quies-
cent tectonic period resulting in stable platform conditions
and gradual subsidence ideal for the preservation of mud-
stones, limestones and bentonites of the Eagle Ford Gr., the
underlying Buda Limestone and overlying Austin Chalk.

1.2 Previous palynological studies

Previous Cenomanian—Turonian palynological studies of
the KWIS include those of Brown and Pierce (1962),
Christopher (1982), Courtinat (1993), Li and Habib (1996),
Cornell (1997), Dodsworth (2000, 2016), Harris and
Tocher (2003), Eldrett et al. (2014, 2015a, b) and van
Helmond et al. (2016). Brown and Pierce (1962) first re-
ported dinocysts and other palynomorphs from the Eagle
Ford Gr. in northeast Texas, whereas terrestrial sporomorphs
were recovered from the Woodbine interval of the Eagle
Ford Gr. by Christopher (1982). Subsequently, most stud-
ies have focused on the central part of the KWIS and in
particular the Global boundary Stratotype Section and Point
(GSSP, “golden spike”) for the base of the Turonian at Rock
Canyon, Pueblo, Colorado (e.g. Courtinat, 1993; Li and
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Habib, 1996; Dodsworth, 2000; Harris and Tocher, 2003).
For the southern sector of the KWIS relatively few sec-
tions have been published, notably Cornell (1997) report-
ing diversified mainly gonyaulacacean dinocyst assemblages
from the massive limestones of the Buda Formation (Fm.)
in Dona Ana County, New Mexico, and more recently El-
drett et al. (2014) reporting the incursion of boreal dinocysts
in the Eagle Ford Gr. during the OAE-2 CIE interval cor-
responding with improved bottom-water oxygenation. This
equatorial migration of the boreal dinocyst complex Cy-
clonephelium compactum—C. membraniphorum has subse-
quently been recorded across the KWIS and northern Tethys
(see van Helmond et al., 2016). Many of the regional and
globally recognized age diagnostic biostratigraphic events
encountered in the KWIS were calibrated against an as-
tronomically tuned and geochronologically constrained age
model for the Cenomanian—Turonian and early Coniacian
based on a relatively expanded section of the Eagle Ford Gr.
and bounding units of the Austin Chalk and Buda Limestone
that were recovered from the Shell Iona-1 research core, in
west Texas (Eldrett et al., 2015a). Palacoenvironmental re-
constructions of the Eagle Ford Gr. based on the biostrati-
graphic assemblage data presented by Eldrett et al. (2015a)
were beyond the scope of that paper, but some aspects were
presented as part of an integrated multidisciplinary contribu-
tion demonstrating that obliquity and precession forcing on
the latitudinal distribution of solar insolation may have been
responsible for the observed lithological and environmen-
tal variations through the Cenomanian, Turonian and Conia-
cian in mid-latitude epicontinental sea settings (Eldrett et al.,
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Figure 2. Site locations. (a) SW Texas map showing core locations (black stars): grey shading — Eagle Ford Gr., outcrop belt. (b) Demerara

Rise site locations.

2015b). Subsequently, Dodsworth (2016) provided more de-
tailed palacoenvironmental interpretations from palynologi-
cal assemblages primarily from the Eagle Ford Gr. exposed at
the Lozier Canyon cliff section, Terrell County, west Texas,
which is similar to the Innes-1 core (see below) and contains
a significant unconformity (duration >?2 million years, Myr)
within the Turonian. This unconformity is much less intense
(duration < 0.2 Myr) in the more distal Iona-1 core.

This paper aims to build on and expand these previous con-
tributions by (i) providing detailed palynological interpreta-
tions of the Eagle Ford Gr. based on several locations en-
abling a more widespread geographic understanding, (ii) in-
tegrating multidisciplinary datasets including organic and in-
organic geochemistry allowing a greater understanding of
the main palaeoenvironmental controls, and (iii) presenting
new data analysed from sections further to the north in the
KWIS (Portland-1 core) and to the south in the tropical At-
lantic (ODP Leg 207, Demerara Rise; Figs. 1-2) and South-
ern Ocean (ODP Leg 183, Kerguelen Plateau) to provide in-
sights into supra-regional ocean circulation and water-mass
evolution during the Cenomanian—Turonian greenhouse cli-
mate state.

2 Material and methods

Core material from the Eagle Ford Gr., and bounding units in
the Maverick Basin, west Texas, USA, were analysed for vi-
sual kerogen analyses (palynology, palynofacies). The core
material was sampled along a physiographic transect from
the main Comanche carbonate shelf (Innes-1) towards the
edge of the Maverick intra-shelf basin (Iona-1) and central
part of the intra-shelf basin (well “X”; Figs. 1-2). Outcrop
sections were also analysed in the San Marcos Arch area near
Austin along the Bouldin Creek section. In order to com-
pare data collected from the Eagle Ford Gr., with any re-
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gional trends, data were also collected further to the north
near the base of the Turonian GSSP (Kennedy et al., 2005;
Sageman et al., 2006) in Colorado (USGS Portland-1) and
to the south in the tropical Atlantic off Suriname (ODP Leg
207; sites 1260 and 1261, Demerara Rise; Shipboard Scien-
tific Party, 2004a, b). Material was also collected from Site
1138, Kerguelen Plateau (Shipboard Scientific Party, 2000).
Palynological analyses on these sites were conducted under
both transmitted and fluorescence microscopy and the results
supplemented and compared to newly collected and previ-
ously published organic and inorganic geochemical analyses
including total organic carbon (TOC) and major, minor and
trace elements (Erbacher et al., 2005; Forster et al., 2007,
Friedrich et al., 2008; Hetzel et al., 2009; Joo and Sageman,
2014; Duvivier et al., 2014; Lowery et al., 2014; Eldrett et
al., 2014, 2015a, b; Sun et al., 2016; Dickson et al., 2016;
Minisini et al., 2017). Palynological parameters presented in-
clude (i) the ratio between terrestrial (7)) and marine (M)
palynomorphs (7 : M ratio) as a proxy for terrestrial input,
(ii) the ratio between peridinioid or P cysts and gonyaula-
coid or G cysts (P : G ratio) of the dinocyst assemblage as
a proxy of nutrient input. Diversity of the dinocyst assem-
blage was also calculated using both Shannon—Wiener (H)
and Simpson-Hunter (D) indexes. Detailed palynological
methods and associated discussion of palaeoenvironmental
parameters are provided in the Supplement. In addition to the
quantification of organic foraminifera test linings from pa-
lynological residues, benthic foraminifera abundances were
also counted from a combination of micropalaeontological
picked residues and thin sections following the methods de-
tailed in Eldrett et al. (2015a) and supplemented by published
benthic foraminiferal records (e.g. Friedrich et al., 2006,
2008, 2011). Principal component analyses (PCAs) were
run on this integrated palynological-geochemical dataset to
elucidate the primary controls for palaeoenvironmental and
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OAE-2 CIE but in the section not recorded at Portland-1 core or the Pueblo GSSP due to the hiatal surface at the base of the Bridge Creek

Limestone.

palaeoclimatic interpretations. Details of site locations and
methodologies employed are presented in the Supplement.

3 Results

The following section describes some of the key results that
are referred to in the Discussion section and presented in
Figs. 3—11. Detailed results and data are presented in the Sup-
plement and data file.

