Articles | Volume 12, issue 2
https://doi.org/10.5194/cp-12-439-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-12-439-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary
Margret Steinthorsdottir
CORRESPONDING AUTHOR
Department of Geological Sciences and Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Amanda S. Porter
School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin 4, Ireland
Aidan Holohan
School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin 4, Ireland
Lutz Kunzmann
Museum of Mineralogy and Geology, Senckenberg Natural History Collections Dresden, Dresden, Germany
Margaret Collinson
Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, UK
Jennifer C. McElwain
School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin 4, Ireland
Related authors
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Related subject area
Subject: Carbon Cycle | Archive: Terrestrial Archives | Timescale: Cenozoic
Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up
Alluvial record of an early Eocene hyperthermal within the Castissent Formation, the Pyrenees, Spain
Paleoenvironmental response of midlatitudinal wetlands to Paleocene–early Eocene climate change (Schöningen lignite deposits, Germany)
Synchronizing early Eocene deep-sea and continental records – cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores
Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming
Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt
Annique van der Boon, Klaudia F. Kuiper, Robin van der Ploeg, Marlow Julius Cramwinckel, Maryam Honarmand, Appy Sluijs, and Wout Krijgsman
Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, https://doi.org/10.5194/cp-17-229-2021, 2021
Short summary
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Jeremy K. Caves Rugenstein, Miquel Poyatos-Moré, Cai Puigdefàbregas, Emmanuelle Chanvry, Julian Clark, Andrea Fildani, Eric Verrechia, Kalin Kouzmanov, Matthieu Harlaux, and Sébastien Castelltort
Clim. Past, 16, 227–243, https://doi.org/10.5194/cp-16-227-2020, https://doi.org/10.5194/cp-16-227-2020, 2020
Short summary
Short summary
A geochemical study of a continental section reveals a rapid global warming event (hyperthermal U), occurring ca. 50 Myr ago, only described until now in marine sediment cores. Documenting how the Earth system responded to rapid climatic shifts provides fundamental information to constrain climatic models. Our results suggest that continental deposits can be high-resolution recorders of these warmings. They also give an insight on the climatic conditions occurring during at the time.
Katharina Methner, Olaf Lenz, Walter Riegel, Volker Wilde, and Andreas Mulch
Clim. Past, 15, 1741–1755, https://doi.org/10.5194/cp-15-1741-2019, https://doi.org/10.5194/cp-15-1741-2019, 2019
Short summary
Short summary
We describe the presence of a carbon isotope excursion (CIE) in Paleogene lignites (Schöningen, DE) and assess paleoenvironmental changes in midlatitudinal late Paleocene–early Eocene peat mire records along the paleo-North Sea coast (Schöningen, Cobham, Vasterival). These records share major characteristics of a reduced CIE (~ -1.3 ‰) in terms of bulk organic matter, increased fire activity (pre-CIE), minor plant species changes, and drowning of near-coastal mires during the CIE.
Thomas Westerhold, Ursula Röhl, Roy H. Wilkens, Philip D. Gingerich, William C. Clyde, Scott L. Wing, Gabriel J. Bowen, and Mary J. Kraus
Clim. Past, 14, 303–319, https://doi.org/10.5194/cp-14-303-2018, https://doi.org/10.5194/cp-14-303-2018, 2018
Short summary
Short summary
Here we present a high-resolution timescale synchronization of continental and marine deposits for one of the most pronounced global warming events, the Paleocene–Eocene Thermal Maximum, which occurred 56 million years ago. New high-resolution age models for the Bighorn Basin Coring Project (BBCP) drill cores help to improve age models for climate records from deep-sea drill cores and for the first time point to a concurrent major change in marine and terrestrial biota 54.25 million years ago.
Hemmo A. Abels, Vittoria Lauretano, Anna E. van Yperen, Tarek Hopman, James C. Zachos, Lucas J. Lourens, Philip D. Gingerich, and Gabriel J. Bowen
Clim. Past, 12, 1151–1163, https://doi.org/10.5194/cp-12-1151-2016, https://doi.org/10.5194/cp-12-1151-2016, 2016
Short summary
Short summary
Ancient greenhouse warming episodes are studied in river floodplain sediments in the western interior of the USA. Paleohydrological changes of four smaller warming episodes are revealed to be the opposite of those of the largest, most-studied event. Carbon cycle tracers are used to ascertain whether the largest event was a similar event but proportional to the smaller ones or whether this event was distinct in size as well as in carbon sourcing, a question the current work cannot answer.
