Articles | Volume 13, issue 10
https://doi.org/10.5194/cp-13-1301-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-13-1301-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Late Holocene intensification of the westerly winds at the subantarctic Auckland Islands (51° S), New Zealand
Imogen M. Browne
CORRESPONDING AUTHOR
Department of Geology, University of Otago, Dunedin 9016, New Zealand
current address: College of Marine Science, University of South Florida,
St. Petersburg, FL 33701, USA
Christopher M. Moy
Department of Geology, University of Otago, Dunedin 9016, New Zealand
Christina R. Riesselman
Department of Geology, University of Otago, Dunedin 9016, New Zealand
Department of Marine Science, University of Otago, Dunedin 9016, New
Zealand
Helen L. Neil
National Institute of Water and Atmospheric Research (NIWA),
Wellington 6021, New Zealand
Lorelei G. Curtin
Department of Geology, University of Otago, Dunedin 9016, New Zealand
current address: Lamont-Doherty Earth Observatory, Columbia University,
Palisades, NY 10964, USA
Andrew R. Gorman
Department of Geology, University of Otago, Dunedin 9016, New Zealand
Gary S. Wilson
Department of Geology, University of Otago, Dunedin 9016, New Zealand
Department of Marine Science, University of Otago, Dunedin 9016, New
Zealand
New Zealand Antarctic Research Institute (NZARI), Christchurch 8053,
New Zealand
Related authors
No articles found.
Grace Duke, Josie Frazer, Briar Taylor-Silva, and Christina Riesselman
J. Micropalaeontol., 43, 139–163, https://doi.org/10.5194/jm-43-139-2024, https://doi.org/10.5194/jm-43-139-2024, 2024
Short summary
Short summary
Diatoms are dust-sized algae commonly found in the upper 100 m of the Southern Ocean. In this paper, we describe three new species found in sediments west of the Ross Sea, East Antarctica, aged about 3--2 Ma: Fragilariopsis clava, Fragilariopsis armandae, and Rouxia raggattensis. These species may be useful for determining the age of sediments and past environmental conditions at other locations around the Southern Ocean.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
Richard H. Levy, Gavin B. Dunbar, Marcus J. Vandergoes, Jamie D. Howarth, Tony Kingan, Alex R. Pyne, Grant Brotherston, Michael Clarke, Bob Dagg, Matthew Hill, Evan Kenton, Steve Little, Darcy Mandeno, Chris Moy, Philip Muldoon, Patrick Doyle, Conrad Raines, Peter Rutland, Delia Strong, Marianna Terezow, Leise Cochrane, Remo Cossu, Sean Fitzsimons, Fabio Florindo, Alexander L. Forrest, Andrew R. Gorman, Darrell S. Kaufman, Min Kyung Lee, Xun Li, Pontus Lurcock, Nicholas McKay, Faye Nelson, Jennifer Purdie, Heidi A. Roop, S. Geoffrey Schladow, Abha Sood, Phaedra Upton, Sharon L. Walker, and Gary S. Wilson
Sci. Dril., 24, 41–50, https://doi.org/10.5194/sd-24-41-2018, https://doi.org/10.5194/sd-24-41-2018, 2018
Short summary
Short summary
A new annually resolvable sedimentary record of southern hemisphere climate has been recovered from Lake Ohau, South Island, New Zealand. The Lake Ohau Climate History (LOCH) Project acquired cores from two sites that preserve an 80 m thick sequence of laminated mud that accumulated since the lake formed ~ 17 000 years ago. Cores were recovered using a purpose-built barge and drilling system designed to recover soft sediment from relatively thick sedimentary sequences at water depths up to 100 m.
Related subject area
Subject: Teleconnections | Archive: Marine Archives | Timescale: Holocene
Deoxygenation dynamics on the western Nile deep-sea fan during sapropel S1 from seasonal to millennial timescales
Variations of the Somali upwelling since 18.5 ka BP and its relationship with southwest monsoon rainfall
Terrigenous material supply to the Peruvian central continental shelf (Pisco, 14° S) during the last 1000 years: paleoclimatic implications
Holocene climate variability in the winter rainfall zone of South Africa
A model–data comparison of the Holocene global sea surface temperature evolution
Cécile L. Blanchet, Rik Tjallingii, Anja M. Schleicher, Stefan Schouten, Martin Frank, and Achim Brauer
Clim. Past, 17, 1025–1050, https://doi.org/10.5194/cp-17-1025-2021, https://doi.org/10.5194/cp-17-1025-2021, 2021
Short summary
Short summary
The Mediterranean Sea turned repeatedly into an oxygen-deprived basin during the geological past, as evidenced by distinct sediment layers called sapropels. We use here records of the last sapropel S1 retrieved in front of the Nile River to explore the relationships between riverine input and seawater oxygenation. We decipher the seasonal cycle of fluvial input and seawater chemistry as well as the decisive influence of primary productivity on deoxygenation at millennial timescales.