3.1 Organic carbon-isotope stratigraphy

Significant organic carbon isotopic differences are observed
throughout the studied interval. The Buda Limestone records
813 Corg values ~ —26 %o and becomes more negative within
the Eagle Ford Gr., where background values are ~ —27 to
—28 %o for Iona-1, Innes-1 and well “X”. From these back-
ground levels, five notable positive and three negative car-
bon isotope excursions (CIEs) of varying magnitudes were
recognized. These excursions can be correlated with the En-
glish Chalk reference section of Jarvis et al. (2006; see El-
drett et al., 2015a, for a detailed discussion of biostrati-
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graphic calibration of CIEs in the KWIS) and compared
with the previously published data for ODP Leg 207 as pre-
sented in Fig. 3. Two of these CIEs have specific relevance
for this contribution: (i) the ~ 2 %o positive 613C0rg excur-
sion in Iona-1 (143.73—-139.27 m) and Innes (76.88-74.63 m)
that corresponds with the Middle Cenomanian Event (MCE)
and (ii) the Cenomanian—Turonian CIE that is clearly ex-
pressed with a positive CIE of up to 4 %o occurring in Iona-
1 (112.45-92.73 m), Innes-1 (55.74-42.51 m) and well “X”
(1639.9m — the top is not recorded because it is above
the cored interval). It should be noted that the definition
of the base of the Cenomanian—Turonian CIE has been re-
interpreted to include the precursor events presented in El-
drett et al. (2014, 2015a); thus, the base of the CIE at Iona-1
is moved from 105.96 to 112.45m and is assigned an age of
95.01 £ 0.12 Ma based on the obliquity age model presented
in Eldrett et al. (2015a).

Clim. Past, 13, 855-878, 2017
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Figure 4. Iona-1 core data. (a) depth/age; (b) chronostratigraphy; (c) lithostratigraphy; (d) lithology; (e) 613C0rg; (f) redox-sensitive trace
metal enrichments (TMEF); (g) TOC; (h) AOM; (i) foraminiferal test linings, with micropalaeontological abundance data as counts per gram
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& 3; (1); terrigenous palynomorphs; (m) 7 : M ratio; (n) dinocyst P :

foraminifera; (j) prasinophyte algae; (k) dinocysts, Bosedinia cf. sp. 1
G ratio; (0) Shannon—Wiener and Simpson—Hunter dinocyst diversity;

(p) principle component results: eigenscore 1, eigenscore 2; (q) sequence stratigraphic interpretations (see Supplement); and (r) inferred
relative sea level history (after Minisini et al., 2017), with Milankovitch orbital frequencies (after Eldrett et al., 2015a, b).

3.2 Geochemistry

3.2.1 Southern KWIS (Texas)

The Buda Limestone (early Cenomanian, ca. 98-97.5 Ma)
is characterized in the Iona-1 core by high percentage of
calcium oxide (CaO, >45wt%) and low percentages of
aluminium oxide (Al;O3: <2 wt %), silicon dioxide (SiO;:
<6 wt %) and titanium dioxide (TiO7: <1 wt %). Exceptions
occur in the interbedded bentonite layers that record higher
values of Al,O3 (>10wt %), SiO; (>25wt%) and TiO,
(~ 1wt %). Redox-sensitive trace metal concentrations and
enrichment factors (EFs) in the limestones are low with
molybdenum (Mo), uranium (U) and vanadium (V) record-
ing <1 ppm/<2EF, <2 ppm/<4EF and <20 ppm/<2EF re-
spectively. The lower Eagle Ford Gr. (ca. 97.2-94.9 Ma) is
characterized by high TOC and concentrations of redox-
sensitive trace metals that are enriched compared to aver-
age shale. In particular, the basal most part of the lower
Eagle Ford Gr. at Iona-1 (153-144 m) records the highest
trace metal enrichments with Mogg = ave. 400, Uggp =12
and Vgg = 17. These trace metal enrichments decline sharply
at the base of the MCE interval (143.37-142.27 m), after
which they increase again and become relatively enriched
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(Mogg = ave. 140, Ugg =7 and Vg = 13). A similar trend is
also recorded in both Innes-1 and well “X”, albeit at overall
lower values. In all three cores redox-sensitive trace metal
concentrations and enrichments start to decline prior to the
lower—upper Eagle Ford Gr. boundary (~ 94.6 Ma). The up-
per part of the Eagle Ford Gr. is characterized by generally
low redox-sensitive trace metal concentrations and enrich-
ments in all three cores, with minima associated with the in-
terpreted benthic oxic zone (see Eldrett et al., 2014). How-
ever, within the benthic oxic zone, there is a recorded in-
crease in Ti / Al, mafic trace elements and europium anomaly
(Eu / Eu*; see Eldrett et al., 2014, Figure DRS). Variations in
redox trace metals occur between the limestone—marlstone
couplets, with marlstones recording slightly elevated en-
richments compared to the limestones (see Eldrett et al.,
2015b, for details). The uppermost part of the Eagle Ford Gr.
(corresponding with the Langtry Member; sensu Pessagno,
1969; Mb. ~ 92.5-90.3 Ma) record a slight increase in redox-
sensitive trace metals in mostly marlstone lithologies in both
Innes-1 and Iona-1 cores (Figs. 4-5). The overlying Austin
Chalk is generally not enriched in redox-sensitive trace met-
als with the exception of the interbedded marlstones. The
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Bouldin Creek outcrop locality was not analysed for trace
metals as part of this study.

3.2.2 Central KWIS (USGS Portland-1, Colorado)

The Dakota Sandstone and Graneros Shale interval in
the USGS Portland-1 core (213 to 175 m; ~ 100-95.8 Ma;
Fig. 8) is predominantly comprised of high relative con-
centrations of SiO; (ave. ~60wt%) and Al,Osz (ave.
~ 15wt %). The Thatcher Limestone interval (~ 185m;
~96.5 Ma) is represented by a single sample that records a
slight relative increase in CaO (~ 8 wt %), but it is unlikely
that this sample adequately represents or resolves the var-
ied lithological endmembers recorded in this interval. A rel-
ative increase in CaO is recorded from the base of the Lin-
coln Shale Mb. to near the top of the Hartland Shale Mb.
(175.29-150 m; 95.8-94.7 Ma), reaching up to 25 wt % and
then increasing substantially to ~ 40 wt % CaO marking the
lithological break of the base of the Bridge Creek Limestone
Mb. (~ 148.6 m).

Throughout the Dakota Sandstone and Graneros Shale in-
tervals the majority of the redox-sensitive trace metals record
low concentrations and are not significantly enriched com-
pared to average shales (e.g. U, V, Ni, Cu, Zn), and Mo is
only slightly enriched (Mogr =ave. 3; ppm=ave. 4 ppm;
Fig. 8). Redox-sensitive trace metal concentrations increase
slightly in the Lincoln Shale Mb. and only become signif-
icantly enriched in the Portland-1 core during the deposi-
tion of the Hartland Shale Mb. The overlying Bridge Creek
Limestone Mb. and in particular the interval recording the
OAE-2 CIE is characterized by an overall reduction in redox-
sensitive trace metals and lack of significant enrichments
compared to average shale values. However, variations in
redox-sensitive trace element enrichments are recorded in the
marlstone and limestone couplets of the Bridge Creek Lime-
stone Mb.

