Articles | Volume 13, issue 6
https://doi.org/10.5194/cp-13-689-2017
https://doi.org/10.5194/cp-13-689-2017
Research article
 | 
14 Jun 2017
Research article |  | 14 Jun 2017

A new high-resolution pollen sequence at Lake Van, Turkey: insights into penultimate interglacial–glacial climate change on vegetation history

Nadine Pickarski and Thomas Litt

Abstract. A new detailed pollen and oxygen isotope record of the penultimate interglacial–glacial cycle, corresponding to the marine isotope stage (MIS) 7–6, has been generated from the Ahlat Ridge (AR) sediment core at Lake Van, Turkey. The presented Lake Van pollen record (ca. 250.2–128.8 ka) displays the highest temporal resolution in this region with a mean sampling interval of  ∼  540 years.

The integration of all available proxies shows three temperate intervals of high effective soil moisture availability. This is evidenced by the predominance of steppe-forested landscapes (oak steppe-forest) similar to the present interglacial vegetation in this sensitive semiarid region between the Black Sea, the Caspian Sea, and the Mediterranean Sea.

The wettest and warmest stage, as indicated by highest temperate tree percentages, can be broadly correlated with MIS 7c, while the amplitude of the tree population maximum during the oldest penultimate interglacial (MIS 7e) appears to be reduced due to warm but drier climatic conditions. The detailed comparison of the penultimate interglacial complex (MIS 7) to the last interglacial (Eemian, MIS 5e) and the current interglacial (Holocene, MIS 1) provides a vivid illustration of possible differences in the successive climatic cycles. Intervening periods of treeless vegetation can be correlated with MIS 7d and 7a, in which open landscapes favor local erosion and detrital sedimentation. The predominance of steppe elements (e.g., Artemisia, Chenopodiaceae) during MIS 7d indicates very dry and cold climatic conditions. In contrast, the occurrence of higher temperate tree percentages (mainly deciduous Quercus) throughout MIS 7b points to relatively humid and mild conditions, which is in agreement with other pollen sequences in southern Europe.

Despite the general dominance of dry and cold desert-steppe vegetation during the penultimate glacial (broadly equivalent to MIS 6), this period can be divided into two parts: an early stage (ca. 193–157 ka) with higher oscillations in tree percentages and a later stage (ca. 157–131 ka) with lower tree percentages and subdued oscillations. This subdivision of the penultimate glacial is also seen in other pollen records from southern Europe (e.g., MD01-2444 and I-284; Margari et al., 2010; Roucoux et al., 2011). The occurring vegetation pattern is analogous to the division of MIS 3 and MIS 2 during the last glacial in the same sediment sequence. Furthermore, we are able to identify the MIS 6e event (ca. 179–159 ka) as described in marine pollen records, which reveals clear climate variability due to rapid alternation in the vegetation cover.

In comparison with long European pollen archives, speleothem isotope records from the Near East, and global climate parameters (e.g., insolation, atmospheric CO2 content), the new high-resolution Lake Van record presents an improved insight into regional vegetation dynamics and climate variability in the eastern Mediterranean region.

Download
Short summary
We present a new detailed pollen and isotope record from Lake Van (Turkey) spanning the period from 250 to 128 ka. In contrast to SW Europe, all three terrestrial warm intervals at Lake Van are characterized by clear interglacial conditions. The largest forest expansion occurred during MIS 7c instead of MIS 7e. Our record also reveals high oscillations between 193 and 157 ka followed by low variations (157 to 131 ka) that highlighted Dansgaard–Oeschger-like events during the penultimate glacial.