Durairaj Balaji, Ravi Bhushan, and Laxman Singh Chamyal
Clim. Past, 14, 1331–1343, https://doi.org/10.5194/cp-14-1331-2018, https://doi.org/10.5194/cp-14-1331-2018, 2018
Short summary
Short summary
Understanding the causes of past climatic changes plays a major role in deciphering monsoon variability. This study aims to understand past changes in siliceous productivity in the Somali upwelling area, as well as the palaeo-upwelling strength and its relation with southwest monsoon (SWM) rainfall. It is found that the Somali upwelling has historically had a negative impact on SML rainfall; this has important implications as previous studies predict a future increase in the Somali upwelling.
Francisco Javier Briceño-Zuluaga, Abdelfettah Sifeddine, Sandrine Caquineau, Jorge Cardich, Renato Salvatteci, Dimitri Gutierrez, Luc Ortlieb, Federico Velazco, Hugues Boucher, and Carine Machado
Clim. Past, 12, 787–798, https://doi.org/10.5194/cp-12-787-2016, https://doi.org/10.5194/cp-12-787-2016, 2016
Short summary
Short summary
Comparison between records reveals a coherent match between the meridional displacement of the ITCZ-SPSH system and the regional fluvial and aeolian terrigenous input variability. The aeolian input intensity and the anoxic conditions recorded by marine sediments showed a close link that suggests a common mechanism associated with SPSH displacement. Changes in sediment discharge to the continental shelf are linked to the southward displacement of the ITCZ-SPSH and Walker circulation.
S. Weldeab, J.-B. W. Stuut, R. R. Schneider, and W. Siebel
Clim. Past, 9, 2347–2364, https://doi.org/10.5194/cp-9-2347-2013, https://doi.org/10.5194/cp-9-2347-2013, 2013
G. Lohmann, M. Pfeiffer, T. Laepple, G. Leduc, and J.-H. Kim
Clim. Past, 9, 1807–1839, https://doi.org/10.5194/cp-9-1807-2013, https://doi.org/10.5194/cp-9-1807-2013, 2013
Cited articles
Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J., and England, M. H.: Evolution of the Southern Annular Mode during the past millennium, Nat. Clim. Chang., 4, 564–569, https://doi.org/10.1038/nclimate2235, 2014.
Adams, C. J.: Age of the volcanoes and granite basement of the Auckland Islands, Southwest Pacific, New Zeal. J. Geol. Geophys., 26, 227–237, https://doi.org/10.1080/00288306.1983.10422237, 1983.
Altabet, M. A. and François, F.: Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization, Biogeochem. Cycles., 8, 103–116, https://doi.org/10.1029/93GB03396, 1994.
Anderson, R. F., Ali, S., Bradtmiller, L. I., Neilsen, S. H. H., Fleisher, M. Q., Anderson, B. E., and Burckle, L. H.: Wind-Driven upwelling in the Southern Ocean and the Deglacial rise in Atmospheric CO2, Science, 323, 1443–1448, https://doi.org/10.1126/science.1167441, 2009.
Aracena, C., Kilian, R., Lange, C. B., Bertrand, S., Lamy, F., Arz, H. W., De Pol-Holz, R., Baeza, O., Pantoja, S., and Kissel, C.: Holocene variations in productivity associated with changes in glacier activity and freshwater flux in the central basin of the Strait of Magellan, Palaeogeogr. Palaeoclimatol. Palaeoecol., 436, 112–122, https://doi.org/10.1016/j.palaeo.2015.06.023, 2015.
Archer, C. L. and Caldeira, K.: Historical trends in the jet streams, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL033614, 2008.
Ariztegui, D., Gilli, A., Anselmetti, F. S., Goni, R. A., Belardi, J. B., and Espinosa, S.: Lake-level changes in central Patagonia (Argentina): crossing environmental thresholds for Late glacial and Holocene human occupation, J. Quat. Sci., 25, 1092–1099, https://doi.org/10.1002/jqs.1352, 2010.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Bostock, H. C., Hayward, B. W., Neil, H. L., Sabaa, A. T., and Scott, G. H.: Changes in the position of the Subtropical Front south of New Zealand since the last glacial period, Paleoceanography, 30, 824–844, https://doi.org/10.1002/2014PA002652, 2015.