3.2.3 Demerara Rise, Atlantic Ocean (ODP Leg 207,
sites 1260 and 1261)

The pre-OAE-2 sediments recovered from ODP sites 1260
and 1261 record high and variable values of CaO (25-
50 wt %) which decline substantially during the OAE-2 in-
terval as SiO, values increase with maximum values of 47
and 23 wt % recorded for each site respectively (see data
file in the Supplement). At Site 1260 in the lower part of
the studied interval (445.19 and 462.7m composite depth,
mec.d.) high concentrations of redox-sensitive trace metals
are recorded that are significantly enriched compared to av-
erage shale (see data file in the Supplement; Fig. 9). Con-
centrations and enrichments of the redox-sensitive trace met-
als decline from these high values around ~ 443 m.c.d. and
reach minima during part of the OAE-2 CIE interval (426—
423 m.c.d.) but still remain enriched compared to average
shale (Ugg = 10; Mogg =25; Vgg =4). This same trend is
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mirrored in the sedimentary record from Site 1261, with
minima enrichment values recorded during the OAE-2 CIE
interval (albeit in lower resolution) that, even though rela-
tively low compared with the pre-OAE-2 interval, are still en-
riched compared to average shale (minima values: Ugg = 12;
MOEF = 46; VEF = 5; Fig. 10).

3.3 Palynology

Detailed palynological results and data tables are presented
in the Supplement and displayed in Figs. 4—11.

4 Discussion

4.1 Principal component analysis (PCA)

In order to provide additional understanding into the main
controls on organic matter composition and palaeoenviron-
mental significance, PCA was initially conducted on the pa-
lynological and geochemical datasets separately and then on
the integrated palynological and geochemical dataset. All
three analyses showed the similar principal components and
clusters and in support of the discussion only the PCA results
run on the combined dataset are presented. The combined
dataset PCA was run on cores that had multiple detailed
analyses from the same core sample/depth, including Innes-
1, Iona-1, well “X”, USGS Portland-1 and ODP sites 1260
and 1261 using the statistical software C2 (http://www.staff.
ncl.ac.uk/stephen.juggins/software/C2Home.htm). Variables
within the dataset include palynology, major and trace el-
ements, 813C0rg and TOC. The PCA results show a clear
grouping of samples along the two primary axes (Fig. 12).
Eight groups were identified and are lithostratigraphically
defined: Group I, lower Eagle Ford; Group II, upper Ea-
gle Ford; Group III, Buda Limestone and Austin Chalk;
Group IV, Bridge Creek Limestone; Group V, Hartland Shale
Mb.; Group VI, Graneros Shale; Group VII, Dakota Sand-
stone; and Group VIII, Demerara Rise. The groups are dis-
cussed in a chronostratigraphic context in Sect. 4.2. Along
the principle axis/eigenscore 1, samples with high negative
scores comprise high CaO contents and are associated with
the Buda Limestone and Austin Chalk samples, whereas
high positive scores correspond with high values of ele-
ments enriched in heavy minerals (zirconium-hafnium; Zr-
Hf), silicates (quartz, feldspar), phyllosilicates/clay miner-
als (gallium—potassium oxide-rubidium—titanium: Ga-K;O-
Rb-Ti (e.g. illite, biotite, smectite, kaolinite)), and increased
terrigenous contributions (7 : M ratio) locally correspond-
ing with the clastics of the Dakota Sandstone Gr. The high
positive score along axis 1 may not solely represent ter-
restrial/detrital riverine dilution, but may also reflect dia-
genetic alteration of the abundant volcanic ash from at-
mospheric fallout of western Cordillera Plinian eruptions
(8102, Al;03, TiO;, heavy minerals) that were transformed
into smectite—illite—iron—titanium oxides (see Eldrett et al.,
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2015b). Therefore, the clustering of the environmental vari-
ables along the axis/eigenscore 1 is interpreted as repre-
senting the carbonate—non-carbonate/volcaniclastic mixing
trend.

Axis/eigenscore 2 is interpreted to represent a re-
stricted/eutrophic/anoxic to open marine/oligotrophic/oxic
marine trend influencing the water column and/or sediment—
water interface, with high positive scores associated with
high values in TOC, redox-sensitive trace metal concentra-
tions, preservation of amorphous organic matter (AOM) and
assemblages dominated by prasinophyte phycomata, the lat-
ter are indicative of eutrophic and stratified water column
conditions (see Prauss, 2007)

It is also noted that high eigenscores are associated with
dinocyst assemblages dominated by peridinioid (P) cysts
and particularly taxa comparable to those informally de-
scribed from Tarfaya, Morocco, by Prauss (2012a, b): Bose-
dinia cf. sp 1 & 3 of Prauss (2012b) (photographic illus-
trations are provided in the Supplement). Sporadically com-
mon/abundant occurrences of Bosedinia sp. 1 & sp. 3 were
recorded in the Cenomanian and Turonian of Tarfaya by
Prauss (2012a, b), where it is often associated with common
occurrences of the colonial green alga Botryococcus; high
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concentrations of Botryococcus had previously only been re-
ported from fresh/brackish-water palacoenvironments (e.g.
Zippi, 1988), and this led Prauss to infer a freshwater affinity
for the Bosedinia, suggesting it probably represents episodic
salinity stratification in the marine palaeoenvironment at Tar-
faya (Prauss, 2012c). However, in all the localities inves-
tigated in this study and also Lozier Canyon (Dodsworth,
2016), abundances of Bosedinia cf. sp 1 & 3 are not associ-
ated with an increase in Botryococcus or terrigenous pollen
and spores, or with the presence of freshwater algal gen-
era such as Concentricystes, Ovoidites (Schizophacus), Pe-
diastrum and Schizosporis. The last four genera are common
components at Cenomanian—Turonian continental to fluvial-
deltaic settings in Utah (Akyuz et al., 2016) and east Texas
(Dodsworth, 2016). In the present study, the persistent oc-
currence of these freshwater algal genera are restricted to the
Dakota Sandstone in the Portland-1 core, where they are as-
sociated with the only frequent occurrences of Botryococ-
cus and super-abundant (> 50 %) occurrences of terrigenous
spores and pollen reported here. Influxes of Bosedinia do not
co-occur in any of these proximal KWIS settings. The PCA
results presented in this study indicate that Bosedinia cf. sp
1 & 3 plots positively along eigenscore 2, associated with in-
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dicators for eutrophic and anoxic marine conditions, poten-
tially representing the enhanced nitrite/nitrate availability in
the photic zone (see Dodsworth, 2016). During the Cenoma-
nian Stage, abundances of Bosedinia cf. sp 1 & 3 are confined
to middle—lower latitudes (Prauss 2012a, b; this study), be-
ing absent from higher-latitude records (e.g. Foucher, 1980;
Jarvis et al., 1988, 2011; Fitzpatrick, 1995; Pearce et al.,
2003, 2009; Lignum, 2009), and is thus interpreted to have a
Tethyan equatorial central Atlantic affinity (see Supplement).

The high negative eigenscores along axis 2 correspond
with proxies associated with open marine oligotrophic con-
ditions such as gonyaulacoid dinocysts (G cysts) includ-
ing Spiniferites spp. and Pterodinium spp.; the latter shows
affinity with modern-day Impagadinium spp., which is
found in oceanic and open marine conditions (Wall et al.,
1977; Zonneveld et al., 2013). High negative eigenscores
are also associated with proxies indicative of more oxy-
genated water conditions such as higher concentration of
the redox-sensitive trace metal manganese oxide (MnO) and
foraminiferal test linings. The negative eigenscores are there-
fore interpreted as representing an open marine, oxygenated
and oligotrophic depositional environment. In addition, it
is interesting to note that although phytoclasts plot nega-
tively along eigenaxis 2 and may represent a reduced mask-
ing effect of AOM during oxygenated conditions (Tyson,
1995); they also plot positively along eigenscore 1 (non-
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carbonate/volcaniclastic trend) alongside freshwater algae
and areoligeracean dinocysts; the latter are more sugges-
tive of a more nearshore environment (see Brinkhuis and
Zachariasse, 1988; Harker et al., 1990; Li and Habib, 1996).
In addition, a component of this trend may also represent
recycling and transportation of nearshore palynomorphs to
relatively distal environments. The eigenscores are plotted
against depth for each of the sites (Figs. 4-6, 8-10) to further
support the palaecoenvironmental interpretation as discussed
below.

