Articles | Volume 11, issue 5
https://doi.org/10.5194/cp-11-751-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-751-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Northern Hemisphere control of deglacial vegetation changes in the Rufiji uplands (Tanzania)
I. Bouimetarhan
CORRESPONDING AUTHOR
MARUM – Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, P.O. Box 330 440, 28334, Bremen, Germany
L. Dupont
MARUM – Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, P.O. Box 330 440, 28334, Bremen, Germany
H. Kuhlmann
MARUM – Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, P.O. Box 330 440, 28334, Bremen, Germany
J. Pätzold
MARUM – Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, P.O. Box 330 440, 28334, Bremen, Germany
M. Prange
MARUM – Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, P.O. Box 330 440, 28334, Bremen, Germany
E. Schefuß
MARUM – Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, P.O. Box 330 440, 28334, Bremen, Germany
K. Zonneveld
MARUM – Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, P.O. Box 330 440, 28334, Bremen, Germany
Related authors
No articles found.
Andrés Castillo-Llarena, Franco Retamal-Ramírez, Jorge Bernales, Martín Jacques-Coper, Matthias Prange, and Irina Rogozhina
Clim. Past, 20, 1559–1577, https://doi.org/10.5194/cp-20-1559-2024, https://doi.org/10.5194/cp-20-1559-2024, 2024
Short summary
Short summary
During the last glacial period, the Patagonian Ice Sheet grew along the southern Andes, leaving marks on the landscape showing its former extents and timing. We use paleoclimate and ice sheet models to replicate its glacial history. We find that errors in the model-based ice sheet are likely induced by imprecise reconstructions of air temperature due to poorly resolved Andean topography in global climate models, while a fitting regional climate history is only captured by local sediment records.
Brian R. Crow, Lev Tarasov, Michael Schulz, and Matthias Prange
Clim. Past, 20, 281–296, https://doi.org/10.5194/cp-20-281-2024, https://doi.org/10.5194/cp-20-281-2024, 2024
Short summary
Short summary
An abnormally warm period around 400,000 years ago is thought to have resulted in a large melt event for the Greenland Ice Sheet. Using a sequence of climate model simulations connected to an ice model, we estimate a 50 % melt of Greenland compared to today. Importantly, we explore how the exact methodology of connecting the temperatures and precipitation from the climate model to the ice sheet model can influence these results and show that common methods could introduce errors.
Brian R. Crow, Matthias Prange, and Michael Schulz
Clim. Past, 18, 775–792, https://doi.org/10.5194/cp-18-775-2022, https://doi.org/10.5194/cp-18-775-2022, 2022
Short summary
Short summary
To better understand the climate conditions which lead to extensive melting of the Greenland ice sheet, we used climate models to reconstruct the climate conditions of the warmest period of the last 800 000 years, which was centered around 410 000 years ago. Surprisingly, we found that atmospheric circulation changes may have acted to reduce the melt of the ice sheet rather than enhance it, despite the extensive warmth of the time.
Lydie M. Dupont, Xueqin Zhao, Christopher Charles, John Tyler Faith, and David Braun
Clim. Past, 18, 1–21, https://doi.org/10.5194/cp-18-1-2022, https://doi.org/10.5194/cp-18-1-2022, 2022
Short summary
Short summary
We studied the vegetation and climate of southwestern South Africa for the period of the past 300000 years. Vegetation and climate development in this region are interesting because the vegetation of the Western Cape is a global biodiversity hotspot and because the archeology of the region substantially contributed to the understanding of the origins of modern humans. We found that the influence of precession variability on the vegetation and climate of southwestern South Africa is strong.
Martim Mas e Braga, Jorge Bernales, Matthias Prange, Arjen P. Stroeven, and Irina Rogozhina
The Cryosphere, 15, 459–478, https://doi.org/10.5194/tc-15-459-2021, https://doi.org/10.5194/tc-15-459-2021, 2021
Short summary
Short summary
We combine a computer model with different climate records to simulate how Antarctica responded to warming during marine isotope substage 11c, which can help understand Antarctica's natural drivers of change. We found that the regional climate warming of Antarctica seen in ice cores was necessary for the model to match the recorded sea level rise. A collapse of its western ice sheet is possible if a modest warming is sustained for ca. 4000 years, contributing 6.7 to 8.2 m to sea level rise.
Pepijn Bakker, Irina Rogozhina, Ute Merkel, and Matthias Prange
Clim. Past, 16, 371–386, https://doi.org/10.5194/cp-16-371-2020, https://doi.org/10.5194/cp-16-371-2020, 2020
Short summary
Short summary
Northeastern Siberia is currently known for its harsh cold climate, but remarkably it did not experience large-scale glaciation during the last ice age. We show that the region is also exceptional in climate models. As a result of subtle changes in model setup, climate models show a strong divergence in simulated glacial summer temperatures that is ultimately driven by changes in the circumpolar atmospheric stationary wave pattern and associated northward heat transport to northeastern Siberia.