Carter, L., McCave, I. N., and Williams, M. J. M.: Circulation and Water Masses of the Southern Ocean: A Review, in: Developments in Earth and Environmental Sciences, vol. 8, edited by: Florindo, F. and Sigert, M., 85–114, Elsevier, 2009.
Chiang, J. C. H., Lee, S. Y., Putnam, A. E., and Wang, X.: South Pacific Split Jet, ITCZ shifts, and atmospheric North-South linkages during abrupt climate changes of the last glacial period, Earth Planet. Sci. Lett., 406, 233–246, https://doi.org/10.1016/j.epsl.2014.09.012, 2014.
Clement, A. J. H., Whitehouse, P. L., and Sloss, C. R.: An examination of spatial variability in the timing and magnitude of Holocene relative sea-level changes in the New Zealand archipelago, Quat. Sci. Rev., 131, 73–101, https://doi.org/10.1016/j.quascirev.2015.09.025, 2016.
Dinniman, M. S., Klinck, J. M., and Hofmann, E. E.: Sensitivity of circumpolar deep water transport and ice shelf basal melt along the west Antarctic Peninsula to changes in the winds, J. Clim., 25, 4799–4816, https://doi.org/10.1175/JCLI-D-11-00307.1, 2012.
Dlabola, E. K., Wilson, G. S., Gorman, A. R., Riesselman, C. R., and Moy, C. M.: A post-glacial relative sea-level curve from Fiordland, New Zealand, Glob. Planet. Change, 131, 104–114, https://doi.org/10.1016/j.gloplacha.2015.05.010, 2015.
Fleming, C. A., Mildenhall, D. C., and Moar, N. T.: Quaternary sediments and plant microfossils from Enderby Island, Auckland Islands, J. R. Soc. New Zeal., 6, 433–458, https://doi.org/10.1080/03036758.1976.10421484, 1976.
Fletcher, M.-S. and Moreno, P. I.: Have the Southern Westerlies changed in a zonally symmetric manner over the last 14,000 years? A hemisphere-wide take on a controversial problem, Quat. Int., 253, 32–46, https://doi.org/10.1016/j.quaint.2011.04.042, 2012.
Garreaud, R.: Precipitation and Circulation Covariability in the Extratropics, J. Clim., 20, 4789–4797, https://doi.org/10.1175/JCLI4257.1, 2007.
Garreaud, R., Lopez, P., Minvielle, M., and Rojas, M.: Large-scale control on the Patagonian climate, J. Clim., 26, 215–230, https://doi.org/10.1175/JCLI-D-12-00001.1, 2013.
Gellatly, A. F., Chinn, T. J. H., and Rothlisberger, F.: Holocene glacier variations in New Zealand: A review, Quat. Sci. Rev., 7, 227–242, https://doi.org/10.1016/0277-3791(88)90008-X, 1988.
Gibbs, M. T., Bowman, M. J., and Dietrich, D. E.: Maintenance of Near-Surface Stratification in Doubtful Sound, a New Zealand Fjord, Estuar. Coast. Shelf Sci., 51, 683–704, https://doi.org/10.1006/ecss.2000.0716, 2000.
Graham, D. W., Corliss, B. H., Bender, M. L., and Keigwin, L. D.: Carbon and oxygen isotopic disequilibria of recent deep-sea benthic foraminifera*, Mar. Micropaleontol., 6, 483–497, 1981.
Grossman, E. L.: Stable isotope fractionation in live benthic foraminifera from the southern California Borderland, Palaeogeogr. Palaeoclimatol. Palaeoecol., 47, 301–327, https://doi.org/10.1016/0031-0182(84)90100-7, 1984.
Hald, M. and Vorren, T. O.: Foraminiferal stratigraphy and environment of Late Weichselian deposits on the continental shelf off Troms, northern Norway, Mar. Micropaleontol., 12, 129–160, https://doi.org/10.1016/0377-8398(87)90018-1, 1987.
Hall, A. and Visbeck, M.: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode, J. Clim., 15, 3043–3057, 2002.
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Röhl, U.: Southward migration of the intertropical convergence zone through the Holocene., Science, 293, 1304–8, https://doi.org/10.1126/science.1059725, 2001.