4.2 Palaeoenvironmental interpretation

4.2.1 Southern KWIS

The Buda Limestone (early Cenomanian, ca. 98-97.5 Ma)
comprises highly diverse and low-abundance dinocyst as-
semblages (see also Cornell, 1997), indicative of open ma-
rine oligotrophic conditions. This interpretation is supported
by the (i) PCA results reflecting the lack of enrichment in
redox-sensitive trace metals, low TOC and poor preservation
of AOM, as well as dominance of G cysts, and the (ii) sed-
imentological and micropalaeontological evidence for abun-
dant and diverse benthos indicative of a healthy carbonate
factory. The Buda Limestone dinocyst assemblages are com-
parable to those reported from marine limestone facies of
early Cenomanian age in western Europe, including England

Clim. Past, 13, 855-878, 2017
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(e.g. Cookson and Hughes, 1964) and France (e.g. Foucher,
1980).

The overlying lower Eagle Ford Gr. interval (ca. 97.2—
94.9 Ma) is generally characterized by a decline in dinocyst
species diversity, with the palynological assemblages com-
prising high absolute abundance of prasinophyte phycomata,
with P cysts being the major component of the dinocyst com-
munity indicative of eutrophic and stratified water column
conditions (see Prauss, 2007; Sluijs et al., 2005). This in-
terpretation is supported by PCA results reflecting the en-
richment and co-variance in redox-sensitive trace metals and
high TOC values combined with low but sporadic occur-
rences of benthic foraminifera indicative of restricted and
suboxic-anoxic depositional conditions (see also Eldrett et
al., 2014). Furthermore, the presence of aryl isoprenoids
in the lower Eagle Ford Gr. section from Iona-1 has been
demonstrated as originating from Chlorobi (green sulfur bac-
teria) and is thus evidence for at least temporary and/or par-
tial photic zone euxinia at this time (Sun et al., 2016). Bed-
scale variations are also identified in redox conditions record-
ing greater water-mass ventilation and current activity during
the deposition of limestone beds compared to deposition of
marlstone beds due to combined obliquity and precessional
forcing on solar insolation (Eldrett et al., 2015b). Compara-
ble palynological assemblages have not been reported from
the middle to upper Cenomanian deposits in Europe but high
relative abundances of prasinophyte phycomata and the peri-
dinioid genus Bosedinia have been documented further south
in the Cenomanian and Turonian organic-rich shale facies at
Tarfaya in north Africa (Prauss 2012a, b).
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Within the middle part of the lower Eagle Ford Gr.
(~96.1-95.4Ma) the relative abundance contribution of
prasinophyte phycomata to the palynological assemblage de-
creases as the absolute abundance of the P cyst Bosedinia
cf. sp. 1 & 3 significantly increases. This shift in the pa-
Iynological assemblage is recorded in all the studied sec-
tions including the San Marcos Arch outcrop, as well as
in the nearby Lozier Canyon outcrop section (Dodsworth,
2016). As discussed in Sect. 4.1, the abundance of Bose-
dinia sp. 1 & sp. 3 had previously been interpreted as reflect-
ing the occurrence of freshwater/brackish water conditions in
the photic zone at Tarfaya and episodic salinity stratification
there (Prauss 2012a, b, ¢), but in the absence of freshwater
algae and the combined PCA results for the studied sections
this interpretation is not supported here for the KWIS or De-
merara Rise. Alternatively, Dodsworth (2016) proposed that
the introduction of waters from respectively deeper denitri-
fication zones into photic zone by vertical expansion of the
oxygen-minimum zone or by upwelling may be a controlling
factor, with reduced nitrogen/ ammonium favouring prasino-
phyte algal production (see Prauss 2007) and availability of
nitrite/nitrate promoting P cyst (e.g. Bosedinia sp. 1 & sp. 3)
productivity in the surface waters.

The upper Eagle Ford Gr. associated with first peak (“A”)
of the OAE-2 CIE (~ 94.65 Ma) is characterized by a sharp
change in palynological assemblages with increase abun-
dance of G cysts, in particular open marine forms includ-
ing Pterodinium, Spiniferites ramosus and Nematopshaerop-
sis spp. Prasinophyte phycomata become rare and overall
dinocyst diversity increases. This assemblage shifts along
with the reduction in redox-sensitive trace metal enrich-
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Figure 12. PCA results showing principle axis/eigenscores; selected environmental variables. Samples plotted as a function of site location

(see insert) and lithostratigraphic interval (colours; groups in figure).

ments, lowered TOC, increased bioturbation and occurrence
of benthic foraminifera indicate deposition within an open
marine meso-oligotrophic and oxygenated depositional en-
vironment (also see Eldrett et al., 2014). By contrast, in
some European depositional basins, e.g. eastern England,
northern Germany and Crimea, uppermost Cenomanian to
lower Turonian deposits associated with OAE-2 are char-
acterized by intervals of interbedded organic-rich mudrocks
with limestones; the former contain isolated influxes of
prasinophyte phycomata and higher numbers of P cysts than
under- and overlying formations (Marshall and Batten, 1988;
Dodsworth, 1996, 2004; Prauss, 2006), whereas limestone
deposition, lean in organic matter, is continuous in other ar-
eas, e.g. southern England—northern France. The relative in-
crease in the 7 : M ratio during OAE-2 in the studied sec-
tions presented here likely reflects the closed-sum effect as
absolute abundance of marine palynomorphs decreases dur-
ing the upper Eagle Ford (transition from eutrophic to meso-
oligotrophic conditions). Absolute abundance of terrestrial
palynomorphs does not increase significantly, although this
may partly reflect greater distance from shoreline during
the Cenomanian—Turonian transgression and potentially di-
luted concentration of all palynomorphs including pollen
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during increased biogenic carbonate productivity associated
with the limestones of the upper Eagle Ford—lower Bridge
Creek. An increase in absolute abundance of terrestrial pa-
Iynomorphs is recorded at the Pueblo GSSP, in uppermost
Cenomanian beds 82—-lower 85 (2000-5000 counts per gram,
30-60 %; Dodsworth, 2000). It is unclear whether palyno-
logical assemblages in the studied sections support increased
hydrological cycle during OAE-2 (see Van Helmond et al.,
2014). The sporomorph assemblages during OAE-2 mainly
record a relative increase in gymnosperms, in particular dur-
ing the PCE interval, and thus any increase in 7 : M ratio
may reflect transition from mega-thermal to meso-thermal
vegetation (perhaps also reflecting increased pollen produc-
tion by wind-dispersed gymnosperms) in response to climate
cooling episode (see Forster et al., 2007; Jarvis et al., 2011)
rather than increased hydrologic cycle. The recorded increase
in Ti/ Al in the PCE interval may reflect increased fluvial
and/or aeolian inputs; however, the association of Ti/ Al
with trace metal enrichments in cobalt, chromium and scan-
dium as well as an increase in heavy to light rare earth ele-
ments and a positive europium anomaly together are indica-
tive of a hydrothermal or mafic influence and suggest em-
placement and weathering of a LIP during the PCE interval
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(see Eldrett et al., 2014). In addition, the Ti / Al record may
also reflect alteration of biotite from the ubiquitous felsic vol-
canic ash beds rather than solely aeolian versus fluvial in-
puts, and the links with gymnosperm abundances could have
resulted from changes in climate and/or oceanographic con-
ditions resulting from these large-scale and regional igneous
events.