Gerlinde Jung and Matthias Prange
Clim. Past, 16, 161–181, https://doi.org/10.5194/cp-16-161-2020, https://doi.org/10.5194/cp-16-161-2020, 2020
Short summary
Short summary
All major mountain ranges were uplifted during Earth's history. Previous work showed that African uplift might have influenced upper-ocean cooling in the Benguela region. But the surface ocean cooled also in other upwelling regions during the last 10 million years. We performed a set of model experiments altering topography in major mountain regions to explore the effects on atmosphere and ocean. The simulations show that mountain uplift is important for upper-ocean temperature evolution.
Lydie M. Dupont, Thibaut Caley, and Isla S. Castañeda
Clim. Past, 15, 1083–1097, https://doi.org/10.5194/cp-15-1083-2019, https://doi.org/10.5194/cp-15-1083-2019, 2019
Short summary
Short summary
Multiproxy study of marine sediments off the Limpopo River mouth spanning the Late Pleistocene reveals the impact of atmospheric carbon dioxide on the development of the vegetation of southeast Africa and indicates changes in the interglacial vegetation before and after the Mid-Brunhes Event (430 ka).
Friederike Grimmer, Lydie Dupont, Frank Lamy, Gerlinde Jung, Catalina González, and Gerold Wefer
Clim. Past, 14, 1739–1754, https://doi.org/10.5194/cp-14-1739-2018, https://doi.org/10.5194/cp-14-1739-2018, 2018
Short summary
Short summary
We present the first marine pollen record of the early Pliocene from western equatorial South America. Our reconstruction of the vegetation aims to provide insights into hydrological changes related to tectonic events (Central American Seaway closure, uplift of the Northern Andes). We find stable humid conditions, suggesting a southern location of the Intertropical Convergence Zone. The presence of high montane vegetation indicates an early uplift of the Western Cordillera of the northern Andes.
Axel Wagner, Gerrit Lohmann, and Matthias Prange
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-172, https://doi.org/10.5194/gmd-2018-172, 2018
Publication in GMD not foreseen
Short summary
Short summary
This study demonstrates the dependence of simulated surface air temperatures on variations in grid resolution and resolution-dependent orography in simulations of the Mid-Holocene. A set of Mid-Holocene sensitivity experiments is carried out. The simulated Mid-Holocene temperature differences (low versus high resolution) reveal a response that regionally exceeds the Mid-Holocene to preindustrial modelled temperature anomalies, and show partly reversed signs across the same geographical regions.
Andrea Klus, Matthias Prange, Vidya Varma, Louis Bruno Tremblay, and Michael Schulz
Clim. Past, 14, 1165–1178, https://doi.org/10.5194/cp-14-1165-2018, https://doi.org/10.5194/cp-14-1165-2018, 2018
Short summary
Short summary
Numerous proxy records from the northern North Atlantic suggest substantial climate variability including the occurrence of multi-decadal-to-centennial cold events during the Holocene. We analyzed two abrupt cold events in a Holocene simulation using a comprehensive climate model. It is shown that the events were ultimately triggered by prolonged phases of positive North Atlantic Oscillation causing changes in ocean circulation followed by severe cooling, freshening, and expansion of sea ice.
Amanda Frigola, Matthias Prange, and Michael Schulz
Geosci. Model Dev., 11, 1607–1626, https://doi.org/10.5194/gmd-11-1607-2018, https://doi.org/10.5194/gmd-11-1607-2018, 2018
Short summary
Short summary
The application of climate models to study the Middle Miocene Climate Transition, characterized by major Antarctic ice-sheet expansion and global cooling at the interval 15–13 million years ago, is currently hampered by the lack of boundary conditions. To fill this gap, we compiled two internally consistent sets of boundary conditions, including global topography, bathymetry, vegetation and ice volume, for the periods before and after the transition.
Rony R. Kuechler, Lydie M. Dupont, and Enno Schefuß
Clim. Past, 14, 73–84, https://doi.org/10.5194/cp-14-73-2018, https://doi.org/10.5194/cp-14-73-2018, 2018
Short summary
Short summary
Measuring deuterium and stable carbon isotopes of higher plant wax extracted from marine sediments offshore of Mauritania, we recovered a record of hydrology and vegetation change in West Africa for two Pliocene intervals: 5.0–4.6 and 3.6–3.0 Ma. We find that changes in local summer insolation cannot fully explain the variations in the West African monsoon and that latitudinal insolation and temperature gradients are important drivers of tropical monsoon systems.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Julie Lattaud, Denise Dorhout, Hartmut Schulz, Isla S. Castañeda, Enno Schefuß, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 13, 1049–1061, https://doi.org/10.5194/cp-13-1049-2017, https://doi.org/10.5194/cp-13-1049-2017, 2017
Short summary
Short summary
The study of past sedimentary records from coastal margins allows us to reconstruct variations in terrestrial input into the marine realm and to gain insight into continental climatic variability. The study of two sediment cores close to river mouths allowed us to show the potential of long-chain diols as riverine input proxy.