Hinojosa, J. L., Moy, C. M., Stirling, C. H., Wilson, G. S., and Eglington, T. I.: Carbon cycling and burial in New Zealand' s fjords, Geochemistry Geophys. Geosystems, 15, 4047–4063, https://doi.org/10.1002/2014GC005433, 2014.
Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., Heaton, T. J., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C. S. M., and Zimmerman, S. R. H.: SHCAL13 Southern Hemisphere calibration, 0–50000 years CAL BP, Radiocarbon, 55, 1889–1903, 2013.
Hut, G.: Consultant's group meeting on stable isotope reference samples for geochemical and hydrological investigations, International Atomic Energy Agency, Vienna, 1987.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteor. Soc., 670, 437–470, 1996.
Kilian, R. and Lamy, F.: A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55° S), Quat. Sci. Rev., 53, 1–23, https://doi.org/10.1016/j.quascirev.2012.07.017, 2012.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochim. Cosmochim. Acta, 61, 3461–3475, 1997.
Knudson, K. P., Hendy, I. L., and Neil, H. L.: Re-examining Southern Hemisphere westerly wind behavior: insights from a late Holocene precipitation reconstruction using New Zealand fjord sediments, Quat. Sci. Rev., 30, 3124–3138, https://doi.org/10.1016/j.quascirev.2011.07.017, 2011.
Koffman, B. G., Kreutz, K. J., Breton, D. J., Kane, E. J., Winski, D. A., Birkel, S. D., Kurbatov, A. V., and Handley, M. J.: Centennial-scale variability of the Southern Hemisphere westerly wind belt in the eastern Pacific over the past two millennia, Clim. Past, 10, 1125–1144, https://doi.org/10.5194/cp-10-1125-2014, 2014.
Lamy, F., Hebbeln, D., Ro, U., and Wefer, G.: Holocene rainfall variability in southern Chile?: a marine record of latitudinal shifts of the Southern Westerlies, Earth Planet. Sci. Lett., 185, 369–382, 2001.
Lamy, F., Kilian, R., Arz, H. W., Francois, J.-P., Kaiser, J., Prange, M., and Steinke, T.: Holocene changes in the position and intensity of the southern westerly wind belt, Nat. Geosci., 3, 695–699, https://doi.org/10.1038/ngeo959, 2010.
Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C. E., Heuven, S. Van, Hoppema, M., Metzl, N., Sweeney, C., and Takahashi, T.: The reinvigoration of the Southern Ocean carbon sink, Science, 349, 1221–1224, https://doi.org/10.1126/science.aab2620, 2015.
Lenton, A., Tilbrook, B., Law, R. M., Bakker, D., Doney, S. C., Gruber, N., Ishii, M., Hoppema, M., Lovenduski, N. S., Matear, R. J., McNeil, B. I., Metzl, N., Mikaloff Fletcher, S. E., Monteiro, P. M. S., Rödenbeck, C., Sweeney, C., and Takahashi, T.: Sea-air CO2 fluxes in the Southern Ocean for the period 1990–2009, Biogeosciences, 10, 4037–4054, https://doi.org/10.5194/bg-10-4037-2013, 2013.
Le Quéré, C., Rödenbeck, C., Buitenhuis, E. T., Conway, T. J., Langenfelds, R., Gomez, A., Labuschagne, C., Ramonet, M., Nakazawa, T., Metzl, N., Gillett, N., and Heimann, M.: Saturation of the southern ocean CO2 sink due to recent climate change, Science, 316, 1735–8, https://doi.org/10.1126/science.1136188, 2007.
Lorrey, A., Williams, P., Salinger, J., Martin, T., Palmer, J., Fowler, A., Zhao, J., and Neil, H.: Speleothem stable isotope records interpreted within a multi-proxy framework and implications for New Zealand palaeoclimate reconstruction, Quat. Int., 187, 52–75, https://doi.org/10.1016/j.quaint.2007.09.039, 2008.
Lorrey, A., Fauchereau, N., Stanton, C., Chappell, P., Phipps, S., Mackintosh, A., Renwick, J., Goodwin, I., and Fowler, A.: The Little Ice Age climate of New Zealand reconstructed from Southern Alps cirque glaciers: A synoptic type approach, Clim. Dyn., 42, 3039–3060, https://doi.org/10.1007/s00382-013-1876-8, 2014.
Lovenduski, N. S. and Gruber, N.: Impact of the Southern Annular Mode on Southern Ocean circulation and biology, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL022727, 2005.
