Articles | Volume 11, issue 3
https://doi.org/10.5194/cp-11-587-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-587-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Late Weichselian and Holocene palaeoceanography of Storfjordrenna, southern Svalbard
M. Łącka
CORRESPONDING AUTHOR
Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
M. Zajączkowski
Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
M. Forwick
Department of Geology, University of Tromsø – The Arctic University of Norway, 9037 Tromsø, Norway
W. Szczuciński
Institute of Geology, Adam Mickiewicz University in Poznan, Maków Polnych 16, 61-606 Poznań, Poland
Related authors
No articles found.
Kevin Zoller, Jan Sverre Laberg, Tom Arne Rydningen, Katrine Husum, and Matthias Forwick
Clim. Past, 19, 1321–1343, https://doi.org/10.5194/cp-19-1321-2023, https://doi.org/10.5194/cp-19-1321-2023, 2023
Short summary
Short summary
Marine geologic data from NE Greenland provide new information about the behavior of the Greenland Ice Sheet from the last glacial period to present. Seafloor landforms suggest that a large, fast-flowing ice stream moved south through southern Dove Bugt. This region is believed to have been deglaciated from at least 11.4 ka cal BP. Ice in an adjacent fjord, Bessel Fjord, may have retreated to its modern position by 7.1 ka cal BP, and the ice halted or readvanced multiple times upon deglaciation.
Wojciech Majewski, Witold Szczuciński, and Andrew J. Gooday
Biogeosciences, 20, 523–544, https://doi.org/10.5194/bg-20-523-2023, https://doi.org/10.5194/bg-20-523-2023, 2023
Short summary
Short summary
We studied foraminifera living in the fjords of South Georgia, a sub-Antarctic island sensitive to climate change. As conditions in water and on the seafloor vary, different associations of these microorganisms dominate far inside, in the middle, and near fjord openings. Assemblages in inner and middle parts of fjords are specific to South Georgia, but they may become widespread with anticipated warming. These results are important for interpretating fossil records and monitoring future change.
Ingrid Leirvik Olsen, Tom Arne Rydningen, Matthias Forwick, Jan Sverre Laberg, and Katrine Husum
The Cryosphere, 14, 4475–4494, https://doi.org/10.5194/tc-14-4475-2020, https://doi.org/10.5194/tc-14-4475-2020, 2020
Short summary
Short summary
We present marine geoscientific data from Store Koldewey Trough, one of the largest glacial troughs offshore NE Greenland, to reconstruct the ice drainage pathways, ice sheet extent and ice stream dynamics of this sector during the last glacial and deglaciation. The complex landform assemblage in the trough reflects a dynamic retreat with several periods of stabilization and readvances, interrupting the deglaciation. Estimates indicate that the ice front locally retreated between 80–400 m/year.
Jan Erik Arndt, Robert D. Larter, Claus-Dieter Hillenbrand, Simon H. Sørli, Matthias Forwick, James A. Smith, and Lukas Wacker
The Cryosphere, 14, 2115–2135, https://doi.org/10.5194/tc-14-2115-2020, https://doi.org/10.5194/tc-14-2115-2020, 2020
Short summary
Short summary
We interpret landforms on the seabed and investigate sediment cores to improve our understanding of the past ice sheet development in this poorly understood part of Antarctica. Recent crack development of the Brunt ice shelf has raised concerns about its stability and the security of the British research station Halley. We describe ramp-shaped bedforms that likely represent ice shelf grounding and stabilization locations of the past that may reflect an analogue to the process going on now.
Gabriel West, Darrell S. Kaufman, Francesco Muschitiello, Matthias Forwick, Jens Matthiessen, Jutta Wollenburg, and Matt O'Regan
Geochronology, 1, 53–67, https://doi.org/10.5194/gchron-1-53-2019, https://doi.org/10.5194/gchron-1-53-2019, 2019
Short summary
Short summary
We report amino acid racemization analyses of foraminifera from well-dated sediment cores from the Yermak Plateau, Arctic Ocean. Sample ages are compared with model predictions, revealing that the rates of racemization generally conform to a global compilation of racemization rates at deep-sea sites. These results highlight the need for further studies to test and explain the origin of the purportedly high rate of racemization indicated by previous analyses of central Arctic sediments.