D. V. Kent and G. Muttoni
Clim. Past, 9, 525–546, https://doi.org/10.5194/cp-9-525-2013, https://doi.org/10.5194/cp-9-525-2013, 2013
Cited articles
Barclay, R. S., McElwain, J. C., and Sageman, B. B.: Carbon sequestration
activated by a volcanic CO2 pulse during Ocean Anoxic Event 2, Nat.
Geosci., 3, 205–208, 2010.
Beerling, D. J. and Royer, D. L.: Reading a CO2 signal from fossil
stomata, New Phytol., 153, 387–397, 2002.
Beerling, D. J. and Royer, D. L.: Convergent Cenozoic CO2 history,
Nat. Geosci., 4, 418–420, 2011.
Beerling, D. J., Fox, A., and Anderson, C. W.: Quantitative uncertainty
analyses of ancient atmospheric CO2 estimates from fossil leaves, Am.
J. Sci., 309, 775–787, 2009.
Beerling, D. J., Chaloner, W. G., and Woodward, F. I.:
Vegetation-climate-atmosphere interactions: Past, present and future,
Philos. T. Roy. Soc. B., 353, 1365, 3-4, 1998.
Bohaty, S. M., Zachos, J. C., and Delaney, M. L.: Foraminiferal Mg/Ca
evidence for Southern Ocean cooling across Eocene–Oligocene transition,
Earth Planet. Sc. Lett., 317–318, 251–261, 2012.
Brownlee, C.: The long and the short of stomatal density signals, Trends
Plant Sci., 6, 441–442, 2001.
Caballero, R. and Huber, M.: State-dependent climate sensitivity in past
warm climates and its implications for future climate projections, P. Natl.
Acd. Sci. USA, 110, 14162–14167, 2013.
Collinson, M. E.: Vegetational and floristic changes around the
Eocene/Oligocene boundary in western and central Europe, in:
Eocene–Oligocene climate change and biotic evolution, edited by: Prothero, D.
R. and Berggren, W. A., Princeton University Press, Princeton, New Jersey, 437–450, 1992.
Coxall, H. K. and Pearson, P. N.: The Eocene–Oligocene transition, in:
Deep-time perspectives on climate change, edited by: Williams, M., Haywood, A. M.,
Gregory, F. J., and Schmidt, D. N., The Geological Society, London, 351-387, 2007.
Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J.:
Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation
in the Pacific Ocean, Nature, 433, 53–57, 2005.
DeConto, R. M. and Pollard, D.: Rapid Cenozoic glaciation of Antarctica
induced by declining atmospheric CO2, Nature, 421, 245–249, 2003.
DeConto, R. M., Pollard, D., Wilson, P. A., Pälike, H., Lear, C. H., and
Pagani, M.: Thresholds for Cenozoic bipolar glaciation, Nature, 455, 652–656, 2008.
Denk, T., Grímsson, F., and Zetter, R.: Fagaceae from the early
Oligocene of Central Europe: Persisting new world and emerging old world
biogeographic links, Rev. Palaeobot. Palyno., 169, 7–20, 2012.
Doria, G., Royer, D. L., Wolfe, A. P., Fox, A., Westgate, J. A., and
Beerling, D. J.: Declining atmospheric CO2 during the late middle
Eocene climate transition, Am. J. Sci., 311, 63–75, 2011.
Ferdani, F.: Obereozäne Floren aus dem zentralen Weißelsterbecken
(Mitteldeutschland) und ihre paläoökologische Position, Altenburger
Naturwiss. Forsch., 16, 1–115, 2014.
Finsinger, W. and Wagner-Cremer, F.: Stomatal-based inference models for
reconstruction of atmospheric CO2 concentration: a method assessment
using a calibration and validation approach, Holocene, 19, 757–764, 2009.