Lovenduski, N., Gruber, N., and Doney, S.: Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink, Global Biogeochem. Cy., 22, 1–9, https://doi.org/10.1029/2007GB003139, 2008.
Lynch-Stieglitz, J., Curry, W. B., and Slowey, N.: A geostrophic transport estimate for the Florida Current from the oxygen isotope composition of benthic foraminifera, Paleoceanography, 14, 360–373, 1999.
Mackensen, A., Grobe, H., Kuhn, G., and Fiitterer, D. K.: Benthic foraminiferal assemblages from the eastern Weddell Sea between 68 and 73° S: Distribution, ecology and fossilization potential, Mar. Micropaleontol., 16, 241–283, https://doi.org/10.1016/0377-8398(90)90006-8, 1990.
Mackensen, A., Schumacher, S., Radke, J., and Schmidt, D. N.: Microhabitat preferences and stable carbon isotopes of endobenthic foraminifera: clue to quantitative reconstruction of oceanic new production?, Mar. Micropaleontol., 40, 233–258, 2000.
Marchitto, T. M., Curry, W. B., Lynch-Stieglitz, J., Bryan, S. P., Cobb, K. M., and Lund, D. C.: Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera, Geochim. Cosmochim. Acta, 130, 1–11, https://doi.org/10.1016/j.gca.2013.12.034, 2014.
Marshall, G. J.: Trends in the Southern Annular Mode from observations and reanalyses, J. Clim., 16, 4134–4143, 2003.
Martinson, D. G. and McKee, D. C.: Transport of warm Upper Circumpolar Deep Water onto the western Antarctic Peninsula continental shelf, Ocean Sci., 8, 433–442, https://doi.org/10.5194/os-8-433-2012, 2012.
Martinson, D. G., Stammerjohn, S. E., Iannuzzi, R. A., Smith, R. C., and Vernet, M.: Western Antarctic Peninsula physical oceanography and spatio–temporal variability, Deep-Sea Res. Pt. II, 55, 1964–1987, https://doi.org/10.1016/j.dsr2.2008.04.038, 2008.
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J. F., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X., and Timmermann, A.: Information from Paleoclimate Archives, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Mayewski, P. A., Rohling, E. E., Curt Stager, J., Karlén, W., Maasch, K. a., David Meeker, L., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R., and Steig, E. J.: Holocene climate variability, Quat. Res., 62, 243–255, https://doi.org/10.1016/j.yqres.2004.07.001, 2004.
McCorkle, D., Keigwin, L., Corliss, B., and Emerson, S.: The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera, Paleoceanography, 5, 161–185, 1990.
McCorkle, D. C., Corliss, B. H., and Farnham, C. A.: Vertical distributions and stable isotopic compositions of live (stained) benthic foraminifera from the North Carolina and California continental margins, Deep. Res. Pt. I, 44, 983–1024, https://doi.org/10.1016/S0967-0637(97)00004-6, 1997.
McFadgen, B. G. and Yaldwyn, J. C.: Holocene sand dunes on Enderby Island, Auckland Islands, New Zeal, J. Geol. Geophys., 27, 27–33, https://doi.org/10.1080/00288306.1984.10422289, 1984.
McGlone, M. S.: The Late Quaternary peat, vegetation and climate history of the Southern Oceanic Islands of New Zealand, Quat. Sci. Rev., 21, 683–707, https://doi.org/10.1016/S0277-3791(01)00044-0, 2002.
McGlone, M. S. and Moar, N. T.: Pollen vegetation relationships on the subantarctic Auckland Islands, New Zealand, Rev. Palaeobot. Palynol., 96, 317–338, https://doi.org/10.1016/S0034-6667(96)00058-9, 1997.
McGlone, M. S., Wilmshurst, J. M., and Wiser, S. K.: Lateglacial and Holocene vegetation and climatic change on Auckland Island, Subantarctic New Zealand, The Holocene, 10, 719–728, https://doi.org/10.1191/09596830094962, 2000.
McGlone, M. S., Turney, C. S., Wilmshurst, J. M., Renwick, J., and Pahnke, K.: Divergent trends in land and ocean temperature in the Southern Ocean over the past 18,000 years, Nat. Geosci., 3, 622–626, https://doi.org/10.1038/NGEO931, 2010.
McNeil, B. I., Metzl, N., Key, R. M., Matear, R. J., and Corbiere, A.: An empirical estimate of the Southern Ocean air-sea CO2 flux, Global Biogeochem. Cy., 21, 1–16, https://doi.org/10.1029/2007GB002991, 2007.
