Articles | Volume 11, issue 4
https://doi.org/10.5194/cp-11-635-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-635-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A new approach for modeling Cenozoic oceanic lithium isotope paleo-variations: the key role of climate
N. Vigier
CORRESPONDING AUTHOR
Laboratoire d'Océanographie de Villefranche, CNRS, UPMC, 06230 Villefranche-sur-Mer, France
Y. Goddéris
Géosciences Environnement Toulouse, CNRS, Université Paul Sabatier, 31400 Toulouse, France
Related authors
No articles found.
Nick R. Hayes, Daniel J. Lunt, Yves Goddéris, Richard D. Pancost, and Heather L. Buss
EGUsphere, https://doi.org/10.5194/egusphere-2024-2811, https://doi.org/10.5194/egusphere-2024-2811, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The breakdown of volcanic rocks by water helps balance the climate of the earth by sequestering atmospheric CO2 . The rate of CO2 sequestration is referred to as "weatherability". Our modelling study finds that continental position strongly impacts CO2 concentrations, that runoff strongly controls weatherability, that changes in weatherability may explain long term trends in atmospheric CO2 concentrations, and that even relatively localised changes in weatherability may have global impacts.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Jon D. Richey, Isabel P. Montañez, Yves Goddéris, Cindy V. Looy, Neil P. Griffis, and William A. DiMichele
Clim. Past, 16, 1759–1775, https://doi.org/10.5194/cp-16-1759-2020, https://doi.org/10.5194/cp-16-1759-2020, 2020
Short summary
Short summary
Our 40 Myr CO2 reconstruction substantially refines existing late Paleozoic CO2 estimates, provides the best resolved pre-Cenozoic CO2 record, and indicates a close temporal relationship to changes in marine and terrestrial ecosystems. The GEOCLIM model used in our study allows for insight into the relative influences of uplift of the Central Pangean Mountains, intensifying aridity, and increasing mafic-to-granite ratio of outcropping rocks on changes in pCO2 through the late Paleozoic.
Sébastien Carretier, Yves Goddéris, Javier Martinez, Martin Reich, and Pierre Martinod
Earth Surf. Dynam., 6, 217–237, https://doi.org/10.5194/esurf-6-217-2018, https://doi.org/10.5194/esurf-6-217-2018, 2018
Short summary
Short summary
The role of mountain uplift and associated silicate weathering in the global climate over geological times is controversial. Previous soil column models suggest that weathering falls at a high denudation rate. We present the results of a 3-D model that couples erosion and weathering, a CO2 consumer during mountain uplift. Our model suggests that the weathering of temporarily stocked colluvium may contribute significantly to the mountain weathering outflux at high denudation rates.
Sébastien Carretier, Pierre Martinod, Martin Reich, and Yves Godderis
Earth Surf. Dynam., 4, 237–251, https://doi.org/10.5194/esurf-4-237-2016, https://doi.org/10.5194/esurf-4-237-2016, 2016
Short summary
Short summary
We introduce moving clasts (grains, minerals, cobbles) in a landscape evolution model.
This coupling has many potential applications, such as sediment provenance or the tracing of weathered material. It fills a gap between long-term landscape dynamics, which are difficult to tackle, and sediment clast populations studied in the field.
Y. Goddéris, S. L. Brantley, L. M. François, J. Schott, D. Pollard, M. Déqué, and M. Dury
Biogeosciences, 10, 135–148, https://doi.org/10.5194/bg-10-135-2013, https://doi.org/10.5194/bg-10-135-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Modelling only | Timescale: Cenozoic
Reconstruction of a continuous high-resolution CO2 record over the past 20 million years
R. S. W. van de Wal, B. de Boer, L. J. Lourens, P. Köhler, and R. Bintanja
Clim. Past, 7, 1459–1469, https://doi.org/10.5194/cp-7-1459-2011, https://doi.org/10.5194/cp-7-1459-2011, 2011
Cited articles
Beauvais, A. and Chardon, D.: Modes, tempo, and spatial variability of Cenozoic cratonic denudation: The West African example, Geochem. Geophys. Geosyst., 14, 1590–1608, https://doi.org/10.1002/ggge.20093, 2013.