Vidya Varma, Matthias Prange, and Michael Schulz
Geosci. Model Dev., 9, 3859–3873, https://doi.org/10.5194/gmd-9-3859-2016, https://doi.org/10.5194/gmd-9-3859-2016, 2016
Short summary
Short summary
We compare the results from simulations of the present and the last interglacial, with and without acceleration of the orbital forcing, using a comprehensive coupled climate model. In low latitudes, the simulation of long-term variations in interglacial surface climate is not significantly affected by the use of the acceleration technique and hence model–data comparison of surface variables is therefore not hampered but major repercussions of the orbital forcing are obvious below thermocline.
Rima Rachmayani, Matthias Prange, and Michael Schulz
Clim. Past, 12, 677–695, https://doi.org/10.5194/cp-12-677-2016, https://doi.org/10.5194/cp-12-677-2016, 2016
Short summary
Short summary
A set of 13 interglacial time slice experiments was carried out using a CCSM3-DGVM to study global climate variability between and within the Quaternary interglaciations of MIS 1, 5, 11, 13, and 15. Seasonal surface temperature anomalies can be explained by local insolation anomalies induced by the astronomical forcing in most regions and by GHG forcing at high latitudes and early Bruhnes interglacials. However, climate feedbacks may modify the surface temperature response in specific regions.
C. M. Chiessi, S. Mulitza, G. Mollenhauer, J. B. Silva, J. Groeneveld, and M. Prange
Clim. Past, 11, 915–929, https://doi.org/10.5194/cp-11-915-2015, https://doi.org/10.5194/cp-11-915-2015, 2015
Short summary
Short summary
Here we show that temperatures in the western South Atlantic increased markedly during the major slowdown event of the Atlantic meridional overturning circulation (AMOC) of the last deglaciation. Over the adjacent continent, however, temperatures followed the rise in atmospheric carbon dioxide, lagging changes in oceanic temperature. Our records corroborate the notion that the long duration of the major slowdown event of the AMOC was fundamental in driving the Earth out of the last glacial.
S. Hoetzel, L. M. Dupont, F. Marret, G. Jung, and G. Wefer
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-1913-2015, https://doi.org/10.5194/cpd-11-1913-2015, 2015
Preprint withdrawn
R. Rachmayani, M. Prange, and M. Schulz
Clim. Past, 11, 175–185, https://doi.org/10.5194/cp-11-175-2015, https://doi.org/10.5194/cp-11-175-2015, 2015
Short summary
Short summary
The role of vegetation-precipitation feedbacks in modifying the North African rainfall response to enhanced early to mid-Holocene summer insolation is analysed using the climate-vegetation model CCSM3-DGVM. Dynamic vegetation amplifies the positive early to mid-Holocene summer precipitation anomaly by ca. 20% in the Sahara-Sahel region. The primary vegetation feedback operates through surface latent heat flux anomalies by canopy evapotranspiration and their effect on the African easterly jet.
N. Merz, C. C. Raible, H. Fischer, V. Varma, M. Prange, and T. F. Stocker
Clim. Past, 9, 2433–2450, https://doi.org/10.5194/cp-9-2433-2013, https://doi.org/10.5194/cp-9-2433-2013, 2013
Y. Milker, R. Rachmayani, M. F. G. Weinkauf, M. Prange, M. Raitzsch, M. Schulz, and M. Kučera
Clim. Past, 9, 2231–2252, https://doi.org/10.5194/cp-9-2231-2013, https://doi.org/10.5194/cp-9-2231-2013, 2013
D. Handiani, A. Paul, M. Prange, U. Merkel, L. Dupont, and X. Zhang
Clim. Past, 9, 1683–1696, https://doi.org/10.5194/cp-9-1683-2013, https://doi.org/10.5194/cp-9-1683-2013, 2013
M. Kageyama, U. Merkel, B. Otto-Bliesner, M. Prange, A. Abe-Ouchi, G. Lohmann, R. Ohgaito, D. M. Roche, J. Singarayer, D. Swingedouw, and X Zhang
Clim. Past, 9, 935–953, https://doi.org/10.5194/cp-9-935-2013, https://doi.org/10.5194/cp-9-935-2013, 2013
Related subject area
Subject: Vegetation Dynamics | Archive: Marine Archives | Timescale: Millenial/D-O
Orbital- and millennial-scale environmental changes between 64 and 20 ka BP recorded in Black Sea sediments
Vegetation dynamics in the Northeastern Mediterranean region during the past 23 000 yr: insights from a new pollen record from the Sea of Marmara
L. S. Shumilovskikh, D. Fleitmann, N. R. Nowaczyk, H. Behling, F. Marret, A. Wegwerth, and H. W. Arz
Clim. Past, 10, 939–954, https://doi.org/10.5194/cp-10-939-2014, https://doi.org/10.5194/cp-10-939-2014, 2014
V. Valsecchi, M. F. Sanchez Goñi, and L. Londeix
Clim. Past, 8, 1941–1956, https://doi.org/10.5194/cp-8-1941-2012, https://doi.org/10.5194/cp-8-1941-2012, 2012
Cited articles
Adler, R. F., Huffman, G. J., Chang, R., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., and Arkin, P.: The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, 2003.