Menviel, L., Timmermann, A., Mouchet, A., and Timm, O.: Climate and marine carbon cycle response to changes in the strength of the Southern Hemispheric westerlies, Paleoceanography, 23, 1–10, https://doi.org/10.1029/2008PA001604, 2008.
Metzl, N.: Decadal increase of oceanic carbon dioxide in Southern Indian Ocean surface waters (1991–2007), Deep. Res. Part II, 56, 607–619, https://doi.org/10.1016/j.dsr2.2008.12.007, 2009.
Metzl, N., Tilbrook, B., and Poisson, A.: The annual fCO2 cycle and the air-sea CO2 flux in the sub-Antarctic Ocean, Tellus B, 51, 849–861, https://doi.org/10.1034/j.1600-0889.1999.t01-3-00008.x, 1999.
Metzl, N., Brunet, C., Jabaud-Jan, A., Poisson, A., and Schauer, B.: Summer and winter air-sea CO2 fluxes in the Southern Ocean, Deep. Res. Pt. I, 53, 1548–1563, https://doi.org/10.1016/j.dsr.2006.07.006, 2006.
Meyers, P. A. and Teranes, J. L.: Sediment Organic Matter, in: Tracking Environmental Change Using Lake Sediments, vol. 2, edited by: Last, W. M. and Smol, J. P., 239–269, Kluwer Academic Publishers, 2001.
Moreno, P. I., Francois, J. P., Villa-Martinez, R. P., and Moy, C. M.: Millennial-scale variability in Southern Hemisphere westerly wind activity over the last 5000 years in SW Patagonia, Quat. Sci. Rev., 28, 25–38, https://doi.org/10.1016/j.quascirev.2008.10.009, 2009.
Moreno, P. I., Vilanova, I., Villa-Martínez, R., Garreaud, R. D., Rojas, M., and De Pol-Holz, R.: Southern Annular Mode-like changes in over the last three millennia, Nat. Commun., 5, 4375, https://doi.org/10.1038/ncomms5375, 2014.
Moy, C. M., Seltzer, Geoffrey, O., Rodbell, D. T., and Anderson, D. M.: Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch, Nature, 420, 162–165, https://doi.org/10.1038/nature01194, 2002.
Moy, C. M., Dunbar, R. B., Moreno, P. I., Francois, J.-P., Villa-Martínez, R., Mucciarone, D. M., Guilderson, T. P., and Garreaud, R. D.: Isotopic evidence for hydrologic change related to the westerlies in SW Patagonia, Chile, during the last millennium, Quat. Sci. Rev., 27, 1335–1349, https://doi.org/10.1016/j.quascirev.2008.03.006, 2008.
Moy, C. M., Moreno, P. I., Dunbar, R. B., Francois, J. P., Kaplan, M. R., Villalba, R., and Haberzettl, T.: Climate change in southern South America during the last two millennia, in: Past Climate Variability in South America and Surrounding Regions: From the Last Glacial Maximum to the Holocene, edited by: Vimeux, F., Sylvestre, F., and Khodri, M., Springer Netherlands, 353–393, 2009.
National Center for Atmospheric Research Staff: The Climate Data Guide: PACIFICA: PACIFic ocean Interior CArbon, available at: https://climatedataguide.ucar.edu/climate-data/pacifica-pacific-ocean-interior-carbon, last modified: 21 October 2013.
Palter, J. B., Sarmiento, J. L., Gnanadesikan, A., Simeon, J., and Slater, R. D.: Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation, Biogeosciences, 7, 3549–3568, https://doi.org/10.5194/bg-7-3549-2010, 2010.
Perdue, E. M. and Koprivnjak, J.-F.: Using the C / N ratio to estimate terrigenous inputs of organic matter to aquatic environments, Estaur. Coast. Shelf Sci., 73, 65–72, https://doi.org/10.1016/j.ecss.2006.12.021, 2007.
Pickrill, R.: Circulation and sedimentation of suspended particulate matter in New Zealand fjords, Mar. Geol., 74, 21–39, https://doi.org/10.1016/0025-3227(87)90003-X, 1987.
Putnam, A. E., Denton, G. H., Schaefer, J. M., Barrell, D. J. A., Andersen, B. G., Finkel, R. C., Schwartz, R., Doughty, A. M., Kaplan, M. R., and Schlüchter, C.: Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal, Nat. Geosci., 3, 700–704, https://doi.org/10.1038/ngeo962, 2010.