Beerling, D. J. and Royer, D. R.: Convergent Cenozoic CO2 history, Nature Geosci., 4, 418–420, https://doi.org/10.1038/ngeo1186, 2011.
Berner, R. A.: The Phanerozoic carbon cycle: CO2 and O2, Oxford University Press, 160 pp., 2004.
Bouchez, J., Von Blankenburg, F., and Schuessler, J. A.: Modeling novel stable isotope ratios in the weathering zone, Am. J. Science, 313, 267–308, https://doi.org/10.2475/04.2013.01, 2013.
Burton, K. W. and Vigier, N.: Lithium isotopes as tracers in marine and terrestrial environments, Handbook of Environmental Isotope Geochemistry, edited by: Baskaran, M., 41–61, Springer, Berlin, 2011.
Chan, L.-H., Edmond, J. M., Thompson, G. and Gillis, K.: Lithium isotopic composition of submarine basalts: implications for the lithium cycle to the ocean, Earth Planet. Sci. Lett., 108, 151–160, 1992.
Chan, L.-H., Edmond, J. M., and Thompson, G.: A lithiumisotope study of hot springs and metabasalts from mid ocean ridge hydrothermal systems, J. Geophys. Res., 98, 9653–9659, 1993.
Chan, L.-H., Gieskes, J. M., You, C.-F., and Edmond, J. M.: Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California, Geochim. Cosmochim. Acta., 58, 4443–4454, 1994.
Chan, L.-H., Leeman, W. P., and Plank, T.: Lithium isotopic composition of marine sediments, Geochem. Geophys. Geosyst., 7, Q06005, https://doi.org/10.1029/2005GC001202, 2006.
Dellinger, M., Gaillardet, J., Bouchez, J., Calmels, D., Galy, V., Hilton, R. G., Louvat, P., and France-Lanord, C.: Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion, Earth Planet. Sci. Lett., 401, 359–372, 2014.
Engebretson, D. C., Kelley, K. P., Cashman, H. J., and Richard, M. A.: 180 million years of subduction, GSA Today, 2, 9–100, 1992.
Froelich, F. and Misra, S.: Was the Late Paleocene-Early Eocene Hot Because Earth Was Flat? An Ocean Lithium Isotope View of Mountain Building, Continental Weathering, Carbon Dioxide, and Earth's Cenozoic Climate, Oceanography, 27, 36–49, 2014.
Foustoukos, D. I., James, R. H., Berndt, M. E., and Seyfried Jr., W. E.: Lithium isotopic systematic of hydrothermal vent fluids at the Main Endeavour Field, Northern Juan de Fuca Ridge, Chem. Geol., 212, 17–26, 2004.
Goddéris, Y. and Francois, L. M.: The Cenozoic evolution of the strontium and carbon cycles: relative importance of continental erosion and mantle exchanges, Chem. Geol., 126, 169–190, 1995.
Hathorne, E. C. and James, R. H.: Temporal record of lithium in seawater: A tracer for silicate weathering?, Earth Planet. Sci. Lett., 246, 393–406, 2006.
Hay, W. W., Sloan, J. L. I., and Wold, C. N.: The mass/age distribution of sediments on the ocean floor and the global rate of loss of sediment, J. Geophys. Res., 93, 14933–14940, 1988.
Huh, Y., Chan, L.-H., Zhang, L., and Edmond, J. M.: Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget, Geochim. Cosmochim. Acta, 62, 2039–2051, 1998.
Huh, Y., Chan, L.-H., and Edmond, J. M.: Lithium isotopes as a probe of weathering processes: Orinoco River, Earth Planet. Sci. Lett., 194, 189–199, 2001.
