Articles | Volume 12, issue 2
https://doi.org/10.5194/cp-12-241-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-12-241-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Estimates of late middle Eocene pCO2 based on stomatal density of modern and fossil Nageia leaves
X. Y. Liu
State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory
of Plant Resources, School of Life Sciences, Sun Yat-sen University,
Guangzhou 510275, China
Q. Gao
State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory
of Plant Resources, School of Life Sciences, Sun Yat-sen University,
Guangzhou 510275, China
M. Han
State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory
of Plant Resources, School of Life Sciences, Sun Yat-sen University,
Guangzhou 510275, China
J. H. Jin
CORRESPONDING AUTHOR
State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory
of Plant Resources, School of Life Sciences, Sun Yat-sen University,
Guangzhou 510275, China
Related authors
No articles found.
Y. X. Li, W. J. Jiao, Z. H. Liu, J. H. Jin, D. H. Wang, Y. X. He, and C. Quan
Clim. Past, 12, 255–272, https://doi.org/10.5194/cp-12-255-2016, https://doi.org/10.5194/cp-12-255-2016, 2016
Short summary
Short summary
An integrated litho-, bio-, cyclo-, and magnetostratigraphy constrains the onset of a depositional environmental change from a lacustrine to a deltaic environment in the Maoming Basin, China, at 33.88 Ma. This coincides with the global cooling during the Eocene-Oligocene transition (EOT) at ~ 33.7–33.9 Ma. This change represents terrestrial responses of low-latitude Asia to the EOT. The greatly refined chronology permits detailed examination of the late Paleogene climate change in southeast Asia.
Cited articles
Bai, Y. J., Chen, L. Q., Ranhotra, S. P., Wang, Q., Wang, Y. F., and Li,
C. S.: Reconstructing atmospheric CO2 during the Plio–Pleistocene
transition by fossil Typha, Glob. Change Biol., 21, 874–881,
https://doi.org/10.1111/gcb.12670, 2015.
Beerling, D. J.: Stomatal density and index: theory and application, in:
Fossil Plants and Spores: Modern Techniques, edited by: Jones, T. P. and
Rowe, N. P., Geological Society, London, 251–256, 1999.
Beerling, D. J., and Kelly, C. K.: Stomatal density responses of temperate
woodland plants over the past seven decades of CO2 increase: A comparison
of salisbury (1927) with contemporary data, Am. J. Bot., 84, 1572–1583,
1997.
Beerling, D. J. and Royer, D. L.: Reading a CO2 signal from fossil
stomata, New Phytol., 153, 387–397, https://doi.org/10.1046/j.0028-646X.2001.00335.x,
2002.
Beerling, D. J. and Royer, D. L.: Convergent Cenozoic CO2 history,
Nat. Geosci., 4, 418–420, https://doi.org/10.1038/ngeo1186, 2011.
Beerling, D. J., Chaloner, W. G., Huntley, B., Pearson, J. A., Tooley, M. J.,
and Woodward, F. I.: Variations in the stomatal density of Salix
herbacea L. under the changing atmospheric CO2 concentrations of
late- and post-glacial time, Philos. T. R. Soc. Lon. B, 336, 215–224,
https://doi.org/10.1098/rstb.1992.0057, 1992.
Beerling, D. J., Lomax, B. H., Royer, D. L., Upchurch Jr., G. R., and Kump,
L. R.: An atmospheric pCO2 reconstruction across the
Cretaceous-Tertiary boundary from leaf megafossils, P. Natl. Acad. Sci. USA,
99, 7836–7840, https://doi.org/10.1073/pnas.122573099, 2002.
Beerling, D. J., Fox, A., and Anderson, C. W.: Quantitative uncertainty
analyses of ancient atmospheric CO2 estimates from fossil leaves, Am.
J. Sci., 309, 775–787, https://doi.org/10.2475/09.2009.01, 2009.
Berner, R. A.: GEOCARB II: A revised model of atmospheric CO2 over
Phanerozoic time, Am. J. Sci., 294, 56–91, https://doi.org/10.2475/ajs.294.1.56, 1994.
Berner, R. A. and Kothavalá, Z.: GEOCARB III: A revised model of
atmospheric CO2 over Phanerozoic time, Am. J. Sci., 301, 182–204,
https://doi.org/10.2475/ajs.301.2.182, 2001.