Alley, R. B.: The Younger Dryas cold interval as viewed from central Greenland, Quaternary Sci. Rev., 19, 213–226, 2000.
Barker, P., Leng, M. J., Gasse, F., and Huang, Y.: Century-to-millennial scale climatic variability in Lake Malawi reveales by isotope records, Earth Planet. Sc. Lett., 261, 93–103, 2007.
Blasco, F., Saenger, P., and Janodet, E.: Mangrove as indicators of coastal change, Catena, 27, 167–178, 1996.
Bonnefille, R. and Riollet, G.: Pollens des Savanes d'Afrique Orientale, Edition de CNRS, Paris, 140 pp., 1980.
Bouimetarhan, I., Dupont, L., Schefuß, E., Mollenhauer, G., Mulitza, S., and Zonneveld, K.: Palynological evidence for climatic and oceanic variability off NW Africa during the late Holocene, Quaternary Res., 72, 188–197, 2009.
Bouimetarhan, I., Prange, M., Schefuß, E., Dupont, L., Lippold, J., Mulitza, S., and Zonneveld, K.: Sahel megadrought during Heinrich Stadial 1: evidence for a three-phase evolution of the low- and mid-level West African wind system, Quaternary Sci. Rev., 58, 66–76, 2012.
Bouimetarhan I., Groeneveld, J., Dupont, L., and Zonneveld, K.: Low- to high-productivity pattern within Heinrich stadial 1: inferences from dinoflagellate cyst records off Senegal, Global Planet. Change, 106, 64–76, 2013.
Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to Northern Hemisphere cooling, Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546, 2006.
Brown, E. T., Johnson, T. C., Scholz, C. A., Cohen, A. S., and King, J. W.: Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55 000 years, Geophys. Res. Lett., 34, L20702, https://doi.org/10.1029/2007GL031240, 2007.
Brunett, A. P., Soreghan, M. J., Scholz, C. A., and Brown, E. T.: Tropical east African climate change and its relation to global climate: a record from lake Tanganyika, Tropical east Africa, over the past 90+ kyr. Palaeogeogr. Palaeoecol., 303, 155–167, 2011.
Castañeda, I. S., Werne, J. P., and Hohnson, T. C.: Wet and arid phases in the southeast African tropics since the Last Glacial Maximum, Geology, 35, 823–826, 2007.
Chiang, J. C. H. and Friedman, A. R.: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change, Annu. Rev. Earth Planet. Sc., 40, 383–412, 2012.
Claussen, M., Ganopolski, A., Brovkin, V., Gerstengarbe, F.-W., and Werner, P.: Simulated global-scale response of the climate system to Dansgaard/Oeschger and Heinrich events, Clim. Dynam., 21, 316–370, 2003.
Dahl, K. A., Broccoli, A. J., and Stouffer, R. J.: Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: A tropical Atlantic Perspective, Clim. Dynam., 24, 325–346, 2005.
Denniston, R. F., Wyrwoll, K.-H., Asmerom, Y., Polyak, V. J., Humphreys, W. F., Cugley, J., Woods, D., LaPointe, Z., Peota, J., and Greaves, E.: North Atlantic forcing of millennial-scale Indo-Australian monsson dynamics during the Last Glacial Period, Quaternary Sci. Rev., 72, 159–168, 2013.
Dubois, N., Oppo, D. W., Galy, V. V., Mohtadi, M., van der Kaars, S., Tierney, J. E., Rosenthal, Y., Eglinton, T. I., Lückge, A., and Linsley, B. K.: Indonesian vegetation response to changes in rainfall seasonality over the past 25 000 years, Nat. Geosci., 7, 513–517, 2014.
Dupont, L. M.: Pollen and spores in marine sediments from the east Atlantic, A view from the ocean into the African continent, edited by: Fischer, G. and Wefer, G., Proxies in Paleoceanography, examples from the South Atlantic, Springer, Berlin:, 523–546, 1999.
