Articles | Volume 11, issue 4
https://doi.org/10.5194/cp-11-635-2015
https://doi.org/10.5194/cp-11-635-2015
Research article
 | 
01 Apr 2015
Research article |  | 01 Apr 2015

A new approach for modeling Cenozoic oceanic lithium isotope paleo-variations: the key role of climate

N. Vigier and Y. Goddéris

Related authors

Using Deep Learning to integrate paleoclimate and global biogeochemistry over Phanerozoic time
Dongyu Zheng, Andrew Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-230,https://doi.org/10.5194/gmd-2023-230, 2024
Preprint under review for GMD
Short summary
Influence of temporally varying weatherability on CO2-climate coupling and ecosystem change in the late Paleozoic
Jon D. Richey, Isabel P. Montañez, Yves Goddéris, Cindy V. Looy, Neil P. Griffis, and William A. DiMichele
Clim. Past, 16, 1759–1775, https://doi.org/10.5194/cp-16-1759-2020,https://doi.org/10.5194/cp-16-1759-2020, 2020
Short summary
Colluvial deposits as a possible weathering reservoir in uplifting mountains
Sébastien Carretier, Yves Goddéris, Javier Martinez, Martin Reich, and Pierre Martinod
Earth Surf. Dynam., 6, 217–237, https://doi.org/10.5194/esurf-6-217-2018,https://doi.org/10.5194/esurf-6-217-2018, 2018
Short summary
Modelling sediment clasts transport during landscape evolution
Sébastien Carretier, Pierre Martinod, Martin Reich, and Yves Godderis
Earth Surf. Dynam., 4, 237–251, https://doi.org/10.5194/esurf-4-237-2016,https://doi.org/10.5194/esurf-4-237-2016, 2016
Short summary
Rates of consumption of atmospheric CO2 through the weathering of loess during the next 100 yr of climate change
Y. Goddéris, S. L. Brantley, L. M. François, J. Schott, D. Pollard, M. Déqué, and M. Dury
Biogeosciences, 10, 135–148, https://doi.org/10.5194/bg-10-135-2013,https://doi.org/10.5194/bg-10-135-2013, 2013

Related subject area

Subject: Proxy Use-Development-Validation | Archive: Modelling only | Timescale: Cenozoic
Reconstruction of a continuous high-resolution CO2 record over the past 20 million years
R. S. W. van de Wal, B. de Boer, L. J. Lourens, P. Köhler, and R. Bintanja
Clim. Past, 7, 1459–1469, https://doi.org/10.5194/cp-7-1459-2011,https://doi.org/10.5194/cp-7-1459-2011, 2011

Cited articles

Beauvais, A. and Chardon, D.: Modes, tempo, and spatial variability of Cenozoic cratonic denudation: The West African example, Geochem. Geophys. Geosyst., 14, 1590–1608, https://doi.org/10.1002/ggge.20093, 2013.
Beerling, D. J. and Royer, D. R.: Convergent Cenozoic CO2 history, Nature Geosci., 4, 418–420, https://doi.org/10.1038/ngeo1186, 2011.
Berner, R. A.: The Phanerozoic carbon cycle: CO2 and O2, Oxford University Press, 160 pp., 2004.
Bouchez, J., Von Blankenburg, F., and Schuessler, J. A.: Modeling novel stable isotope ratios in the weathering zone, Am. J. Science, 313, 267–308, https://doi.org/10.2475/04.2013.01, 2013.
Burton, K. W. and Vigier, N.: Lithium isotopes as tracers in marine and terrestrial environments, Handbook of Environmental Isotope Geochemistry, edited by: Baskaran, M., 41–61, Springer, Berlin, 2011.
Download
Short summary
We develop here a new approach that couples the carbon and lithium cycles for reconstructing the Cenozoic Li isotope record. We show that this record does not provide persuasive, unique evidence for Cenozoic change in erosional forcing as it could, alternatively, be consistent with climatic control on soil production rates. The Li storage in continental secondary phases plays a key role, in particular, during the Early Cenozoic.