Foster, G. L., Lear, C. H., and Rae, J. W. B.: The evolution of pCO2,
ice volume and climate during the middle Miocene, Earth Planet. Sc. Lett.,
341–344, 243–254, 2012.
Franks, P. J., Royer, D. L., Beerling, D. J., Van de Water, P. K., Cantrill,
D. J., Barbour, M. M., and Berry, J. A.: New constraints on atmospheric
CO2 concentration for the Phanerozoic, Geophys. Res. Lett., 41, 4685–4694, 2014.
Frederiksen, N. O.: Mid-Teriary Climate of Southeastern United States: The
sporomorph evidence, J. Paleontol., 54, 728–739, 1980.
Frommer, W. B.: COmmon Sense, Science, 327, 275–276, 2010.
Gasson, E., Lunt, D. J., DeConto, R., Goldner, A., Heinemann, M., Huber, M.,
LeGrande, A. N., Pollard, D., Sagoo, N., Siddall, M., Winguth, A., and Valdes,
P. J.: Uncertainties in the modelled CO2 threshold for Antarctic glaciation,
Clim. Past, 10, 451–466, https://doi.org/10.5194/cp-10-451-2014, 2014.
Goldner, A., Herold, N., and Huber, M.: Antarctic glaciation caused ocean
circulation changes at the Eocene–Oligocene transition, Nature, 511, 574–577, 2014.
Goth, K., Suhr, P., and Schulz, R.: Zwei Forschungsbohrungen in das verdeckte
Maar von Baruth (Sachsen), Z. Angew. Geol., 49, 9–17, 2003.
Gray, J. E., Holroyd, G. H., van der Lee, F. M., Bahrami, A. R., Sijmons, P.
C., Woodward, F. I., Schuch, W., and Heterington, A. M.: The HIC signalling
pathway links CO2 perception to stomatal development, Nature, 408, 713–716, 2000.
Greenwood, D. R., Scarr, M. J., and Christophel, D. C.: Leaf stomatal
frequency in the Australian tropical rainforest tree Neolitsea dealbata (Lauraceae) as a proxy
measure of atmospheric pCO2, Palaeogeogr. Palaeocl., 196, 375–393, 2003.
Grein, M., Konrad, W., Wilde, V., Utescher, T., and Roth-Nebelsick, A:
Reconstruction of atmospheric CO2 during the early middle Eocene by
application of a gas exchange model to fossil plants from the Messel
Formation, Germany, Palaeogeogr. Palaeocl., 309, 383–391, 2011.
Grein, M., Oehm, C., Konrad, W., Utescher, T., Kunzmann, L., and
Roth-Nebelsick, A.: Atmospheric CO2 from the late Oligcene to early
Miocene based on photosynthesis data and fossil leaf characteristics,
Palaeogeogr. Palaeocl., 374, 41–51, 2013.
Hansen, J., Sato, M., Kharecha, P., Beerlib, D. J., Berner, R. A.,
Masson-Delmotte, V., Pagani, M., Raymo, M., Royer, D. L., and Zachos, J. C.:
Target atmospheric CO2: Where should humanity aim?, Open. Atmos. Sci.
J., 2, 217–231, 2008.
Hansen, J., Sato, M., Russell, G., and Kharecha, P.: Climate sensitivity,
sea level and atmospheric carbon dioxide, Philos. T. Roy. Soc. A, 371,
20120294, https://doi.org/10.1098/rsta.2012.0294, 2013.
Hennig, D. and Kunzmann, L.: Taphonomy and vegetational analysis of a late
Eocene flora from Schleenhain (Saxony, Germany), Geol. Saxon., 59, 75–88, 2013.
Hooker, J. J., Grimes, S. T., Mattey, D. P., Collinson, M. E., and Sheldon, N. D.:
Refined correlation of the UK Late Eocene-Early Oligocene Solent Group and timing
of its climate history, in: The Late Eocene Earth–Hothouse, Icehouse, and Impacts,
edited by: Koeberl, C. and Montanari, A., Geological Society of America Special
Paper 452, Geological Society of America, 179–195, 2009.