Bijl, P. K., Houben, A. J. P., Schouten, S., Bohaty, S. M., Sluijs, A.,
Reichart, G., Sinninghe Damsté, J. S., and Brinkhuis, H.: Transient
middle Eocene atmospheric CO2 and temperature variations, Science,
330, 819–821, https://doi.org/10.1126/science.1193654, 2010.
Brown, L. R.: Atmospheric carbon dioxide concentration, 1000–2009
(Supporting data), in: World on the Edge: How to Prevent Environmental and
Economic Collapse, Chapter 4 Data: Rising Temperatures, Melting Ice, and Food
Security, edited by: Brown, L. R., Earth Policy Institute, Norton, W. W. and
Company, New York, London, available at:
http://www.earth-policy.org/books/wote/wote_data, last access:
25 January 2016, 2010.
Cerling, T. E.: Use of carbon isotopes in paleosols as an indicator of the
P(CO2) of the paleoatmosphere, Global Biogeochem. Cy., 6, 307–314,
https://doi.org/10.1029/92GB01102, 1992.
Chaloner, W. G. and McElwain, J. C.: The fossil plant record and global
climate change, Rev. Palaeobot. Palyno., 95, 73–82,
https://doi.org/10.1016/S0034-6667(96)00028-0, 1997.
Cheng, W. C., Fu, L. K., and Chao, C. S.: Podocarpus
(Podocarpaceae), in: Flora of China, edited by: Cheng, W. and Fu, L., Science
Press, Beijing, 7, 398–422, 1978 (in Chinese).
Doria, G., Royer, D. L., Wolfe, A. P., Fox, A., Westgate, J. A., and
Beerling, D. J.: Declining atmospheric CO2 during the late Middle
Eocene climate transition, Am. J. Sci., 311, 63–75,
https://doi.org/10.2475/01.2011.03, 2011.
Ekart, D. D., Cerling, T. E., Montanez, I. P., and Tabor, N. J.: A 400
million year carbon isotope record of pedogenic carbonate: implications for
paleoatmospheric carbon dioxide, Am. J. Sci., 299, 805–827,
https://doi.org/10.2475/ajs.299.10.805, 1999.
Fletcher, B. J., Brentnall, S. J., Anderson, C. W., Berner, R. A., and
Beerling, D. J.: Atmospheric carbon dioxide linked with Mesozoic and early
Cenozoic climate change, Nat. Geosci., 1, 43–48, https://doi.org/10.1038/ngeo.2007.29,
2008.
Freeman, K. H. and Hayes, J. M.: Fractionation of carbon isotopes by
phytoplankton and estimates of ancient CO2 levels, Global Biogeochem.
Cy., 6, 185–198, https://doi.org/10.1029/92GB00190, 1992.
Fu, D. Z.: Nageiaceae – a new gymnosperm family, Acta Phytotaxon. Sin., 30,
515–528, 1992 (in Chinese with English summary).
Fu, L. K., Li, Y., and Mill, R. R.: Podocarpaceae, in: Flora of China, edited
by: Wu, Z. Y. and Raven, P. H., Science Press, Beijing, 4, 78–84, 1999.
Gale, J.: Availability of carbon dioxide for photosynthesis at high
altitudes: theoretical considerations, Ecology, 53, 494–497,
https://doi.org/10.2307/1934239, 1972.
Greenwood, D. G., Scarr, M. J., and Christophel, D. C.: Leaf stomatal
frequency in the Australian tropical rain forest tree Neolitsea
dealbata (Lauraceae) as a proxy measure of atmospheric pCO2,
Palaeogeogr. Palaeocl., 196, 375–393, https://doi.org/10.1016/S0031-0182(03)00465-6,
2003.
Grein, M., Oehm, C., Konrad, W., Utescher, T., Kunzmann, L., and
Roth-Nebelsick, A.: Atmospheric CO2 from the late Oligocene to early
Miocene based on photosynthesis data and fossil leaf characteristics,
Palaeogeogr. Palaeocl., 374, 41–51, https://doi.org/10.1016/j.palaeo.2012.12.025,
2013.
Henderiks, J. and Pagani, M.: Coccolithophore cell size and the Paleogene
decline in atmospheric CO2, Earth Planet. Sc. Lett., 269, 575–583,
https://doi.org/10.1016/j.epsl.2008.03.016, 2008.