Ravelo, A. C. and Hillaire-Marcel, C.: The Use of Oxygen and Carbon Isotopes of Foraminifera in Paleoceanography, in: Developments in Marine Geology, vol. 1, 735–764, Elselvier B.V., 2007.
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P.: High-latitude controls of thermocline nutrients and low latitude biological productivity., Nature, 427, 56–60, https://doi.org/10.1038/nature10605, 2004.
Saunders, K. M., Kamenik, C., Hodgson, D. A., Hunziker, S., Siffert, L., Fischer, D., Fujak, M., Gibson, J. A. E., and Grosjean, M.: Late Holocene changes in precipitation in northwest Tasmania and their potential links to shifts in the Southern Hemisphere westerly winds, Glob. Planet. Change, 92–93, 82–91, https://doi.org/10.1016/j.gloplacha.2012.04.005, 2012.
Schimpf, D., Kilian, R., Kronz, A., Simon, K., Spötl, C., Wörner, G., Deininger, M., and Mangini, A.: The significance of chemical, isotopic, and detrital components in three coeval stalagmites from the superhumid southernmost Andes (53° S) as high-resolution palaeo-climate proxies, Quat. Sci. Rev., 30, 443–459, https://doi.org/10.1016/j.quascirev.2010.12.006, 2011.
Scott, D. B., Medioli, F. S., and Schafer, C. T.: Monitoring in Coastal Environments Using Foraminifera and Thecamoebian Indicators, Cambridge University Press, New York, 2001.
Sen Gupta, A. and England, M. H.: Coupled ocean-atmosphere-ice response to variations in the southern annular mode, J. Clim., 19, 4457–4486, https://doi.org/10.1175/JCLI3843.1, 2006.
Shevenell, A. E., Ingalls, A. E., Domack, E. W., and Kelly, C.: Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula., Nature, 470, 250–4, https://doi.org/10.1038/nature09751, 2011.
Shindell, D. T. and Schmidt, G. A.: Southern Hemisphere climate response to ozone changes and greenhouse gas increases, Geophys. Res. Lett., 31, 1–4, https://doi.org/10.1029/2004GL020724, 2004.
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial cycles in atmospheric CO2 concentration, Nature, 466, 47–55, https://doi.org/10.1038/nature09149, 2010.
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., and Barker, S.: Ventilation of the Deep Southern Ocean and Deglacial CO2 Rise, Science, 328, 1147–1151, https://doi.org/10.1126/science.1183627, 2010.
Smith, R. O., Vennell, R., Bostock, H. C., and Williams, M. J. M.: Interaction of the subtropical front with topography around southern New Zealand, Deep. Res. Pt. I, 76, 13–26, https://doi.org/10.1016/j.dsr.2013.02.007, 2013.
Stanton, B. R.: Some Oceanographic Observations in the New Zealand Fjords, Estuar. Coast. Shelf Sci., 19, 89–104, 1984.
Steinhilber, F., Beer, J., and Fröhlich, C.: Total solar irradiance during the Holocene, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL040142, 2009.
Stuiver, M. and Reimer, P. J.: Extended 14C data base and revised CALIB 3.0 14C age calibration program, Radiocarbon, 35, 215–230, 1993.
Takahashi, T., Sutherland, S., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y.: Global sea – air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep. Rea. II, 49, 1601–1622, 2002.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Kortzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.: Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans, Deep. Res. Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Takahashi, T. C., Sweeney, C., Hales, B., Chipman, D. W., Newberger, T., Goddard, J. G., Iannuzzi, R. A., and Sutherland, S. C.: The changing carbon cycle in the Southern Ocean, Oceanography, 25, 26–37, 2012.
Toggweiler, J. R., Russell, J. L., and Carson, S. R.: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages, Paleoceanography, 21, 400–413, https://doi.org/10.1029/2005PA001154, 2006.
Thompson, D. W. J. and Solomon, S.: Interpretation of Recent Southern Hemisphere Climate Change, Science, 296, 895–899, https://doi.org/10.1126/science.1069270, 2002.
Trenberth, K. E.: Storm tracks in the Southern Hemisphere, J. Atmos. Sci., 48, 2159–2178, https://doi.org/10.1002/2014JC009990, 1991.
Turney, C. S. M., Jones, R. T., Fogwill, C., Hatton, J., Williams, A. N., Hogg, A., Thomas, Z. A., Palmer, J., Mooney, S., and Reimer, R. W.: A 250-year periodicity in Southern Hemisphere westerly winds over the last 2600 years, Clim. Past, 12, 189–200, https://doi.org/10.5194/cp-12-189-2016, 2016a.