Hren, M. T., Sheldon, M. D., Grimes, S. T., Collinson, M. E., Hooker, J. J.,
Bugler, M., and Lohman, K. C.: Terrestrial cooling in Northern Europe during
the Eocene–Oligocene transition, P. Natl. Acd. Sci. USA, 110, 7562–7567, 2013.
Hu, H., Boisson-Dernier, A., Israelsson-Nordström, M., Böhmer, M.,
Xue, A., Ries, A., Godoski, J., Kuhn, J. M., and Schroeder, J. I.: Carbonic
anhydrases are upstream regulators of CO2-controlled stomatal movements
in guard cells, Nat. Cell Biol., 12, 87–93, 2010.
Huber, M. and Caballero, R.: The early Eocene equable climate problem revisited,
Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, 2011.
Huber, M., Beyerle, U., and Knutti, R.: Estimating climate sensitivity and
future tempereature in the resence of natural climate variability, Geophys.
Res. Lett., 41, 2086–2092, 2014.
Inglis, G. N., Farnsworth, A., Lunt, D., Foster, G. L., Hollis, C. J.,
Pagani, M., Jardine, P. N., Pearson, P. N., Markwick, P., Galsworthy, A. M.
J., Raynham, L., Taylor, K. W. R., and Pancost, R. D.: Descent towards the
Icehouse: Eocene sea surface cooling inferred from GDGT distributions,
Paleoceanography, 30, 1000–1020, https://doi.org/10.1002/2014PA002723, 2015.
IPCC Climate Change 2007: The Physical Science Basis, in: Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z.,Marquis, M.,
Averyt, K. B., Tignor M., and Miller, H. L., Cambridge University Press,
Cambridge, UK and New York, NY, USA, 2007.
Konrad, W., Roth-Nebelsick, A., and Grein, M.: Modelling of stomatal density
response to atmospheric CO2, J. Theor. Biol., 253, 638–658, 2008.
Köthe, A.: Korrelation der Dinozysten-Zonen mit anderen
biostratigraphisch wichtigen Zonierungen im Tertiär Norddeutschlands,
Rev. Paléobiol., 24, 697–718, 2005.
Kriegel, K.: Untersuchung der Blattmorphologie und Blattanatomie von
Eotrigonobalanus furcinervis (Rossmäßler) Walther & Kvaček und seine Vergesellschaftung
mit anderen teriären Sippen vom Mitteleozän bis Oligo-/Miozän
Mitteleuropas, Unpubl. Diploma thesis, Technical University Dresden, Dresden, 93 pp., 2001.
Krutzsch, W.: Der Florenwechsel im Alttertiär Mitteleuropas auf Grund
von sporenpaläontologischen Untersuchungen, Abh. Zentr. Geol. Inst., 10, 17–37, 1967.
Krutzsch, W.: Stratigrafie und Klima des Palaogens im Mitteldeutschen Astuar
im Vergleich zur marinen nordlichen Umrahmung, Z. Dt. Ges. Geowiss., 162, 19–46, 2011.
Kunzmann, L.: Early Oligocene plant taphacoenosis with mass occurrnce of
Zingiberiodeophyllum (extinct Zingiberales) from central Germany,
Palaios, 27, 765–778, 2012.
Kunzmann, L. and Walther, H.: Eine obereozäne Blätterflora aus dem
mitteldeutschen Weißelster-Becken, Paläont. Z., 76, 261–282, 2002.
Kunzmann, L. and Walther, H.: Early Oligocene plant taphocoenoses of the
Haselbach megafloral complex and the reconstruction of palaeovegetation,
Palaeobiol. Palaeoenviron., 92, 295–307, 2012.
Kunzmann, L., Kvaček, Z., Teodoridis, V., Müller, C., and Moraweck,
K.: Vegetation dynamics of riparian forest in central Europe during the late
Eocene, Palaeontographica B, in press, 2015.
Kürschner, W. M., Kvaček, Z., and Dilcher, D. L.: The impact of
Miocene atmospheric carbon dioxide fluctuations on climate and the evolution
of terrestrial ecosystems, P. Natl. Acd. Sci. USA, 105, 449–453, 2008.
Kvaček, Z.: Forest flora and vegetation of the European early Palaeogene – a
review, Bull. Geosci., 85, 63–76, 2010.