Hill, R. S. and Pole, M. S.: Leaf and shoot morphology of extant
Afrocarpus, Nageia and Retrophyllum
(Podocarpaceae) species, and species with similar leaf arrangement, from
Tertiary sediments in Australasia, Aust. Syst. Bot., 5, 337–358,
https://doi.org/10.1071/SB9920337, 1992.
Hu, J. J., Xing, Y. W., Turkington, R., Jacques, F. M. B. Su, T., Huang,
Y. J., and Zhou, Z. K.: A new positive relationship between pCO2
and stomatal frequency in Quercus guyavifolia (Fagaceae):
a potential proxy for palaeo-CO2 levels, Ann. Bot.-London, 115,
777–788, https://doi.org/10.1093/aob/mcv007, 2015.
Huang, C. M., Retallack, G. J., Wang, C. S., and Huang, Q. H.:
Paleoatmospheric pCO2 fluctuations across the Cretaceous-Tertiary boundary
recorded from paleosol carbonates in NE China, Palaeogeogr. Palaeocl., 385,
95–105, https://doi.org/10.1016/j.palaeo.2013.01.005, 2013.
Jacques, F. M. B., Shi, G. L., Li, H. M., and Wang, W. M.: An early-middle
Eocene Antarctic summer monsoon: Evidence of “fossil climates”, Gondwana
Res., 25, 1422–1428, https://doi.org/10.1016/j.gr.2012.08.007, 2014.
Jin, J. H., Qiu, J., Zhu, Y. A., and Kodrul, T. M.: First fossil record of
the genus Nageia (Podocarpaceae) in South China and its
phytogeographic implications, Plant Syst. Evol., 285, 159–163,
https://doi.org/10.1007/s00606-010-0267-4, 2010.
Jones, H. G.: Plants and Microclimate, Cambridge University Press, Cambridge,
UK, 1–428, 1992.
Kato, Y., Fujinaga, K., and Suzuki, K.: Marine Os isotopic fluctuations in
the early Eocene greenhouse interval as recorded by metalliferous umbers from
a Tertiary ophiolite in Japan, Gondwana Res., 20, 594–607,
https://doi.org/10.1016/j.gr.2010.12.007, 2011.
Keating-Bitonti, C. R., Ivany, L. C., Affek, H. P., Douglas, P., and Samson,
S. D.: Warm, not super-hot, temperatures in the early Eocene subtropics,
Geology, 39, 771–774, https://doi.org/10.1130/G32054.1, 2011.
Kimura, T., Ohana, T., and Mimoto, K.: Discovery of a podocarpaceous plant
from the Lower Cretaceous of Kochi Prefecture, in the outer zone of southwest
Japan, P. Jpn. Acad. B-Phys., 64, 213–216, https://doi.org/10.2183/pjab.64.213, 1988.
Koch, P. L., Zachos, J. C., and Gingerich, P. D.: Correlation between isotope
records in marine and continental carbon reservoirs near the
Palaeocene/Eocene boundary, Nature, 358, 319–322, https://doi.org/10.1038/358319a0,
1992.
Kouwenberg, L. L. R., McElwain, J. C., Kürschner, W. M., Wagner, F.,
Beerling, S. J., Mayle, F. E., and Visscher, H.: Stomatal frequency
adjustment of four conifer species to historical changes in atmospheric
CO2, Am. J. Bot., 90, 610–619, 2003.
Körner, Ch. and Cochrane, P. M.: Stomatal responses and water relations
of Eucalyptus pauciflora in summer along an elevational gradient,
Oecologia, 66, 443–455, https://doi.org/10.1007/BF00378313, 1985.
Krassilov, V. A.: New coniferales from Lower Cretaceous of Primorye, Bot. J.,
50, 1450–1455, 1965 (in Russian).
Kürschner, W. M., van der Burgh, J., Visscher, H., and Dilcher, D. L.:
Oak leaves as biosensors of late Neogene and early Pleistocene
paleoatmospheric CO2 concentrations, Mar. Micropaleontol., 27,
299–312, https://doi.org/10.1016/0377-8398(95)00067-4, 1996.
Kürschner, W. M., Wagner, F., Dilcher, D. L., and Visscher, H.: Using
fossil leaves for the reconstruction of Cenozoic paleoatmospheric CO2
concentrations, in: Geological Perspectives of Global Climate Change, edited
by: Gerhard, L. C., Harrison, W. E., and Hanson, B. M., APPG Studies in
Geology, 47, Tulsa, 169–189, 2001.