Kisakürek, B., Widdowson, M., and James, R. H.: Behaviour of Li isotopes during continental weathering: the Bidar laterite profile, India. Chem. Geol., 212, 27–44, 2004.
Kisakürek, B., James, R. H., and Harris, N. B. W.: Li and δ7Li in Himalayan rivers: Proxies for silicate weathering?, Earth Planet. Sci. Lett., 237, 387–401, 2005.
Kump, L. R. and Arthur, M. A.: Global chemical erosion during the Cenozoic: Weatherability balances the budgets, in: Tectonics Uplift and Climate Change, edited by: Ruddiman, W., Plenum Press., N.Y., 399–426, 1997.
Lefebvre, V., Donnadieu, Y., Goddéris, Y., Fluteau, F., and Hubert-Théou, L.: Was the Antarctic glaciation delayed by a high degassing rate during the early Cenozoic?, Earth Planet. Sci. Lett., 371, 203–211, 2013.
Lemarchand, E., Chabaux, F., Vigier, N., Millot, R., and Pierret, M-C.: Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France), Geochim. Cosmochim. Acta, 74, 4612–4628, 2010.
Li, G. and Elderfield, H.: Evolution of carbon cycle over the past 100 million years, Geochim. Cosmochim. Acta, 103, 11–25, 2013.
Li, G.-J. and West, A. J.: Evolution of Cenozoic seawater lithium isotopes: coupling of global denudation regime and shifting seawater sinks, Earth Planet. Sci. Lett., 401, 284–293, https://doi.org/10.1016/j.epsl.2014.06.011, 2014.
Meshram, R. R. and Randive, K. R.: Geochemical study of laterites of the Jamnagar district, Gujarat, India: Implications on parent rock, mineralogy and tectonics, J. Asian Earth Sci., 42, 1271–1287, https://doi.org/10.1016/j.jseaes.2011.07.014, 2011.
Millot, R., Vigier, N., and Gaillardet, J.: Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada, Geochim. Cosmochim. Acta, 74, 3897–3912, 2010.
Misra, S. and Froelich, P. N.: Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering, Science, 335, 818–823, 2012.
Mottl, M. J., Seewald, J. S., Wheat, C. J., Tivey, M. K., Michael, P. J., Proskurowski, G., McCollom, T. M., Reeves, E., Sharkey, J., You, C. F., Chan, L. H., and Pichler, T.: Chemistry of hot springs along the Eastern Lau Spreading Center, Geochim. Cosmochim. Acta, 75, 1013–1038, 2011.
Muller, R. D., Sdrolias, M., Gaina, C., and Roest, W.: Age, spreading rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophys. Geosys., 9, Q04006, https://doi.org/10.1029/2007GC001743, 2008.
Nahon, D.: Alterations dans la zone tropicale. Signification à travers les mécanismes anciens et/ou encore actuels C.R., Geoscience, 335, 1109–1119, 2003.
Retallack, G. J.: Laterization and bauxitization events, Econ. Geol., 105, 655–667, 2010.
Retallack, G. J.: Cool-climate or warm-spike lateritic bauxites at high latitudes?, J. Geol., 116, 558–570, 2014.
Robert, C. and Kennett, J. P.: Paleocene and Eocene kaolinite distribution in the South Atlantic and Southern Ocean: Antarctic climatic and paleoceanographic implications, Mar. Geol., 103, 99–101, 1992.
Rowley, D. B.: Rate of plate creation and destruction: 180 Ma to present, GSA Bull., 114, 927–933, 2002.
Rudnick, R. L., Tomascak, P. B., Njoa, H. B., and Gardnerb, L. R.: Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina, Chem. Geol., 212, 45–57, 2004.
Ryu, J.-S., Vigier, N., Lee, S.-W., and Chadwick, O.: Variation of lithium isotope geochemistry during basalt weathering and secondary mineral transformations, Geochim. Cosmochim. Acta, 145, 103–115, 2014.