Kvaček, Z. and Walther, H.: Revision der mitteleuropa ischen Fagaceen
nach blattepidermalen Charakteristiken: Teil III. T. Dryophyllum DEBEY ex SAPORTA und
Eotrigonobalanus WALTHER and KVAČEK, Feddes Repertorium, 100, 575–601, 1989.
Kvaček, Z., Teodoridis, V., Mach, K., Přikryl, T., and
Dvořák, Z.: Tracing the Eocene–Oligocene transition: a case study
from North Bohemia, Bull. Geosci., 89, 21–66, 2014.
Lake, J. A., Woodward, F. I., and Quick, W. P.: Long-distance CO2
signalling in plants, J. Exp. Bot., 53, 183–193, 2002.
Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K., and Rosenthal,
Y.: Cooling and ice growth across the Eocene–Oligocene transition, Geology,
36, 251–254, 2009.
Liu, X.-Y., Gao, Q., Han, M., and Jin, J.-H.: The pCO2 estimates of the
late Eocene in South China based on stomatal densities of Nageia Gaertner
leaves, Clim. Past. Discuss., 11, 2615–2647, https://doi.org/10.5194/cpd-11-2615-2015, 2015.
Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H.,
Shah, S. R., Leckie, R. M., and Pearson, A.: Global cooing during the
Eocene–Oligocene climate transition, Science, 27, 1187–1190, 2009.
Lunt, D. J., Valdes, P. J., Dunkley Jones, T., Ridgwell, A., Haywood, A. M.,
Schmidt, D. N., Marsh, R., and Maslin, M.: CO2-driven ocean circulation
changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization,
Geology, 38, 875–878, 2010.
Mai, D. H.: Tertiäre Vegetationsgeschichte Europas, Methoden und
Ergebnisse, G. Fischre, Jena, 691 pp., 1995.
Mai, D. H. and Walther, H.: Die Floren der Haselbacher Serie im
Weißelster-Becken (Bezirk Leipzig, DDR), Abh. Staatl. Mus. Mineral.
Geol. Dresden, 28, 1–101, 1978.
Mai, D. H. and Walther, H.: Die oligozänen und untermiozänen Floren
Nordwest-Sachsens und des Bitterfelder Raumes, Abh. Staatl. Mus. Mineral.
Geol. Dresden, 38, 1–230, 1991.
Mai, D. H. and Walther, H.: Die Fundstellen eozäner Floren NW-Sachsens
und des Bitterfelder Raumes, Altenburger Naturwiss. Forsch., 33, 3–59, 2000.
Manos, P. S., Zhou, Z.-K., and Cannon, C. H.: Systematics of Fagaceae:
Phylogenetic Tests of Reproductive Trait Evolution, Int. J. Plant Sci., 162, 1361–1379, 2001.
Manos, P. S., Cannon, C. H., and Oh, S.-H.: Phylogenetic Relationships and
Taxonomic Status Of the Paleoendemic Fagaceae Of Western North America,
Recognition Of A New Genus, Notholithocarpus, Madroño, 55, 181–190, 2008.
Maxbauer, D. P., Royer, D. L., and LePage, B. A.: High Arctic forests during
the middle Eocene supported by moderate levels of atmospheric CO2,
Geology, 42, 1027–1030, 2014.
McElwain, J. C.: Do fossil plants reflect palaeoatmospheric CO2
concentration in the geological past?, Philos. T. Roy. Soc. B, 353, 83–96, 1998.
McElwain, J. C. and Chaloner, W. G.: Stomatal density and index of fossil
plants track atmospheric carbon dioxide in the Palaeozoic, Ann. Bot.-Lond.,
76, 389–395, 1995.
McElwain, J. C., Montañez, I., White, J. D., Wilson, J. P., and Yiotis, C.:
Was atmospheric CO2 capped at 1000 ppm over the past 300 million years?,
Palaeogeogr. Palaeocl., 441, 653–658, https://doi.org/10.1016/j.palaeo.2015.10.017, 2016a.
McElwain, J. C., Yiotis, C., and Lawson, T.: Using modern plant trait
relationships between observed and theoretical maximum stomatal conductance
and vein density to examine patterns of plant macroevolution, New Phytol.,
209, 94–103, https://doi.org/10.1111/nph.13579, 2016b.