Dupont, L.: Orbital scale vegetation change, Quaternary Sci. Rev., 30, 3589–3602, 2011.
Dupont, L. M. and Agwu, C. O. C.: Environmental control of pollen grain distribution patterns in the Gulf of Guinea and offshore NW-Africa, Geol. Rundsch., 80, 567–589, 1991.
Faegri, K. and Iversen, J.: Textbook of pollen analysis, IV Edition, edited by: Faegri, K., Kaland, P. E., and Krzywinski, K., Wiley, New York, 237 pp., 1989.
Frierson, D. M. V., Hwang, Y.-T., Fučkar, N. S., Seager, R., Kang, S. M., Donohoe, A., Maroon, E. A., Liu, X., and Battisti, D. S.: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere, Nat. Geosci., 6, 940–944, https://doi.org/10.1038/NGEO1987, 2013.
Garcin, Y., Vincens, A., Williamson, D., Guiot, J., and Buchet, G.: Wet phases in tropical southern Africa during the last glacial period, Geophys. Res. Lett., 33, L07703, https://doi.org/10.1029/2005GL025531, 2006.
Garcin, Y., Vincens, A., Williamson, D., Buchet, G., and Guiot, J.: Abrupt resumption of the African Monsoon at the Younger Dryas-Holocene climatic transition, Quaternary Sci. Rev., 26, 690–704, 2007.
Gasse, F.: Hydrological changes in the African tropics since the Last Glacial Maximum, Quaternary Sci. Rev., 19, 189–211, 2000.
Gasse, F., Chalié, F., Vincenes, A., Williams, A. J., and Williamson, D.: Climatic patterns in equatorial Africa and Southern Africa from 30 000 to 10 000 years ago reconstructed from terrestrial and near-shore proxy data, Quaternary Sci. Rev., 27, 2316–2340, 2008.
González, C. and Dupont L.: Tropical salt marsh sucesión as sea-level indicator during Heinrich events, Quaternary Sci. Rev., 28, 939–946, 2009.
Govin, A., Chiessi, C. M., Zabel, M., Sawakuchi, A. O., Heslop, D., Hörner, T., Zhang, Y., and Mulitza, S.: Terrigenous input off northern South America driven by changes in Amazonian climate and the North Brazil Current retroflection during the last 250 ka, Clim. Past, 10, 843–862, https://doi.org/10.5194/cp-10-843-2014, 2014.
Griffiths, J. F.: Climate of Africa, World survey of climatology, volume 10, Elsevier, Amsterdam, 604 pp., 1972.
Hély, C., Bremond, L., Alleaume, S., Smith, B., Sykes, M., and Guiot, J.: Sensitivity of African biomes to changes in the precipitation regime, Global Ecol. Biogeogr., 15, 258–270, 2006.
Hemming, S. R.: Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint, Rev. Geophys., 42, RG1005, https://doi.org/10.1029/2003RG000128, 2004.
Hogarth, P. J.: The biology of mangroves, Oxford University Press, New York, pp. 228, 1999.
Hooghiemstra, H. and Agwu C. O. C.: Distribution of palynomorphs in marine sediment: a record for seasonal wind patterns over NW Africa and adjacent Atlantic, Geol. Rundsch., 75, 81–95, 1986.
Hooghiemstra, H.: Changes of major wind belts and vegetation zones in NW Africa 20 000–5000 yr B.P., as deduced from a marine pollen record near Cap Blanc, Rev. Palaeobot. Palyno., 55, 101–140, 1988.
Indeje, M., Semazzi, F. H. M., and Ogallo, L. J.: ENSO signals in East African rainfall seasons, Int. J. Climatol., 20, 19–46, 2000.
Itambi, A. C., von Dobeneck, T., Mulitza, S., Bickert, T., and Heslop, D.: Millennial scale North West African droughts relates to H events and D O cycles: Evidence in marine sediments from off-shore Senegal, Paleoceanography, 24, PA1205, https://doi.org/10.1029/2007PA001570, 2009.
Ivory, S. J., Lézine, A.-M., Vincens, A., and Cohen, A. S.: Effect of aridity and rainfall seasonality on vegetation in the southern tropics of east Africa during the Pleistocene/Holocene transition, Quaternary Res., 77, 77–86, 2012.
Johnson, T. C., Brown, E. T., McManus, J., Barry, S., Barker, P., and Gasse, F.: A high-resolution paleoclimate record spanning the past 25 000 years in southern east Africa, Science, 296, 113–132, 2002.
Junginger, A., Roller, S., Olaka, L. A., and Trauth, M. H.: The effects of solar irradiation changes on the migration of the Congo Air Boundary and water levels of paleo-Lake Suguta, Northern Kenya Rift, during the African humid period (15–5 ka BP), Palaeogeogr. Palaeoecol., 396, 1–16, 2014.