Syvitski, J. P. M., Peckham, S. D., Hilberman, R., and Mulder, T.: Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective, Sediment. Geol., 162, 5–24, 2003.
Tabor, N. J. and Yapp, C. J.: Coexisting goethite and gibbsite from a high-paleolatitude (55° N) late Paleocene laterite; concentration and 13C/12C ratios of occluded CO2 and associated organic matter, Geochim. Cosmochim. Acta, 69, 5495–5510, 2005.
Tardy, Y., Krempp, G., and Trauth, N.: Le lithium dans les minéraux argileux des ciments et des sols, Cosmochim. Cosmochim. Acta, 36, 397–412, 1972.
Tavlan, M., Thorne, R., and Herrington, R. J.: Uplift and lateritization history of the Caldag ophiolite in the context of Neo-Tethyan ophiolite obduction and uplift: implications for the Cenozoic weathering history of western Anatolia, J. Geol. Soc. London, 168, 927–940, 2011,
Taylor, L. L., Banwart, S. A., Valdes, P. J., Leake, J. R., and Beerling, D. J.: Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global scale process-based approach, Phil. Trans. R. Soc. B, 367, 565–582, 2012.
Teng, F.-Z., Rudnick, R. L., McDonough, W. F., and Wu, F. Y.: Lithium isotopic systematics of A-type granites and their mafic enclaves: Further constraints on the Li isotopic composition of the continental crust, Chem. Geol., 262, 370–379, 2009.
Tomascak, P. B.: Developments in the understanding and application of lithium isotopes in the Earth and Planetary Sciences, Rev. Mineral. Geochem., 55, 153–195, 2004.
Vance, D., Teagle, D. A. H., and Foster, G. L.: Variable Quaternary chemical weathering rates and imbalances in marine geochemical budgets, Nature, 458, 493–496, 2009.
Vigier, N., Decarreau, A., Millot, R., Carignan, J., Petit, S., and France-Lanord, C.: Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle, Geochim. Cosmocim. Acta, 72, 780–792, 2008.
Vigier, N., Gislason, S. R., Burton, K. W., Millot, R., and Mokadem, F.: The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland, Earth Planet. Sci. Lett., 287, 434–441, 2009.
von Strandmann, P. A. E. P., Burton, K. W., James, R. H., van Calsteren, P., and Gislason, S. R.: Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain, Chem. Geol., 270, 227–239, 2010.
Walker, J. C. G., Haysand, P. B., and Kasting, J. F.: A negative feedback mechanism for the long-term stabilization of Earth's surface temperature, J. Geophys. Res., 86, 9776–9782, 1981.
Wanner, C., Sonnenthal, E. L., and Liu, X.-M.: Seawater δ7Li: a direct proxy for global CO2 consumption by continental silicate weathering?, Chem. Geol., 381, 154–167, 2014.
Wimpenny, J., Gíslason, S. R, James, R. H, Gannoun, A., Von Strandmann, P., and Burton, K. W.: The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt, Geochim. Cosmochim. Acta, 74, 5259–5279, 2010.
Willenbring, J. K. and von Blanckenburg, F.: Long-term stability of global erosion rates and weathering during late-Cenozoic cooling, Nature, 465, 211–214, 2010.
Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H., and Flower, B. P.: Climate response to orbital forcing across the Oligocene-Miocene boundary, Science, 292, 274-277, 2001.
Zachos, J. C., Dickens, G. R., and Zeebe R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, 2008.
Short summary
We develop here a new approach that couples the carbon and lithium cycles for reconstructing the Cenozoic Li isotope record. We show that this record does not provide persuasive, unique evidence for Cenozoic change in erosional forcing as it could, alternatively, be consistent with climatic control on soil production rates. The Li storage in continental secondary phases plays a key role, in particular, during the Early Cenozoic.
We develop here a new approach that couples the carbon and lithium cycles for reconstructing the...