The PCA results indicate occasional dysoxia—anoxia
within the upper Eagle Ford Gr. interval, which becomes
more persistent in the upper part of the Langtry Mb. as in-
dicated by slight enrichment in redox-sensitive trace metals
and palynological assemblages recording reduced dinocyst
diversity and enhanced abundances of prasinophyte phyco-
mata. This interpretation seems to contrast with the sedi-
mentological evidence that preserves bioturbated marlstones
and nodular limestones along with shell hash horizons form-
ing symmetric ripples and abundant in situ macrofauna (i.e.
echinioids), all indicative of a high-energy dynamic envi-
ronment (Minisini et al., 2017). It may be the case that
short-lived storm and oxic events are not resolved at our
sampling resolution as bulk geochemical and palynological
data integrates longer time periods; alternatively, we resolve
short-lived periods of dysoxia—anoxia that are subsequently
smeared and re-distributed by bioturbation within a back-
ground environment characterized by high-energy and well-
oxygenated conditions. It should be noted that similar abun-
dance increases in prasinophyte phycomata are recorded in
the upper part of the South Bosque Formation at the Bouldin
Creek outcrop and in the Lozier Canyon outcrop section
(Dodsworth, 2016). The occurrences of prasinophyte phyco-
mata in the Lozier Canyon outcrop were thought to repre-
sent an artifact of their preferential preservation in weathered
material (Dodsworth, 2016); however, compared to the re-
gional trends identified in the well-preserved core alongside
trace metal enrichments, this suggests a genuine transition
to at least partially and/or episodically dysoxic—anoxic de-
positional environment. The limestones of the Austin Chalk
record a return to open marine and persistently oxygenated
conditions supported by the PCA results reflecting very di-
verse dinocyst assemblages, comprising mainly G cysts with
abundant foraminiferal test linings, reduced AOM and no en-
richments in redox-sensitive trace metals.

4.2.2 Regional water-mass evolution

In this study we infer three main water masses: (i) equato-
rial Atlantic Tethyan source, (ii) a northern boreal source
and (iii) a more local central KWIS source. The equatorial
Atlantic-sourced water is primarily based on the occurrence
of dinocysts and other microfauna (i.e. calcareous nanno-
fossils and foraminifera) that are geographically restricted
to low latitudes and specifically equatorial Atlantic with in-
ferred Tethyan affinities (e.g. Bosedinia cf. sp 1 & 3; see dis-
cussion below). The surface waters of this water mass are
characterized by low-diversity dinocyst assemblages domi-
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nated by P cysts and prasinophyte phycomata indicative of
stratified and hydrographically restricted and eutrophic con-
ditions (this study), whilst the correspondence with the pres-
ence of isorenieratene derivatives (i.e. Sinninghe Damsté and
Koster, 1998; Kuypers et al., 2002; Kolonic et al., 2005; van
Bentum et al., 2009; Sun et al., 2016) demonstrates at least
temporary and/or partial photic zone euxinia. The underlying
bottom water, or at least sediment—water interface, was pre-
dominantly dysoxic—anoxic as evidenced by the enrichment
in redox-sensitive trace metals and relatively sparse benthic
foraminifera (i.e. Hetzel et al. 2009; Eldrett et al., 2014).
The northerly sourced water mass is constrained by the oc-
currence of dinocysts with a boreal affinity (see Eldrett et
al., 2014; van Helmond et al., 2014, 2016), combined with
the increased planktonic diversity and dominance of G cysts
that are associated with more oligotrophic/hydrographically
unrestricted conditions. The absence of prasinophyte algae
point towards a mixed water column (see Prauss, 2007), and
the overall low values in redox-sensitive elements and in-
creased abundance and diversity of benthic fauna along with
enhanced bioturbation indices (e.g. Meyers et al., 2007; El-
drett et al., 2014) indicate frequent ventilation of the bottom
waters and/or sediment—water interface. A more local and
partially restricted dysoxic water mass sourced by the central
KWIS is interpreted based on the occurrence of mixed mod-
erate diversity dinocyst assemblages, including taxa more
typical of the northern and central KWIS, with rare Tethyan
components combined with limited enrichment in redox-
sensitive elements and abundance of low-diversity aggluti-
nated benthic foraminifera assemblages (see discussion be-
low). It should be noted that, within these regional water-
mass regimes, higher-frequency variations in redox state are
documented, in part a response to obliquity and precession
forcing on the latitudinal distribution of solar insolation (see
Eldrett et al., 2015b). Comparing the palacoenvironmental
trends recorded in the Cenomanian—Coniacian sections from
SW Texas to those recorded further north within the cen-
tral KWIS (USGS Portland-1; Pueblo GSSP outcrop) and to
the south in the equatorial North Atlantic (ODP sites 1260,
1261, Demerara Rise) allows the reconstruction of water-
mass evolution (Fig.13—-14). A discussion of dinocyst and
pollen palaeo-latitudinal provincialism across these regions
during Cenomanian and Turonian times is given in the Sup-
plement.

Lower Cenomanian sediments from the equatorial At-
lantic (ODP Site 1260) are interpreted as being deposited
in a stratified suboxic-anoxic marine environment as indi-
cated by enrichment in redox-sensitive trace metals, low-
diversity dinocyst assemblages with abundance of prasino-
phyte phycomata, preservation of laminated organic-rich mu-
drocks and positive PCA-2 scores. This interpretation is con-
sistent with a circulation-controlled nutrient trap fuelling sur-
face water productivity and anoxic depositional environment
as proposed by Jiménez Berrocoso et al. (2010) and Trabu-
cho Alexandre et al. (2010). Further to the north in the south-
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Figure 13. Cenomanian—Coniacian chronostratigraphic correlation of interpreted water masses along a south—north transect from the equato-
rial western Atlantic to the central Cretaceous Western Interior Seaway (KWIS). The KWIS composite § 1 3C0rg after Joo and Sageman (2014)
and including data from Du Vivier et al. (2014), Eldrett et al. (2015a) for USGS Portland-1 (orange), plus data from Iona-1 (blue), Innes-1
(black) and well “X” (green) cores calibrated using the age model of Eldrett et al. (2015a). Stacked curves showing principal palynologi-
cal components (legend on figure). Palaco-SST and TEXg¢ record from ODP Site 1260 from Forster et al. (2007). Colour shading: green,
Tethyan-sourced water from the equatorial Atlantic; blue, northerly boreal water mass; brown, locally sourced KWIS water mass. Green
dashed arrows indicate Tethyan incursions; blue arrows indicate boreal influence. Principal component analysis (PCA) score axis 2: positive
indicative of eutrophic/anoxic waters; negative indicative of oxygenated oligotrophic waters (see Fig. 12).