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Holocene
Response of biological productivity to North Atlantic marine front migration during the Holocene
Sea surface temperature in the Indian sector of the Southern Ocean over the Late Glacial and Holocene
Surface and subsurface Labrador Shelf water mass conditions during the last 6000 years
Reconstruction of Holocene oceanographic conditions in eastern Baffin Bay
Multiproxy evidence of the Neoglacial expansion of Atlantic Water to eastern Svalbard
Is there evidence for a 4.2 ka BP event in the northern North Atlantic region?
Holocene hydrography evolution in the Alboran Sea: a multi-record and multi-proxy comparison
Influence of the North Atlantic subpolar gyre circulation on the 4.2 ka BP event
The 4.2 ka event, ENSO, and coral reef development
Indian winter and summer monsoon strength over the 4.2 ka BP event in foraminifer isotope records from the Indus River delta in the Arabian Sea
Neoglacial climate anomalies and the Harappan metamorphosis
Atlantic Water advection vs. glacier dynamics in northern Spitsbergen since early deglaciation
Holocene dynamics in the Bering Strait inflow to the Arctic and the Beaufort Gyre circulation based on sedimentary records from the Chukchi Sea
Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records
Southern Hemisphere anticyclonic circulation drives oceanic and climatic conditions in late Holocene southernmost Africa
Holocene evolution of the North Atlantic subsurface transport
Changes in Holocene meridional circulation and poleward Atlantic flow: the Bay of Biscay as a nodal point
Hydrological variations of the intermediate water masses of the western Mediterranean Sea during the past 20 ka inferred from neodymium isotopic composition in foraminifera and cold-water corals
Sea surface temperature variability in the central-western Mediterranean Sea during the last 2700 years: a multi-proxy and multi-record approach
Carbon isotope (δ13C) excursions suggest times of major methane release during the last 14 kyr in Fram Strait, the deep-water gateway to the Arctic
Implication of methodological uncertainties for mid-Holocene sea surface temperature reconstructions
The role of the northward-directed (sub)surface limb of the Atlantic Meridional Overturning Circulation during the 8.2 ka event
Reconstruction of Atlantic water variability during the Holocene in the western Barents Sea
Northward advection of Atlantic water in the eastern Nordic Seas over the last 3000 yr
Controls of Caribbean surface hydrology during the mid- to late Holocene: insights from monthly resolved coral records
Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea
David J. Harning, Anne E. Jennings, Denizcan Köseoğlu, Simon T. Belt, Áslaug Geirsdóttir, and Julio Sepúlveda
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, https://doi.org/10.5194/cp-17-379-2021, 2021
Short summary
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
Annalena A. Lochte, Ralph Schneider, Markus Kienast, Janne Repschläger, Thomas Blanz, Dieter Garbe-Schönberg, and Nils Andersen
Clim. Past, 16, 1127–1143, https://doi.org/10.5194/cp-16-1127-2020, https://doi.org/10.5194/cp-16-1127-2020, 2020
Short summary
Short summary
The Labrador Sea is important for the modern global thermohaline circulation system through the formation of Labrador Sea Water. However, the role of the southward flowing Labrador Current in Labrador Sea convection is still debated. In order to better assess its role in deep-water formation and climate variability, we present high-resolution mid- to late Holocene records of sea surface and bottom water temperatures, freshening, and sea ice cover on the Labrador Shelf during the last 6000 years.
Katrine Elnegaard Hansen, Jacques Giraudeau, Lukas Wacker, Christof Pearce, and Marit-Solveig Seidenkrantz
Clim. Past, 16, 1075–1095, https://doi.org/10.5194/cp-16-1075-2020, https://doi.org/10.5194/cp-16-1075-2020, 2020
Short summary
Short summary
In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting, which was trained to predict continuous precipitation intensities at a lead time of 5 min. RainNet significantly outperformed the benchmark models at all lead times up to 60 min. Yet an undesirable property of RainNet predictions is the level of spatial smoothing. Obviously, RainNet learned an optimal level of smoothing to produce a nowcast at 5 min lead time.