Merico, A., Tyrrell, T., and Wilson, P. A.: Eocene/Oligocene ocean
de-acidification linked to Antarctic glaciation by sea-level fall, Nature,
452, 979–982, 2008.
Moraweck, K., Uhl, D., and Kunzmann, L.: Estimation of late Eocene
(Bartonian-Priabonian) terrestrial palaeoclimate: contributions from
megafloral assemblages from central Germany, Palaeogeogr. Palaeocl., 433, 247–258, 2015.
Mosbrugger, V., Utescher, T., and Dilcher, D. L.: Cenozoic continental climatic
evolution of Central Europe, P. Natl. Acd. Sci. USA, 102, 14964–14969, 2005.
Niinemets, Ü., Flexas, J., and Peñuelas, J.: Evergreens favored by
higher responsiveness to increased CO2, Trends Ecol. Evol., 26, 136–142, 2011.
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S.:
Marked Decline in Atmospheric Carbon Dioxide Concentrations During the
Paleogene, Science, 309, 600–603, 2005.
Pagani, M., Huber, M., Liu, Z., Bohaty, S. M., Henderiks, J., Sijp, W.,
Krishnan, S., and DeConto, R. M.: The role of carbon dioxide during the onset
of Antarctic glaciation, Science, 334, 1261–1264, 2011.
Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide
through the Eocene–Oliogocene climate transition, Nature, 461, 1110–1114, 2009.
Petersen, S. V. and Schrag, D. P.: Antarctic ice growth before and after the
Eocene–Oligocene transition: New estimates from clumped isotope paleothermometry,
Paleoceanography, 30, 1305–1317, 2015.
Pollard, D. and DeConto, R. M.: Hysteresis in Cenozoic Antarctic ice-sheet
variations, Global Planet. Change, 45, 9–21, 2005.
Poole, I. and Kürschner, W. M.: Stomatal density and index: the
practice, in: Fossil plants and spores: modern techniques, edited by: Jones,
T. P. and Rowe, N. P., The Geological Society, London, 257–260, 1999.
Prothero, D. R.: The late Eocene–Oligocene extinctions, Annu. Rev. Earth
Planet. Sc. Lett., 22, 145–165, 1994.
Retallack, G. J.: A 300-million-year record of atmospheric CO2 from
fossil plant cuticles, Nature, 411, 287–290, 2001.
Retallack, G. J.: Greenhouse crises of the past 300 million years, Geol.
Soc. Am. Bull., 121, 1441–1455, 2009.
Rohling, E. J., Sluijs, A., Dijkstra, H. A., Köhler, P., van de Wal, R.
S. W., von der Heydt, A. S., Beerling, D. J., Berger, A., Bijl, P. K.,
Crucifix, M., DeConto, R., Drifhout, S. S., Federov, A., Foster, G. L.,
Ganapolski, A., Hansen, J., Hönisch, B., Hooghiemstra, H., Huber, M.,
Huybers, P., Knutti, R., Lea, D. W., Lourens, L. J., Lunt, D.,
Masson-Demotte, V., Medina-Elizalde, M., Otto-Bliesner, B., Pagani, M.,
Pälike, H., Renssen, H., Royer, D. L., Siddall, M., Valdes, P., Zachos,
J. C., and Zeebe, R. E. (PALAEOSENS project members): Making sense of
palaeoclimate sensitivity, Nature, 491, 683–691, 2012.
Rossmässler, E. A.: Die Versteinerungen des Braunkohlensandsteines aus
der Gegend von Altsattel in Böhmen (Ellbogener Kreis), Arnoldsche
Buchhandl., Dresden, Leipzig, 42 pp., 1840.
Roth-Nebelsick, A., Utescher, T., Mosbrugger, V., Diester-Haass, L., and
Walther, H.: Changes in atmospheric CO2 concentrations and climate from
the Late Eocene to Early Miocene: Palaeobotanical reconstruction based on
fossil floras from Saxony, Germany, Palaeogeogr. Palaeocl., 205, 43–67, 2004.
