Articles | Volume 13, issue 3
Clim. Past, 13, 185–199, 2017
Clim. Past, 13, 185–199, 2017

Research article 08 Mar 2017

Research article | 08 Mar 2017

A chironomid-based mean July temperature inference model from the south-east margin of the Tibetan Plateau, China

Enlou Zhang1, Jie Chang1, Yanmin Cao2, Hongqu Tang3, Pete Langdon4, James Shulmeister5, Rong Wang1, Xiangdong Yang1, and Ji Shen1 Enlou Zhang et al.
  • 1State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing 210008, P. R. China
  • 2College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
  • 3Research Centre of Hydrobiology, Jinan University, Guangzhou 510632, P. R. China
  • 4Geography and Environment, University of Southampton, Southampton SO17 1BJ, UK
  • 5School of Earth and Environmental Sciences, University of Queensland, St Lucia, Brisbane, Qld 4072, Australia

Abstract. A chironomid-based calibration training set comprised of 100 lakes from south-western China was established. Multivariate ordination analyses were used to investigate the relationship between the distribution and abundance of chironomid species and 18 environmental variables from these lakes. Canonical correspondence analyses (CCAs) and partial CCAs showed that mean July temperature is one of the independent and significant variables explaining the second-largest amount of variance after potassium ions (K+) in 100 south-western Chinese lakes. Quantitative transfer functions were created using the chironomid assemblages for this calibration data set. The second component of the weighted-average partial least squares (WA-PLS) model produced a coefficient of determination (r2bootstrap) of 0.63, maximum bias (bootstrap) of 5.16 and root-mean-square error of prediction (RMSEP) of 2.31 °C. We applied the transfer functions to a 150-year chironomid record from Tiancai Lake (26°38′3.8 N, 99°43′ E; 3898 m a.s.l.), Yunnan, China, to obtain mean July temperature inferences. We validated these results by applying several reconstruction diagnostics and comparing them to a 50-year instrumental record from the nearest weather station (26°51′29.22′′ N, 100°14′2.34′′ E; 2390 m a.s.l.). The transfer function performs well in this comparison. We argue that this 100-lake large training set is suitable for reconstruction work despite the low explanatory power of mean July temperature because it contains a complete range of modern temperature and environmental data for the chironomid taxa observed and is therefore robust.

Short summary
This paper reports the first development of sub-fossil chironomid-based mean July temperature transfer functions from China. The transfer functions yield reliable reconstructions that are comparable to the instrumental record. The application of this new tool will provide long-term quantitative palaeoclimate estimates from south-western China which is a critical region for understanding the dynamic and evolution of the Indian Ocean south-west Monsoon system.