Joanna Pawłowska, Magdalena Łącka, Małgorzata Kucharska, Jan Pawlowski, and Marek Zajączkowski
Clim. Past, 16, 487–501, https://doi.org/10.5194/cp-16-487-2020, https://doi.org/10.5194/cp-16-487-2020, 2020
Short summary
Short summary
Paleoceanographic changes in Storfjorden during the Neoglacial (the last
4000 years) were reconstructed based on microfossil and ancient DNA records. Environmental changes were steered mainly by the interaction between the inflow of Atlantic Water (AW) and sea ice cover. Warming periods were associated with AW inflow and sea ice melting, stimulating primary production. The cold phases were characterized by densely packed sea ice, resulting in limited productivity.
Raymond S. Bradley and Jostein Bakke
Clim. Past, 15, 1665–1676, https://doi.org/10.5194/cp-15-1665-2019, https://doi.org/10.5194/cp-15-1665-2019, 2019
Short summary
Short summary
We review paleoceanographic and paleoclimatic records from the northern North Atlantic to assess the nature of climatic conditions at 4.2 ka BP. There was a general decline in temperatures after ~ 5 ka BP, which led to the onset of neoglaciation. Although a few records do show a distinct anomaly around 4.2 ka BP (associated with a glacial advance), this is not widespread and we interpret it as a local manifestation of the overall climatic deterioration that characterized the late Holocene.
Albert Català, Isabel Cacho, Jaime Frigola, Leopoldo D. Pena, and Fabrizio Lirer
Clim. Past, 15, 927–942, https://doi.org/10.5194/cp-15-927-2019, https://doi.org/10.5194/cp-15-927-2019, 2019
Short summary
Short summary
We present a new high-resolution sea surface temperature (SST) reconstruction for the Holocene (last 11 700 years) in the westernmost Mediterranean Sea. We identify three sub-periods: the Early Holocene with warmest SST; the Middle Holocene with a cooling trend ending at 4200 years, which is identified as a double peak cooling event that marks the transition between the Middle and Late Holocene; and the Late Holocene with very different behaviour in both long- and short-term SST variability.
Bassem Jalali, Marie-Alexandrine Sicre, Julien Azuara, Violaine Pellichero, and Nathalie Combourieu-Nebout
Clim. Past, 15, 701–711, https://doi.org/10.5194/cp-15-701-2019, https://doi.org/10.5194/cp-15-701-2019, 2019
Lauren T. Toth and Richard B. Aronson
Clim. Past, 15, 105–119, https://doi.org/10.5194/cp-15-105-2019, https://doi.org/10.5194/cp-15-105-2019, 2019
Short summary
Short summary
We explore the hypothesis that a shift in global climate 4200 years ago (the 4.2 ka event) was related to the El Niño–Southern Oscillation (ENSO). We summarize records of coral reef development in the tropical eastern Pacific, where intensification of ENSO stalled reef growth for 2500 years starting around 4.2 ka. Because corals are highly sensitive to climatic changes, like ENSO, we suggest that records from coral reefs may provide important clues about the role of ENSO in the 4.2 ka event.
Alena Giesche, Michael Staubwasser, Cameron A. Petrie, and David A. Hodell
Clim. Past, 15, 73–90, https://doi.org/10.5194/cp-15-73-2019, https://doi.org/10.5194/cp-15-73-2019, 2019
Short summary
Short summary
A foraminifer oxygen isotope record from the northeastern Arabian Sea was used to reconstruct winter and summer monsoon strength from 5.4 to 3.0 ka. We found a 200-year period of strengthened winter monsoon (4.5–4.3 ka) that coincides with the earliest phase of the Mature Harappan period of the Indus Civilization, followed by weakened winter and summer monsoons by 4.1 ka. Aridity spanning both rainfall seasons at 4.1 ka may help to explain some of the observed archaeological shifts.
Liviu Giosan, William D. Orsi, Marco Coolen, Cornelia Wuchter, Ann G. Dunlea, Kaustubh Thirumalai, Samuel E. Munoz, Peter D. Clift, Jeffrey P. Donnelly, Valier Galy, and Dorian Q. Fuller
Clim. Past, 14, 1669–1686, https://doi.org/10.5194/cp-14-1669-2018, https://doi.org/10.5194/cp-14-1669-2018, 2018
Short summary
Short summary
Climate reorganization during the early neoglacial anomaly (ENA) may explain the Harappan civilization metamorphosis from an urban, expansive culture to a rural, geographically-confined one. Landcover change is a candidate for causing this climate instability. During ENA agriculture along the flood-deficient floodplains of the Indus became too risky, which pushed people out. In the same time the Himalayan piedmont received augmented winter rain and steady summer precipitation, pulling people in.