Kürschner, W. M., Kvaček, Z., and Dilcher, D. L.: The impact of
Miocene atmospheric carbon dioxide fluctuations on climate and the evolution
of terrestrial ecosystems, P. Natl. Acad. Sci. USA, 105, 449–453,
https://doi.org/10.1073/pnas.0708588105, 2008.
Liu, X. Y., Gao, Q., and Jin, J. H.: late Eocene leaves of Nageia
Gaertner (section Dammaroideae Mill) from Maoming Basin, South China
and their implications on phytogeography, J. Syst. Evol., 999, 1–11,
https://doi.org/10.1111/jse.12133, 2015.
Lowenstein, T. K. and Demicco, R. V.: Elevated Eocene atmospheric CO2
and its subsequent decline, Science, 313, 1928,
https://doi.org/10.1126/science.1129555, 2006.
Maxbauer, D. P., Royer, D. L., and LePage, B. A.: High Artic forests during
the middle Eocene supported by moderate levels of atmospheric CO2,
Geology, 42, 1027–1030, https://doi.org/10.1130/G36014.1, 2014.
McElwain, J. C.: Do fossil plants signal palaeoatmospheric carbon dioxide
concentration in the geological past?, Philos. T. R. Soc. Lon. B, 353,
83–96, https://doi.org/10.1098/rstb.1998.0193, 1998.
McElwain, J. C. and Chaloner, W. G.: Stomatal density and index of fossil
plants track atmospheric carbon dioxide in the Palaeozoic, Ann. Bot.-London,
76, 389–395, https://doi.org/10.1006/anbo.1995.1112, 1995.
McElwain, J. C. and Chaloner, W. G.: The fossil cuticle as a skeletal record
of environmental changes, Palaios, 11, 376–388, https://doi.org/10.2307/3515247, 1996.
Mill, R. R.: A new combination in Nageia (Podocarpaceae), Novon, 9,
77–78, 1999.
Mill, R. R.: A new sectional combination in Nageia Gaertn.
(Podocarpaceae), Edinburgh J. Bot., 58, 499–501,
https://doi.org/10.1017/S0960428601000804, 2001.
Moran, K., Backman, J., Brinkhuis, H., Clemens, S. C., Cronin, T., Dickens,
G. R., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R. W., Kaminski,
M., King, J., Koc, N., Krylov, A., Martinez, N., Matthiessen, J., McInroy,
D., Moore, T. C., Onodera, J., O'Regan, M., Pälike, H., Rea, B., Rio, D.,
Sakamoto, T., Smith, D. C., Stein, R., St John, K., Suto, I., Suzuki, N.,
Takahashi, K., Watanabe, M., Yamamoto, M., Farrell, J., Frank, M., Kubik, P.,
Jokat, W., and Kristoffersen, Y.: The Cenozoic palaeoenvironment of the
Arctic Ocean, Nature, 441, 601–605, https://doi.org/10.1038/nature04800, 2006.
Nordt, L., Atchley, S., and Dworkin, S. I.: Paleosol barometer indicates
extreme fluctuations in atmospheric CO2 across the
Cretaceous-Tertiary boundary, Geology, 30, 703–706,
https://doi.org/10.1130/0091-7613(2002)030<0703:PBIEFI>2.0.CO;2,
2002.
Pagani, M., Arthur, M. A., and Freeman, K. H.: Miocene evolution of
atmospheric carbon dioxide, Paleoceanography, 14, 273–292,
https://doi.org/10.1029/1999PA900006, 1999.
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S.: Marked
decline in atmospheric carbon dioxide concentrations during the Paleocene,
Science, 309, 600–603, https://doi.org/10.1126/science.1110063, 2005.
Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide
through the Eocene-Oligocene climate transition, Nature, 461, 1110–1113,
https://doi.org/10.1038/nature08447, 2009.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile,
I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M.,
Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., PÉpin, L.,
Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history
of the past 420,000 years from the Vostokicecore, Antarctica, Nature, 399,
429–436, https://doi.org/10.1038/20859, 1999.
Pieter, T. and Keeling, R.: Recent monthly average Mauna Loa CO2,
NOAA/ESRL, available at: www.esrl.noaa.gov/gmd/ccgg/trends/ (last
access: March 2015), 2015.