Kageyama, M., Merkel, U., Otto-Bliesner, B., Prange, M., Abe-Ouchi, A., Lohmann, G., Ohgaito, R., Roche, D. M., Singarayer, J., Swingedouw, D., and X Zhang: Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study, Clim. Past, 9, 935–953, https://doi.org/10.5194/cp-9-935-2013, 2013.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, Bull. Amer. Meteor. Soc., 77, 437–471 1996
Kang, S. M., Frierson, D. M. W., and Held, I. M.: The tropical response to extratropical thermal forcing in an idealized GCM: the importance of radiative feedbacks and convective parameterization, J. Atmos. Sci., 66, 2812–2827, 2009.
Kijazi, A. L., and Reason, C. J. C.: Relationships between intraseasonal rainfall variability of coastal Tanzania and ENSO, Theor. Appl. Climatol., 82, 153–176, 2005.
Kim, J.-H., Dupont, L., Behling, H., and Versteegh, J. M.: Impacts of rapid sea-level rise on mangrove deposit erosion: application of taraxerol and Rhizophora records, J. Quaternary Sci., 20, 221–225, 2005.
Kindt, R., Lillesø, J.-P. B., van Breugel, P., Bingham, M., Sebsebe, D., Dudley, C., Friis, I., Gachathi, F., Kalema, J., Mbago, F., Minani, V., Moshi, H. N., Mulumba, J., Namaganda, M., Ndangalasi, H. J., Ruffo, C. K., Jamnadass, R., and Graudal, L.: Potential natural vegetation of eastern Africa, Description and tree species composition for other potential natural vegetation types, Forest and Landscape Working paper, 5, 65–2011, 2011.
Leduc, G., Vidal, L., Tachikawa, K., and Bard. E.: ITCZ rather than ENSO signature for abrupt climate changes across the tropical Pacific?, Quaternary Res., 72, 123–131, 2009.
Lewis, S. C., LeGrande, A. N., Kelley, M., and Schmidt, G. A.: Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events, Clim. Past, 6, 325–343, https://doi.org/10.5194/cp-6-325-2010, 2010.
Lézine, A. M., Turon, J. L., and Buchet, G.: Pollen analyses off Senegal: evolution of the coastal palaeoenvironment during the last deglaciation, J. Quaternary Sci., 10, 95–105, 1995.
Lézine, A. M.: La mangrove ouest africaine, signal des variations du niveau marin et des conditions régionales du climat au cours de la dernière déglaciation, Bulletin de société géologique, 6, 743–752, 1996.
Lézine, A. M., Robert, C., Cleuziou, S., Inizan, M.-L., Braemer, F., Saliége, J.-F., Sylvestre, F., Tiercelin, J.-J., Crassard, R., Méry, S., Charpentier, V., and Steimer-Herbet, T.: Climate change and human occupation in Southern Arabian lowlands during the last deglaciation and the Holocene, Global Planet. Change, 72, 412–428, 2010.
Masalu, D. C. P.: Challenges of coastal area management in coastal developing countries-lessons from the proposed Rufiji Delta prawn farming project, Tanzania, Ocean Coast. Manage., 46, 175–188, 2003.
Mohtadi, M., Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang, X., Steinke, S., and Lückge, A.: North Atlantic forcing of tropical Indian Ocean climate, Nature, 509, 76–80, 2014.
Mulitza, S., Prange, M., Stuut, J. B., Zabel, M., von Dobeneck, T., Itambi, C. A., Nizou, J., Schulz, M., and Wefer, G.: Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning, Paleoceanography, 23, PA4206, https://doi.org/10.1029/2008PA001637, 2008.
Muscheler, R., Kromer, B., Björk, S., Svensson, A., Friedrich, M., Kaiser, K. F., and Southon, J.: Tree ring and ice cores reveal 14C calibration uncertainties during the Younger Dryas, Nat. Geosci., 1, 263–267, 2008.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., and Kent, J.: Biodiversity hotspots for conservation priorities, Nature, 403, 853–858, 2000.
Nicholson, S. E.: A review of climate dynamics and climate variability in: Eastern Africa, edited by: Johnson, T. C. and Odada, E. O., The Limnology, Climatology and Paleoclimatology of the East African Lakes, Gordon and Breach, Amsterdam (1996), 25–56, 1996.
Nicholson, S. E.: The nature of rainfall variability over Africa on time scales of decades to millenia, Global Planet. Change, 26, 137–158, 2000.
Nicholson, S. E., Kim, J., and Hoopingarner, J.: Atlas of African rainfall and its interannual variability, Florida State University, 252 pp., 1988.
Niedermeyer, E. M., Prange, M., Mulitza, M., Mollenhauer, G., Schefuß, E., and Schulz, M.: Extratropical forcing of Sahel aridity during Heinrich stadials, Geophys. Res. Lett., 36, L20707, https://doi.org/10.1029/2009GL039687, 2009.