ern part of the KWIS, the early Cenomanian is character-
ized by the deposition Buda Limestone, which is primarily
characterized by well-oxygenated conditions. The first in-
cursion of an equatorial Atlantic Tethyan water mass into
southern Texas occurred at 97.2Ma (t1; Fig. 14), marked
by the hummocky cross-stratified limestones and mass trans-
port deposits interbedded with organic-rich sediments that
characterize the lowermost Eagle Ford Gr., above the top
Buda limestone submarine unconformity (see Minisini et al.,
2017). In the central KWIS (Portland-1 core), the early Ceno-
manian is characterized by relatively dysoxic depositional
conditions, with frequent to common prasinophyte phyco-
mata and mixed dinocyst assemblages, including taxa more
typical of the northern and central KWIS such as Senoni-
asphaera microreticulata and Palaeoperidinium cretaceum,
and the first consistent but mainly rare occurrence of Bose-
dinia cf. sp 1 & 3, which is common in coeval deposits at
Demerara Rise, along with low-diversity agglutinated ben-
thic foraminifera (Fig. 8) and the occasional occurrence of
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rare Tethyan calcareous planktonic taxa, together sugges-
tive of a mainly Western Interior Seaway source (Eicher and
Diner, 1985). The initial northward expression of an equa-
torial Atlantic Tethyan water mass is only evidenced in the
central KWIS (Portland-1 core) during the deposition of the
Thatcher Limestone Mb. (ca 96.5-96.6 Ma), with slight in-
creases in prasinophyte phycomata, a decrease in dinocyst
diversity, and reduced benthic foraminifera, and is supported
by the occurrence of ammonites, calcareous nannofossils and
an increase in planktonic foraminifera with Tethyan affinities
(see Eicher and Diner, 1985; Cobban, 1993; Hancock et al.,
1993, Bralower and Bergen, 1998). Water-mass characteris-
tics fluctuate during the middle Cenomanian in the Portland-
1 core but are interpreted as being predominately sourced
locally from the Western Interior Seaway as evidenced by
mixed dinocyst assemblages, relatively low enrichments in
redox-sensitive trace metals and dominant occurrence of ag-
glutinated foraminifera. This study is limited by the rela-
tively low sampling resolution from the MCE interval; in or-
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Figure 14. Regional water-mass depositional model of the KWIS. Time slices (t1-t5) showing the northward flow of eutrophic/anoxic

Tethyan equatorial Atlantic water into the Western Interior Seaway and

southward flow of a boreal water mass. Milankovitch orbital frequen-

cies of eccentricity, obliquity and precession from the Iona-1 core (Eldrett et al., 2015a) resulting in shorter-term (< 0.1 Myr) development of
limestone—marlstone couplets (Eldrett et al., 2015b). GoM: Gulf of Mexico. Sea level curve after Minisini et al. (2017).

der to better resolve the detail and timing of these palaeo-
ceanographic variations, higher-resolution multi-proxy anal-
yses are required. In the Portland-1 core there is a clear shift
from agglutinated to calcareous benthic foraminifera near
the top of the MCE interval, which, combined with the in-
creased abundances of calcareous planktonic foraminifera
(e.g. Rotalipora cushmani) and dinocysts (e.g. Bosedinia
cf. sp. 1 & 3) with Tethyan affinities, is suggestive of an equa-
torial Atlantic Tethyan influence (Fig. 8; for a detailed dis-
cussion of Tethyan—boreal foraminiferal distribution within
Colorado, see Eicher and Diner, 1985). However, it is only
during the deposition of the middle part of the Lincoln
Shale (~95.6 Ma) that abundant prasinophyte phycomata,
increased trace metal enrichments and reduced dinocyst di-
versity point towards a persistent influence of an equatorial
Atlantic Tethyan water mass. These proxies reach maxima
along with the abundance of Bosedinia cf. sp. 1 & 3 dur-
ing the deposition of the Hartland Shale Mb. (~ 95 Ma; t2:
Fig. 14), indicating the marine transgression of equatorial
Atlantic Tethyan waters into the KWIS and mirrors the third-
order eustatic Greenhorn cycle (Kauffman, 1977) reaching
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the maximum flooding at ~94.7 Ma (see supplemental in-
formation). The long-term (third-order) trends in water-mass
evolution reported here are therefore likely driven by vari-
ations in eustasy related to regional tectonic and/or mantle
plume-lithosphere dynamics associated with the emplace-
ment of LIPs (i.e. high Arctic, Caribbean) during this green-
house period lacking polar continental ice-sheets.

During peak transgression (~94.7Ma, t3; Fig. 14) a
significant oceanographic re-organization was marked ini-
tially by increased bottom-water current activity resulting in
widespread hiatal surfaces across the KWIS and with the
rapid onset of more oligotrophic, oxygenated and open ma-
rine conditions. These trends are evidenced by increased
diversity of dinocyst assemblages dominated by G cysts,
reduction in trace metals abundances, reduced TOC and
isorenieratene derivatives (see Sun et al., 2016) as well
as increased bioturbation and diverse benthic foraminifera
abundances cumulating in the development of the ben-
thonic/benthic oxic zone (Eicher and Worstell, 1970; Keller
and Pardo, 2004). This environmental shift is interpreted to
reflect the rapid southward incursion of a northerly sourced
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water mass into the central and southern KWIS and is sup-
ported by the equatorial migration of boreal dinocyst taxa
(e.g. Cyclonephelium compactum—membraniphorum mor-
phological plexus; Eldrett et al., 2014; van Helmond et al.,
2016), occurring during a period of climate cooling with
minima (3-5°C cooling) during the PCE (Jarvis et al.,
2011; van Helmond et al., 2014, 2016; Elderbak and Leckie,
2016). Therefore, the increase in abundance and diversity of
foraminiferal/molluscan and ammonite assemblages in the
KWIS (McNeil and Caldwell, 1981; Kauffman, 1984, 1985;
Eicher and Diner, 1985; Elder, 1985; Leckie et al., 1998;
Caldwell et al., 1993; Kauffman and Caldwell, 1993, El-
derbak and Leckie, 2016) and the lithologic transition from
organic-rich mudrocks to limestone-dominated facies (Cor-
bett et al., 2014; Lowery et al., 2014) in the latest Ceno-
manian does not reflect the incursion of Tethyan water but
instead the southward flow of a boreal water mass at this
time. Comparable dinocyst assemblages including diversi-
fied G cysts are recorded (i) in the Canadian KWIS through-
out the Cenomanian and Turonian (e.g. Singh, 1983; Bloch
et al., 1999), albeit with higher numbers of boreal P-cyst
taxa including Isabelidinium magnum and Eurydinium glom-
eratum, and (ii) in coeval sediments from European shelves
(e.g. Foucher, 1980; Jarvis et al., 1988, 2011; Fitzpatrick,
1995; Pearce et al., 2003, 2009; Lignum, 2009), which also
correspond with the influx of boreal macro-fauna (Jefferies,
1962, 1963; Gale and Christensen, 1996; Voigt et al., 2006;
Jarvis et al., 2011). Evidence for the southward incursion
of a northerly sourced water mass during the latest Ceno-
manian is recorded in all the studied sections spanning the
central and eastern part of the KWIS and therefore does not
support a more complex oceanographic system such as that
modelled by Slingerland et al. (1996) and Kump and Slinger-
land (1999). The data presented here indicate that the ini-
tial inflow of equatorial Atlantic Tethyan water across the
southern gateway is completely replaced by the almost si-
multaneous southward flow of boreal water (see also van
Helmond et al., 2016), with no evidence for a contempora-
neously counter-flowing Tethyan water mass along the east-
ern margin. However, based on the limited geographic extent
of the studied sections these findings are considered tenta-
tive, with additional palynological and geochemical investi-
gations on the eastern margin of the KWIS being required to
constrain the lateral variability in possible water-mass prop-
erties.