Poole, I. and Kürschner, W. M.: Stomatal density and index: the practice,
in: Fossil Plants and Spores: Modern Techniques, edited by: Jones, T. P. and
Rowe, N. P., Geological Society, London, 257–260, 1999.
Retallack, G. J.: A 300-million-year record of atmospheric carbon dioxide
from fossil plant cuticles, Nature, 411, 287–290, https://doi.org/10.1038/35077041,
2001.
Retallack, G. J.: Greenhouse crises of the past 300 million years, Geol. Soc.
Am. Bull., 121, 1441–1455, https://doi.org/10.1130/B26341.1, 2009a.
Retallack, G. J.: Refining a pedogenic-carbonate CO2 paleobarometer
to quantify a middle Miocene greenhouse spike, Palaeogeogr. Palaeocl., 281,
57–65, https://doi.org/10.1016/j.palaeo.2009.07.011, 2009b.
Roth-Nebelsick, A., Grein, M., Utescher, T., and Konrad, W.: Stomatal pore
length change in leaves of Eotrigonobalanus furcinervis (Fagaceae) from the
Late Eocene to the Latest Oligocene and its impact on gas exchange and
CO2 reconstruction, Rev. Palaeobot. Palyno., 174, 106–112,
https://doi.org/10.1016/j.revpalbo.2012.01.001, 2012.
Roth-Nebelsick, A., Oehm, C., Grein, M., Utescher, T., Kunzmann, L.,
Friedrich, J.-P., and Konrad, W.: Stomatal density and index data of Platanus
neptuni leaf fossils and their evaluation as a CO2 proxy for the
Oligocene, Rev. Palaeobot. Palyno., 206, 1–9,
https://doi.org/10.1016/j.revpalbo.2014.03.001, 2014.
Royer, D. L.: Stomatal density and stomatal index as indicators of
paleoatmospheric CO2 concentration, Rev. Palaeobot. Palyno., 114,
1–28, https://doi.org/10.1016/S0034-6667(00)00074-9, 2001.
Royer, D. L.: Estimating latest Cretaceous and Tertiary atmospheric
CO2 from stomatal indices, in: Causes and Consequences of Globally
Warm Climates in the early Paleocene, edited by: Wing, S. L., Gingerich,
P. D., Schmitz, B., and Thomas, E., Geological Society of America Special
Paper, 79–93, 2003.
Royer, D. L.: CO2-forced climate thresholds during the Phanerozoic,
Geochim. Cosmochim. Ac., 70, 5665–5675, https://doi.org/10.1016/j.gca.2005.11.031,
2006.
Royer, D. L., Wing, S. L., Beerling, D. J., Jolley, D. W., Koch, P. L.,
Hickey, L. J., and Berner, R. A.: Paleobotanical evidence for near
present-day levels of atmospheric CO2 during part of the Tertiary,
Science, 292, 2310–2313, https://doi.org/10.1126/science.292.5525.2310, 2001.
Rundgren, M. and Beerling, D. J.: A Holocene CO2 record from the
stomatal index of subfossil Salix herbacea L. leaves from northern
Sweden, Holocene, 9, 509–513, https://doi.org/10.1191/095968399677717287, 1999.
Seki, O, Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and
Pancost, R. D.: Alkenone and boron-based Pliocene pCO2 records, Earth
Planet. Sc. Lett., 292, 201–211, https://doi.org/10.1016/j.epsl.2010.01.037, 2010.
Sinha, A. and Stott, L. D.: New atmospheric pCO2 estimates from
paleosols during the late Paleocene/early Eocene global warming interval,
Global Planet. Change, 9, 297–307, https://doi.org/10.1016/0921-8181(94)00010-7, 1994,
Smith, R. Y., Greenwood, D. R., and Basinger, J. F.: Estimating
paleoatmospheric pCO2 during the early Eocene Climatic Optimum from
stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia,
Canada, Palaeogeogr. Palaeocl., 293, 120–131,
https://doi.org/10.1016/j.palaeo.2010.05.006, 2010.
Spicer, A. R., Herman, A. B., Liao, W. B., Spicer, T. E. V., Kodrul, T. M.,
Yang, J., and Jin, J. H.: Cool tropics in the middle Eocene: Evidence from
the Changchang Flora, Hainan Island, China, Palaeogeogr. Palaeocl., 412,
1–16, https://doi.org/10.1016/j.palaeo.2014.07.011, 2014.