Otto-Bliesner, B. L., Russel, J. M., Clark, P. U., Liu, Z., Overpeck, J. T., Konecky, B., deMenocal, P., Nicholson, S. E., He, F.,and Lu, Z.: Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation, Science, 346, 1223–1227, 2014.
Penaud, A., Eynaud, E., Turon, J.-L., Blamart, D., Rossignol, L., Marret, F., Lopez Martinez, C., Grimalt, J. O., Malaizé, B., and Charlier, K.: Contrasting paleoceanographic conditions off Morocco during Heinrich events (1 and 2) and the Last Glacial Maximum, Quaternary Sci. Rev., 29, 1923–1939, 2010.
Plisnier, P. D., Serneels, S., and Lambin, E. F.: Impact of ENSO on East African ecosystems: a multivariate analysis based on climate and remote sensing data, Global Ecol. Biogeogr., 9, 481–497, 2000.
Prange, M., Steph, S., Schulz, M., and Keigwin, D.: Inferring moisture transport across Central America: Can modern analogs of climate variability help reconcile paleosalinity records?, Quaternary Sci. Rev., 29, 1317–1321, 2010.
Punwong, P., Marchant, R., and Selby, K.: Holocene mangrove dynamics and environmental change in the Rufiji Delta, Tanzania, Veg. Hist. Archaeobot., 22, 381–396, 2013a.
Punwong, P., Marchant, R., and Selby, K.: Holocene mangrove dynamics from Unguja Ukuu, Zanzibar, Quatern.Int., 298, 4–19, 2013b.
Punwong, P., Marchant, R., and Selby, K.: Holocene mangrove dynamics in Makoba Bay, Zanzibar, Palaeoceanogr. Palaeoecol., 379–380, 54–67, 2013c.
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeyer, C. E.: IntCal09 and Marine09 radiocarbon age calibration curves, 0–50 000 years cal BP, Radiocarbon, 51, 1111–1150, 2009.
Rohling, E. J., Grant, K., Bolshaw, M., Roberts, A. P., Siddal, M., Hemleben, Ch., and Kucera, M.: Antarctic temperature and global sea level closely coupled over the past five glacial cycle, Nat. Geosci., 2, 500–504, 2009.
Romahn, S., Mackensen, A., Groeneveld, J., and Pätzold, J.: Deglacial intermediate water reorganization: new evidence from the Indian Ocean, Clim. Past, 10, 293–303, https://doi.org/10.5194/cp-10-293-2014, 2014.
Saji, N. H. and Yagamata, T.: Possible impacts of Indian Ocean Dipole mode events on global climate, Clim. Res., 25, 151–169, 2003.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A dipole mode in tropical Indian Ocean, Nature 401, 360–363, 1999.
Savoye, B., Ridderinkhof, H., Pätzold, J., and Schneider, R.: Western Indian Ocean climate and sedimentation, Cruise No M75, December 29, 2007–April 08, 2008, Port Louis (Mauritius)-Cape Town, (South Africa), Meteor Berichte, 197 pp., 2013.
Schefuß, E., Schouten, S., and Schneider, R. R.: Climatic controls on central African hydrology during the past 20 000 years, Nature, 437, 1003–1006, 2005.
Schefuß, E., Kuhlmann, H., Mollenhauer, G., Prange, M., and Pätzold, J.: Forcing of wet phases in southeast Africa over the past 17 000 years, Nature, 480, 509–512, 2011.
Scourse, J. D., Marret, F., Versteegh, G. J. M., Jansen, J. H. F., Schefuß, E., and van der Plicht, J.: High resolution last deglaciation from the Congo fan reveals significance of mangrove pollen record and biomarkers as indicators of shelf transgression, Quaternary Res., 64, 57–6, 2005.
Sokile, C. S., Kashaigili, J. J., and Kadigi, R. M. J.: Towards an integrated water resource management in Tanzania: the role of appropriate institutional framework in Rufiji Basin, Phys. Chem. Earth, 28, 1015–1023, 2003.
Southon, J., Kashgarian, M., Fontugne, M., Metivier, B., and Yim, W. W.-S.: Marine reservoir corrections for the Indian Ocean and Southeast Asia, Radiocarbon, 44, 167–180, 2002.
Stager, J. C., Ryves, D. B., Chase, B. M., and Pausata, F. S. R.: Catastrophic drought in the Afro-Asian Monsoon Region during Heinrich Event 1, Science, 331, 1299–1302, 2011.
Stanford, J. D., Rohling, E. J., Bacon, S., Roberts, A. P., Grousset, F. E., and Bolshaw, M.: A new concept for the paleoceanographic evolution of Heinrich event 1 in the North Atlantic, Quaternary Sci. Rev., 30, 1047–1066, 2011.
Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J., Hurlin, W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., Hu, A., Jungclause, J., Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami, S., Nawrath, S., Oka, A., Peltier, W. R., Robitaille, D. Y., Sokolov, A., Vettoretti, G., and Weber, S. L.: Investigating the cause of the response of the thermohaline circulation to past and future climate change, J. Climate, 19, 1365–1387, 2006.
Street-Perrott, F. A.,Huang, Y., Perrot, R. A., Eglinton, G., Barker, P., Khelifa, L. B., Harkness, D., and Olago, D.: Impact of lower atmospheric CO2 on tropical mountain ecosystems, Science, 278, 1422–1426, 1997.
Street-Perrott, F. A. and Perrott, R. A.: Abrupt climate fluctuations in the tropics: the influence of Atlantic Ocean Circulation, Nature, 343, 607–611, 1990.
Stuiver, M. and Reimer, P. J.: Extended 14C data base and revised CALIB 3.0 14C age calibration program, in: Calibration 1993, edited by: Stuiver, M., Long, A., and Kra, R. S., Radiocarbon, 35, 215–230, 1993.
Temple, P. H. and Sundborg, A.: The Rufiji River, Tanzania hydrology and sediment transport, Geografiska Annular Series A, Studies of soil erosion and sedimentation in Tanzania, Phys. Geogr., 54, 345–368, 1972.
Tierney, J. E., Russel, J. M., Huang, Y., Sinninghe Damsté, J. S., Hopmans, E. C., and Cohen, A. S.: Northern Hemisphere controls on tropical southeast African climate during the past 60 000 years, Science, 322, 252–255, 2008.
Tierney, J. E. and deMenocal, P. B.: Abrupt shifts in Horn of Africa hydroclimate since the Last Glacial Maximum, Science, 342, 843–846, 2013.
Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J., and Seager, R.: Multidecadal variability in East African hydroclimate controlled by the Indian Ocean, Nature, 493, 389–392, 2013.
Verschuren, D., Sinninghe Damsté, J. S., Moernaut, J., Kirsten, I., Blaauw, M., Fagot, M., and Haug, G.: Half-precessional dynamics of monsoon rainfall near the East African Equator, Nature, 462, 637–641, 2009.
Vincens, A.: Nouvelle sequence pollinique du lac Tanganyika: 30000 ans d'histoire botanique et climatique du basin Nord, Rev. Palaeobot. Palyno., 78, 381–394, 1993.
Vincens, A., Buchet, G., Williamson, D., and Taieb, M.: A 23 000 yr pollen record from Lake Rukwa (8° S, SW Tanzania): New data on vegetation dynamics and climate in Central Eastern Africa, Rev. Palaeobot. Palyno., 137, 147–162, 2005.
Vincens, A., Lezine, A. M., Buchet, G., Lewden, D., and le Thomas, A. and contributors: African pollen data base inventory of tree and shrub pollen types, Rev. Palaeobot. Palyno., 145, 135–141, 2007a.
Vincens, A.,Garcin, Y., and Buchet, G.: Influence of rainfall seasonality on African lowland vegetation during the late Quaternary: pollen evidence from Lake Masoko, Tanzania, J. Biogeog., 34, 1274–1288, 2007b.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records, Quaternary Sci. Rev., 21, 295–305, 2002.
Walter, H. and Lieth, H.: Klimadiagramm-Weltatlas, 200 plates, Fisher, Jena, 1960–1967.
White, F.: The vegetation of Africa, a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa, UNESCO, Paris, 384 pp., 1983.
Woodroffe, C. D.: Response of mangrove shorelines to sea-level change, Tropics, 8, 159–177, 1999.
Woodroffe, S. A. and Horton, B. P.: Holocene sea-level changes in the Indo-Pacific, J. Asian Earth Sci., 25, 29–43, 2005.
Wu, H., Guiot, J., Brewer, S., and Guo, Z.: Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modeling, Clim. Dynam., 29, 211–229, 2007.
Zhao, M., Eglinton, G., Haslett, R. W., Jordan, R. W., Sarnthein, M., and Zhang, Z.: Marine and terrestrial biomarker records for the last 35 000 years at ODP site 658C off NW Africa, Org. Geochem., 31, 903–917, 2000.
Short summary
This study has great paleoclimatic and paleoecological significance, as it deals with the poorly documented tropical SE African ecosystem during the last deglaciation. Changes in the Rufiji upland vegetation evidenced the response of the regional hydrologic system to high-latitude climatic fluctuations associated with ITCZ shifts, while changes in sensitive tropical salt marshes and mangrove communities in the Rufiji lowland evidenced the impact of sea level changes on the intertidal ecosystem.
This study has great paleoclimatic and paleoecological significance, as it deals with the poorly...