Although the migration of boreal dinocyst taxa (namely
the Cyclonephelium compactum—membraniphorum morpho-
logical plexus; van Helmond et al., 2016) during the PCE is
not recorded further to the south in the equatorial North At-
lantic; a similar shift in palynological assemblages, includ-
ing a marked decline in prasinophyte algae, is recorded in
the shallower shelf settings on Demerara Rise (ODP Site
1261). Furthermore, at ODP Site 1261, the recorded shift
towards a more diverse and open-marine dinocyst assem-
blage is also associated with an increase in the abundance of
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organic foraminiferal test linings and re-population by cal-
careous benthic foraminifera (Friedrich et al., 2006, 2011),
which, combined with a reduction in redox-sensitive trace
metals, may indicate an improvement in environmental con-
ditions, and a reduction in the oxygen minimum zone. How-
ever, it should be noted that organic matter concentration re-
mains high. This shift in environmental conditions also corre-
sponds with a sea surface temperature minimum in the lower
part of the OAE-2 CIE (up to 4 °C; Forster et al., 2007) on the
flank of Demerara Rise (ODP Site 1260) and perhaps marks
the southernmost influence of a boreal water mass. However,
in Site 1260 Bosedinia cf. sp.1 & 3 remains abundant despite
the decline in both prasinophyte algae and redox trace metals
and the associated increase in benthic foraminifera, indicat-
ing more complex interaction between water masses and the
oxygen minimum zone along the slope. The southern expres-
sion of this boreal influence is therefore limited in duration
and extent, mostly affecting shallower water settings. These
findings are consistent with Neodymium (Nd) isotope data
from Demerara Rise indicative of circulation pattern change
in the Atlantic- Tethys at this time (Zheng et al., 2016; Martin
etal., 2012).

The early Turonian to Coniacian (~94-89 Ma, t4-t5:
Fig. 14) interval was characterized by two further proposed
incursions of both boreal and equatorial Atlantic Tethyan
waters into the KWIS. The first Turonian incursion of bo-
real water into the southern KWIS (~ 92.5 Ma) was marked
by increased bottom water currents and a 125-210kyr hi-
atal interval in Iona-1 (Eldrett et al., 2015a, b). This hi-
atal interval correlates with that of much greater duration
in shallower shelf setting of Innes-1 (>2Myr) and is co-
eval with the regional middle-lower Turonian hiatus iden-
tified throughout the KWIS (e.g. Ewing, 2013). In the cen-
tral KWIS, at the Pueblo GSSP, the upper part of the lower
Turonian and lower part of the middle Turonian substages
contain a marked increase in the boreal P-cyst taxa Isabeli-
dinium magnum and Eurydinium glomeratum. The most no-
table incursion of equatorial Atlantic Tethyan water in Texas
in the Turonian corresponds with the Langtry Mb. of the
Eagle Ford Gr. and is characterized by greater abundance
of prasinophyte phycomata, a greater dinocyst P : G ratio,
reduced dinocyst diversity, enrichments in redox-sensitive
trace metals and enhanced preservation of TOC — all indica-
tive of increased surface water organic matter production and
preservation due to partially or episodically anoxic bottom
water or sediment—water conditions. The second main in-
cursion of boreal water into Texas occurs in the Turonian—
Coniacian and is marked by the development of chalk fa-
cies (e.g. Austin Chalk), diverse dinocyst assemblages and
a reduction in redox-sensitive trace metals and TOC, in-
dicative of oxygenated and oligotrophic marine conditions.
Although the transition from the Eagle Ford Gr. to Austin
Chalk is conformable in both Iona-1 and Innes-1, an uncon-
formity is identified on the San Marcos Arch (Lowery et al.,
2014). With the exception of the Buda—Eagle Ford unconfor-
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Figure 15. (a) Logarithmic plot of Mo : U covariance for the studied sections. Diagonal dashed lines represent multiples (0.3, 1, and 3)
of Mo : U ratio (3) of present-day seawater (SW). Values greater than 3 times SW are generally associated with the particulate shuttle,
whereas those trending with modern-day seawater reflect an unrestricted marine trend with a weak positive Mo : U covariance. (b) Mo-TOC
covariance data for studied sections compared to modern anoxic silled-basin environments (after Tribovillard et al., 2012). Regressions of
the modern datasets are shown as solid lines with MO / TOC regression slopes displayed (Tribovillard et al., 2012). The proposed refractory

organic matter trend is added as a dashed line.

mity that marks the initial flooding of the southern KWIS by
Tethyan waters, the other hiatal surfaces identified through-
out the KWIS appear to be associated with increased bottom-
water current activity linked to regional climatic and/or tec-
tonic subsidence-induced incursions of boreal water that ven-
tilated the seaway rather than solely to global eustatic drivers
that are difficult to reconcile with a greenhouse world without
significant polar ice. The development of coeval hiatal inter-
vals is also recorded near the top and base of the OAE-2 CIE
in the Bonarelli interval, Italy, where vigorous bottom cur-
rents were proposed to be induced by warm and dense saline
deep waters that originated on tropical shelves in the Tethys
and/or proto-Atlantic Ocean (Gambacorta et al., 2016). Al-
though our contribution proposes an alternative mechanism
for invigorated circulation, it further supports the suggestion
by Gambacorta et al. (2016) that enhanced current activity
and associated oceanographic circulation was much more dy-
namic than previously thought during times of greenhouse
climates, when conditions were thought to be more equitable.

4.2.3 Global trace metal draw-down during OAE-2

During the Cenomanian, sediments influenced by equato-
rial Atlantic Tethyan waters record redox-sensitive trace met-
als that are enriched compared to average shale, in particu-
lar molybdenum (Mo), which requires free HS for authi-
genic sedimentary enrichment (Helz et al., 1996) and is in-
terpreted as reflecting anoxic to euxinic depositional condi-
tions favouring organic matter preservation (see Algeo and
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Lyons, 2006). The relative enrichment of Mo compared to
the other redox elements such as U and V in the pre-OAE-2
lower Eagle Ford Gr. suggests an active cycling of Mn-Fe
particulates (especially manganese oxyhydroxides) between
the water column and sediment water interface characteris-
tic of a “particulate shuttle” (Algeo and Tribovillard, 2009;
Tribovillard et al., 2012; Fig. 15a). The presence of aryl iso-
prenoids in this interval from the Iona-1 core also supports at
least temporary and partial water column (photic zone) eux-
inia at this time (Sun et al., 2016).

During the onset of OAE-2 the recorded depletion of sed-
imentary redox-sensitive trace metals has been proposed to
reflect the draw-down of the global trace metal seawater in-
ventory due to sequestration in sediments under expanded
anoxic/euxinic conditions (Hetzel et al., 2009; Dickson et
al., 2016; Goldberg et al., 2016). These interpretations are
based primarily on the exceptionally low Mo / TOC gradi-
ents compared to those documented in modern-day anoxic
silled marine basins (Algeo and Lyons, 2006), whereby re-
moval of aqueous Mo concentrations under anoxic/euxinic
conditions to the sediment is in excess to resupply by inter-
basinal transfer of water masses. This contribution also doc-
uments exceptionally low Mo / TOC gradients for sediments
spanning the OAE-2 interval from Demerara Rise and SW
Texas (Fig. 15b; also see Hetzel et al., 2009; Eldrett et al.,
2014 Fig. DR3), as well as from those recovered from the
upper Eagle Ford Gr. and from the Dakota Sandstone inter-
val from the Portland-1 core (data file in the Supplement).
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However, there are three main challenges to the applica-
tion of Mo / TOC gradients to infer global trace metal inven-
tory draw-down during OAE-2. Firstly, during the OAE-2 in-
terval in the KWIS, Demerara Rise and Kerguelen Plateau,
the weak positive co-variance between Mo and U indi-
cates deposition along the unrestricted open marine trend
(Fig. 15a; see also Eldrett et al., 2014), an interpretation
supported by the palynological assemblages presented here.
Therefore, during the OAE-2 interval, these localities were
not subject to significant hydrographic restriction (e.g. silled
basins), being deposited instead along continental margins.
Thus, the application of modern-day Mo / TOC gradients to
infer hydrographic restriction and trace metal draw-down for
OAE-2 may not be valid and requires additional study (see
discussion in Algeo and Lyons, 2006).