Roth-Nebelsick, A., Grein, M., Utescher, T., and Konrad, W.: Stomatal pore
length change in leaves of Eotrigonolanalus furcinervis (Fagaceae) from the Late Eocene to the Latest
Oligocene and its impact on gas exchange, Rev. Palaeobot. Palynol., 174, 106–112, 2012.
Roth-Nebelsick, A., Oehm, C., Grein, M., Utescher, T., Kunzmann, L.,
Friedrich, J. P., and Konrad, W.: Stomatal density and index data of
Platanus neptuni leaf fossils and their evaluation as a CO2 proxy
for the Oligocene, Rev. Palaeobot. Palynol., 206, 1–9, 2014.
Royer, D. L.: Stomatal density and stomatal index as indicators of
paleoatmospheric CO2 concentration, Rev. Palaeobot. Palynol., 114, 1–28, 2001.
Royer, D. L.: Estimating latest Cretaceous and Tertiary atmospheric CO2
concentration from stomatal indices, in: Causes and consequences of globally
warm climates in the early Paleogene, GSA Special Papers 369, edited by: Wing, S. L., Gingerich, P.
D., Schmitz, B., and Thomas, E., Geological Society of America, 79–93, https://doi.org/10.1130/0-8137-2369-8.79, 2003.
Royer, D. L., Wing, S. L., Beerling, D. J., Jolley, D. W., Koch, P. L.,
Hickey, L. J., and Berner, R. A.: Paleobotanical evidence for near
present-day levels of atmospheric CO2 during part of the tertiary,
Science, 292, 2310–2313, 2001.
Royer, D. L., Berner, R. A., and Park, J.: Climate sensitivity constrained by
CO2 concentrations over the past 420 million years, Nature, 446, 530–532, 2007.
Royer, D. L., Pagani, M., and Beerling, D. J.: Geobiological constraints on
Earth system sensitivity to CO2 during the Cretaceous and Cenozoic,
Geobiology, 10, 298–310, 2012.
Rundgren, M. and Björck, S.: Late-glacial and early Holocene variations
in atmospheric CO2 concentration indicated by high-resolution stomatal
index data, Earth Planet. Sc. Lett., 213, 191–204, 2003.
Sheldon, N. D., Mitchell, R. L., Collinson, M. E., and Hooker, J. J.:
Eocene–Oligocene transition paleoclimatic and paleoenvironmental record from
the Isle of Wight (UK), in: The Late Eocene Earth: Hothouse, Icehouse, and
Impacts, GSA Special Papers 452, edited by: Koeberl, C. and Montanari, A.,
Geological Society of America, 249–259, 2009.
Simon, L., Lécuyer, C., Maréchal, C., and Coltice, N.: Modelling the
geochemical cycle of boron: Implications for the long-term δ13B evolution of
seawater and oceanic crust, Chem. Geol., 225, 61–76, 2006.
Smith, R. Y., Greenwood, D. R., and Basinger, J. F.: Estimating
paleoatmospheric pCO2 during the Early Eocene Climatic Optimum from
stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada,
Palaeogeogr. Palaeocl., 293, 120–131, 2010.
Sloan, L. C. and Barron, E.: “Equable” climates during Earth history,
Geology, 18, 489–492, 1992.
Standke, G.: Tertiär, in: Geologie von Sachsen. Geologischer Bau und
Entwicklungsgeschichte, edited by: Pälchen, W. and Walther, H.,
358-419, E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 2008.
Standke, G., Escher, D., Fischer, J., and Rascher, J.: Das Tertiär
Nordwestsachsens. Ein geologischer Überblick, Sächsisches Landesamt
für Umwelt, Landwirtschaft und Geologie, Freiberg/Saxony, 157 pp., 2010.
Steinthorsdottir, M. and Vajda, V.: Early Jurassic (late Pliensbachian)
CO2 concentrations based on stomatal analysis of fossil conifer leaves
from eastern Australia, Gondwana Res., 27, 932–939, 2015.
Steinthorsdottir, M., Bacon, K. L., Popa, M. E., Bochner, L., and McElwain,
J. C.: Bennettitalean leaf cuticle fragments (here Anomozamites and Pterophyllum) can be used
interchangeably in stomatal frequency-based palaeo-CO2 reconstructions,
Palaeontology, 54, 867–882, 2011a.