Stott, L. D.: Higher temperatures and lower oceanic pCO2: A climate
enigma at the end of the Paleocene Epoch, Paleoceanography, 7, 395–404,
https://doi.org/10.1029/92PA01183, 1992.
Stults, D. Z., Wagner-Cremer, F., and Axsmith, B. J.: Atmospheric
paleo-CO2 estimates based on Taxodium distichum
(Cupressaceae) fossils from the Miocene and Pliocene of Eastern North
America, Palaeogeogr. Palaeocl., 309, 327–332,
https://doi.org/10.1016/j.palaeo.2011.06.017, 2011.
Sun, B. N., Ding, S. T., Wu, J. Y., Dong, C., Xie, S. P., and Lin, Z. C.:
Carbon isotope and stomatal data of late Pliocene Betulaceae leaves from SW
China: Implications for palaeoatmospheric CO2-levels, Turk. J. Earth
Sci., 21, 237–250, https://doi.org/10.3906/yer-1003-42, 2012.
Sun, T. X.: Cuticle micromorphology of Nageia, J. Wuhan Bot. Res.,
26, 554–560, https://doi.org/10.3969/j.issn.2095-0837.2008.06.002, 2008 (in Chinese
with English abstract).
Tripati, A. K., Roberts, C. D., and Eagle, R. A.: Coupling of CO2 and
ice sheet stability over major climate transitions of the last 20 million
years, Science, 326, 1394–1397, https://doi.org/10.1126/science.1178296, 2009.
Van der Burgh, J., Visscher, H., Dilcher, D. L., and Kürschner, W. M.:
Paleoatmospheric signatures in Neogene fossil leaves, Science, 260,
1788–1790, https://doi.org/10.1126/science.260.5115.1788, 1993.
Walker, J. D. and Geissman, J. W.: Geologic Time Scale, Geological Society of
America, https://doi.org/10.1130/2009.CTS004R2C, available at:
http://www.geosociety.org/science/timescale/, last access: 25 January
2016, 2009.
Wang, J. D., Li, H. M., and Zhu, Z. Y.: Magnetostratigraphy of Tertiary rocks
from Maoming Basin, Guangdong province, China, Chinese Journal of
Geochemistry, 13, 165–175, https://doi.org/10.1007/BF02838516, 1994.
Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., and
Freeman, K. H.: Transient floral change and rapid global warming at the
Paleocene-Eocene boundary, Science, 310, 993–996,
https://doi.org/10.1126/science.1116913, 2005.
Woodward, F. I.: Ecophysiological studies on the shrub Vaccinium
myrtillus L. taken from a wide altitudinal range, Oecologia, 70, 580–586,
https://doi.org/10.1007/BF00379908, 1986.
Woodward, F. I.: Stomatal numbers are sensitive to increases in CO2
concentration from pre-industrial levels, Nature, 327, 617–618,
https://doi.org/10.1038/327617a0, 1987.
Woodward, F. I. and Bazzaz, F. A.: The responses of stomatal density to
CO2 partial pressure, J. Exp. Bot., 39, 1771–1781,
https://doi.org/10.1093/jxb/39.12.1771, 1988.
Yang, J. J., Qi, G. F., and Xu, R. H.: Studies on fossil woods excavated from
the Dabie mountains, Sci. Silvae Sinicae, 26, 379–386, 1990 (in Chinese with
English abstract).
Ye, M. N.: On the preparation methods of fossil cuticle, in: Selected papers
of the 12th Annual conference of the Palaeontological Society of China,
edited by: Palaeontological Society of China, Science Press, Beijing,
170–179, 1981 (in Chinese).
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, aberrations in global climate 65 Ma to present, Science,
292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective
on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283,
https://doi.org/10.1038/nature06588, 2008.
Short summary
We reconstruct late middle Eocene (42.0–38.5 Ma) pCO2 based on the fossil leaves of Nageia maomingensis Jin et Liu collected from the Maoming Basin, Guangdong Province, China. This work indicates that the stomatal density (SD) inversely responds to pCO2, while stomatal index (SI) has almost no relationship with pCO2, using "modern" leaves of N. motleyi (Parl.) De Laub. Regression approach gives a pCO2 of 351.9 ± 6.6 ppmv, whereas stomatal ratio method gives a pCO2 of 537.5 ± 56.5 ppmv.
We reconstruct late middle Eocene (42.0–38.5 Ma) pCO2 based on the fossil leaves of Nageia...
Special issue