Secondly, as Mo is mostly incorporated into organic mat-
ter, we propose that the various contributions of different
types of organic matter would affect Mo / TOC gradients.
Whereas sulfurized organic matter is known to enhance Mo
uptake by the sediment (Tribovillard et al., 2004), the impact
of variable contributions of labile versus refractory organic
matter is not well constrained. The palynological analyses
presented here demonstrate increased contribution of refrac-
tory terrigenous organic matter (>7 : M ratio) in the sam-
ples with low Mo / TOC values from the KWIS and Demer-
ara Rise (Fig. 15b). We cannot determine the impact of this
observation as the 7' : M ratio reflects a relatively small pro-
portion of the total refractory organic matter; however, fur-
ther investigation is warranted into the variable origin of the
more dominant and relatively unknown component, namely
AOM, and whether Mo is preferentially incorporated within
different organic matter components.

Thirdly, in all the sections presented here the depletion in
redox-sensitive trace metals during OAE-2 is associated with
either oxygenated depositional conditions or an improvement
in redox state. Therefore, the recorded depletion in redox-
sensitive trace metals, in particular Mo, may instead record a
genuine environmental response to benthic oxygenation pre-
venting authigenic sedimentary enrichments as, under oxic
conditions, Mo is present in seawater as the stable and largely
unreactive molybdate oxyanion. These observations are in-
terpreted to be related to the equatorial migration of boreal
water masses promoting water column de-stratification and
partial ventilation/re-oxygenation of the surface to deep wa-
ters.

These challenges were partly addressed by Dickson et
al. (2016), who proposed that the recorded low Mo / TOC
gradients from Site 1138, Kerguelen Plateau, reflected the
widespread and global nature of trace-metal depletion dur-
ing OAE-2 by demonstrating that (i) localized oxygenation
was also not responsible due to Mo isotope compositions and
(ii) organic matter type was not a control due to the low abun-
dance of terrigenous material. Palynological investigation of
these sediments (this study) confirms the low abundance of
terrigenous material at Site 1138. In addition, the dinocyst
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assemblage recovered from this site is typical of a well-
oxygenated boreal equivalent (austral) water mass with high
diversity and abundance of G cysts, notably Cyclonephelium
compactum—membraniphorum dinocyst plexus, and outer
neritic to open marine taxa such as Spiniferites ramosus and
Pterodinium cingulatum. These findings would suggest de-
position under the influence of an oxygenated and open ma-
rine/hydrographically unrestricted austral (Southern Hemi-
sphere) surface water mass on the Kerguelen Plateau, con-
sistent with the relatively low §°%/°Mo values and Mo-U
co-variance trends reflecting oxic-suboxic depositional con-
ditions with at most sulfidic pore waters (Dickson et al.,
2016). Furthermore, conditions at the sediment—water in-
terface were sufficient for the presence of a low-diversity,
high-carbon-flux benthic foraminifera biofacies (Holbourn
and Kuhnt, 2002), as also indicated by the rare occurrence of
organic linings of benthic foraminifera throughout the OAE-
2 interval at Site 1138 (this study). Therefore, in addition to
trace metal draw-down as an explanation to reconcile low
Mo / TOC gradients and hydrologically unrestricted regime,
it is possible that, even in the organic-rich laminated sed-
imentary intervals (i.e. sites 1138 and 1260), a slight in-
crease in oxic conditions related to the influence of oxy-
genated high-latitude austral-boreal water masses may re-
sult in aqueous H»S concentrations at the sediment—water
interface being below the critical threshold for conversion
of molybdate to thiomolybdate (Helz et al., 1996), result-
ing in the observed depletion in Mo sedimentary concentra-
tions and low Mo / TOC gradients during OAE-2. This in-
terpretation is also supported by the occurrence of benthic
foraminifera within the OAE-2 interval in both organic-rich
and organic-lean sedimentary sections from Demerara Rise
(Friedrich et al., 2006, 2011), Kerguelen Plateau (Holbourn
and Kuhnt, 2002), Texas (Lowery et al., 2014; Dodsworth,
2016; this study) and central KWIS (e.g. Eicher and Worstell,
1970; Keller and Pardo, 2004; Elderbeck and Leckie, 2016;
and references therein).

5 Conclusions

This integrated palynological and geochemical study using
a multidisciplinary approach has provided insights into de-
positional environments of the Cenomanian—Turonian Eagle
Ford Gr. and bounding formations of the Buda Limestone
and Austin Chalk from southwest Texas, USA. The study
spans a physiographic transect across the Comanchean Shelf
from the shallow setting of the San Marcos Arch (AU2) to the
main shelf (Innes-1), the slope (Iona-1) and the intra-shelf
basin (well X). Furthermore, comparison of the palaeoen-
vironmental trends recorded in the Cenomanian—Coniacian
section from SW Texas to those recorded further north within
the central KWIS (USGS Portland-1) and to the south in the
equatorial North Atlantic (ODP sites 1260, 1261, Demerara
Rise) and Kerguelen Plateau (ODP Site 1138) allows the in-
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terpretation of the evolution of various water masses along
this north-south transect. The main findings are as follows:

1. High-latitude boreal and austral (Northern and South-
ern Hemisphere) and equatorial Atlantic Tethyan water
masses can be distinguished based on their distinct pa-
lynological assemblages and geochemical signatures.

2. The northward flow of a suboxic-anoxic equatorial At-
lantic Tethyan water mass into the Western Interior
Seaway occurred during the early-middle Cenomanian,
followed by a major re-organization of the oceano-
graphic regime during the latest Cenomanian—Turonian
as a full connection of the Western Interior Seaway
with a northerly boreal water mass was established dur-
ing peak transgression. This oceanographic change pro-
moted de-stratification of the water column and im-
proved oxygenation throughout the KWIS and as far
south as the Demerara Rise.

3. These long-term trends in water-mass evolution are
tentatively linked to third order eustatic transgression-
regression cycles driven by regional Cordilleran tec-
tonic and/or mantle plume-lithosphere dynamics asso-
ciated with the emplacement of LIPs during this time
as well as shorter-term variations in climate (i.e. Plenus
Cold Event).

4. Low Mo / TOC ratios in the equatorial North Atlantic in
comparison to other oceanic basins during the onset of
OAE-2 argue for partial restriction and draw-down of
global trace metal seawater inventories. However, this
study demonstrates that the recorded decline in redox-
sensitive trace metals during the onset of OAE-2 likely
reflects a genuine oxygenation event related to open
water-mass exchange at this time and/or is further com-
plicated by variable contribution of organic matter from
different sources (e.g. refractory/terrigenous material)
that requires further evaluation.

Data availability. The supplementary data file is in the process of
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