Steinthorsdottir, M., Jeram, A. J., and McElwain, J. C.: Extremely elevated
CO2 at the Triassic-Jurassic boundary, Palaeogeogr. Palaeocl., 308, 418–432, 2011b.
Steinthorsdottir, M., Wohlfarth, B., Kylander, M., Blaauw, M., and Reimer,
P.: Stomatal proxy record of CO2 concentrations from the last
termination suggests an important role for CO2 at climate change
transitions, Quaternary Sci. Rev., 68, 43–58, 2013.
Teodoridis, V. and Kvaček, Z.: Palaeoenvironmental evaluation of
Cainozoic plant assemblages from the Bohemian Massif (Czech Republic) and
adjacent Germany, Bull. Geosci., 90, 695–720, 2015.
Velitzelos, E., Kvaček, Z., and Walther, H.: Erster Nachweis von
Eotrigonobalanus furcinervis (Rossm.) Walther and Kvaček (Fagaceae),
in Griechenland, Feddes Repertorium, 110, 349–358, 1999.
Vinken, R.: The Northwest European Tertiary Basin. Results of the
International Geological Correlation Programme Project No. 124, Geol.
Jahrbuch A, 100, 7–508, 1988.
Wade, B. S., Houben, A. J. P., Quaijtaal, W., Schouten, S., Rosenthal., Y.,
Miller, K. G., Katz, M. E., Wright, J. D., and Brinkhuis, H.: Multiproxy
record of abrupt sea-surface coolong across the Eocene–Oligocene transition
in the Gulf of Mexico, Geology, 40, 159–162, 2012.
Walther, H.: Die Tertiärflora von Kleinsaubernitz bei Bautzen,
Palaeontographica B, 249, 63–174, 1999.
Walther, H. and Kunzmann, L.: Zur Geschichte der paläobotanischen
Forschung im Weißelsterbecken, Z. Dt. Ges. Geowiss., 159, 13–21, 2008.
Wilson, J. P., White, J. D., DiMichele, W. A., Hren, M. T., Poulsen, C. J.,
McElwain, J. C., and Montañez, I. P.: Reconstructing extinct plant
water use for understanding vegetation-climate feedbacks: Methods, synthesis
and a case study using the Paleozoic era medullosan seed ferns, The
Palaeontological Society Papers 21, 167–195, 2015.
Woodward, F. I.: Stomatal numbers are sensitive to increases in CO2
from pre-industrial levels, Nature, 372, 617–618, 1987.
Wynn, N. G.: Towards a physically based model of CO2-induced stomatal
frequency response, New Phytol., 157, 394–398, 2003.
Zachos, J. C. and Kump, L. R.: Carbon cycle feedbacks and the initiation of
Antarctic glaciation in the earliest Oligocene, Global Planet. Change, 47, 51–66, 2005.
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, 2001.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic
perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, 2008.
Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A.,
FitzJohn, R. G., McGlinn, D. J., O'Meara, B. C., Moles, A. T., Reich, P. B.,
Royer, D. L., Solties, D. E., Stevens, P. F., Westboy, M., Wright, I. J.,
Aarssen, L., Bertin, R. I., Calaminus, A., Govaerts, R., Hemmings, F.,
Leishman, M. R., Oleskyn, J., Soltis, P. S., Swenson, N. G., Warman, L., and
Beaulieu, J. M.: Three keys to the radiation of angiosperms into freezing
environments, Nature, 506, 89–92, 2014.
Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M., and DeConto, R.: A
40-million-year history of atmospheric CO2, Philos. T. Roy. Soc. A,
371, 1–20, 2013.
Short summary
Our manuscript "Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary" reports that ~ 40 % decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene–Oliogocene climate transition. The results endorse the theory that pCO2 drawdown was the main forcer of the Eocene–Oligocene climate change, and a "tipping point" was reached in the latest Eocene, triggering the plunge of the Earth System into icehouse conditions.
Our manuscript "Fossil plant stomata indicate decreasing atmospheric CO2 prior to the...
Special issue