Turney, C. S. M., McGlone, M., Palmer, J., Fogwill, C., Hogg, A., Thomas, Z., Lipson, M., Wilmshurst, J. M., Fenwick, P., Jones, R. T., Hines, B. E. N. and Clark, G. F.: Intensification of Southern Hemisphere westerly winds 2000–1000 years ago?: evidence from the subantarctic Campbell and Auckland Islands (52–50° S , J. Quat. Sci., 31, 12–19, https://doi.org/10.1002/jqs.2828, 2016b.
Turney, C. S. M., Wilmshurst, J. M., Jones, R. T., Wood, J. R., Palmer, J. G., Hogg, A. G., Fenwick, P., Crowley, S. F., Privat, K., and Thomas, Z.: Reconstructing atmospheric circulation over southern New Zealand?: Establishment of modern westerly air flow 5500 years ago and implications for Southern Hemisphere Holocene climate change, Quat. Sci. Rev., 159, 77–87, https://doi.org/10.1016/j.quascirev.2016.12.017, 2017.
Ummenhofer, C. C. and England, M. H.: Interannual Extremes in New Zealand Precipitation Linked to Modes of Southern, J. Clim., 20, 5418–5440, https://doi.org/10.1175/2007JCLI1430.1, 2007.
Ummenhofer, C. C., Sen Gupta, A., and England, M. H.: Causes of late twentieth-century trends in New Zealand precipitation, J. Clim., 22, 3–19, https://doi.org/10.1175/2008JCLI2323.1, 2009.
Villalba, R., Cook, E. R., D'Arrigo, R. D., Jacoby, G. C., Jones, P. D., Salinger, M. J., and Palmer, J.: Sea-level pressure variability around Antarctica since A.D. 1750 inferred from subantarctic tree-ring records, Clim. Dyn., 13, 375–390, https://doi.org/10.1007/s003820050172, 1997.
Villalba, R., Lara, A., Masiokas, M. H., Urrutia, R., Luckman, B. H., Marshall, G. J., Mundo, I. A., Christie, D. A., Cook, E. R., Neukom, R., Allen, K., Fenwick, P., Boninsegna, J. A., Srur, A. M., Morales, M. S., Araneo, D., Palmer, J. G., Cuq, E., Aravena, J. C., Holz, A., and LeQuesne, C.: Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode, Nat. Geosci., 5, 793–798, https://doi.org/10.1038/ngeo1613, 2012.
Waldmann, N., Ariztegui, D., Anselmetti, F. S., Austin, J. A. J., Moy, C. M., Stern, C., Recasens, C., and Dunbar, R. B.: Holocene climatic fluctuations and positioning of Southern Hemisphere westerlies in Tierra del Fuego (54S), Patagonia, J. Quat. Sci., 25, 1063–1075, https://doi.org/10.1002/jqs.1263, 2010.
Walinsky, S. E., Prahl, F. G., Mix, A. C., Finney, B. P., Jaeger, J. M., and Rosen, G. P.: Distribution and composition of organic matter in surface sediments of coastal Southeast Alaska, Cont. Shelf Res., 29, 1565–1579, https://doi.org/10.1016/j.csr.2009.04.006, 2009.
Wetzel, P., Winguth, A., and Maier-Reimer, E.: Sea-to-air CO2 flux from 1948 to 2003: A model study, Global Biogeochem. Cy., 19, 1–19, https://doi.org/10.1029/2004GB002339, 2005.
Yan, H., Sun, L., Wang, Y., Huang, W., Qiu, S., and Yang, C.: A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies, Nat. Geosci., 4, 611–614, https://doi.org/10.1038/ngeo1231, 2011.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(9644 KB) - Full-text XML
- Corrigendum
-
Supplement
(620 KB) - BibTeX
- EndNote
Short summary
The westerly winds determine weather patterns and exert an effect on carbon dioxide (CO2) flux in and out of the Southern Ocean, an important sink for atmospheric CO2. Our research reconstructs changes in the westerlies over the past 5000 years, using a marine sediment core record collected from the subantarctic Auckland Islands. Our results indicate an intensification of the westerlies around 1600 years ago, contemporaneous with other records from comparable latitudes across the Pacific Ocean.
The westerly winds determine weather patterns and exert an effect on carbon dioxide (CO2) flux...