Martin Bartels, Jürgen Titschack, Kirsten Fahl, Rüdiger Stein, Marit-Solveig Seidenkrantz, Claude Hillaire-Marcel, and Dierk Hebbeln
Clim. Past, 13, 1717–1749, https://doi.org/10.5194/cp-13-1717-2017, https://doi.org/10.5194/cp-13-1717-2017, 2017
Short summary
Short summary
Multi-proxy analyses (i.a., benthic foraminiferal assemblages and sedimentary properties) of a marine record from Woodfjorden at the northern Svalbard margin (Norwegian Arctic) illustrate a significant contribution of relatively warm Atlantic water to the destabilization of tidewater glaciers, especially during the deglaciation and early Holocene (until ~ 7800 years ago), whereas its influence on glacier activity has been fading during the last 2 millennia, enabling glacier readvances.
Masanobu Yamamoto, Seung-Il Nam, Leonid Polyak, Daisuke Kobayashi, Kenta Suzuki, Tomohisa Irino, and Koji Shimada
Clim. Past, 13, 1111–1127, https://doi.org/10.5194/cp-13-1111-2017, https://doi.org/10.5194/cp-13-1111-2017, 2017
Short summary
Short summary
Based on mineral records from the northern Chukchi Sea, we report a long-term decline in the Beaufort Gyre (BG) strength during the Holocene, consistent with a decrease in summer insolation. Multi-centennial variability in BG circulation is consistent with fluctuations in solar irradiance. The Bering Strait inflow shows intensification during the middle Holocene, associated with sea-ice retreat and an increase in marine production in the Chukchi Sea, which is attributed to a weaker Aleutian Low.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Annette Hahn, Enno Schefuß, Sergio Andò, Hayley C. Cawthra, Peter Frenzel, Martin Kugel, Stephanie Meschner, Gesine Mollenhauer, and Matthias Zabel
Clim. Past, 13, 649–665, https://doi.org/10.5194/cp-13-649-2017, https://doi.org/10.5194/cp-13-649-2017, 2017
Short summary
Short summary
Our study demonstrates that a source to sink analysis in the Gouritz catchment can be used to obtain valuable paleoclimatic information form the year-round rainfall zone. In combination with SST reconstructions these data are a valuable contribution to the discussion of Southern Hemisphere palaeoenvironments and climate variability (in particular atmosphere–ocean circulation and hydroclimate change) in the South African Holocene.
Janne Repschläger, Dieter Garbe-Schönberg, Mara Weinelt, and Ralph Schneider
Clim. Past, 13, 333–344, https://doi.org/10.5194/cp-13-333-2017, https://doi.org/10.5194/cp-13-333-2017, 2017
Short summary
Short summary
We reconstruct changes in the warm water transport from the subtropical to the subpolar North Atlantic over the last 10 000 years. We use stable isotope and Mg / Ca ratios measured on surface and subsurface dwelling foraminifera. Results indicate an overall stable warm water transport at surface. The northward transport at subsurface evolves stepwise and stabilizes at 7 ka BP on the modern mode. These ocean transport changes seem to be controlled by the meltwater inflow into the North Atlantic.
Yannick Mary, Frédérique Eynaud, Christophe Colin, Linda Rossignol, Sandra Brocheray, Meryem Mojtahid, Jennifer Garcia, Marion Peral, Hélène Howa, Sébastien Zaragosi, and Michel Cremer
Clim. Past, 13, 201–216, https://doi.org/10.5194/cp-13-201-2017, https://doi.org/10.5194/cp-13-201-2017, 2017
Short summary
Short summary
In the boreal Atlantic, the subpolar and subtropical gyres (SPG and STG respectively) are key elements of the Atlantic Meridional Overturning Circulation (AMOC) cell and contribute to climate modulations over Europe. Here we document the last 10 kyr evolution of sea-surface temperatures over the North Atlantic with a focus on new data obtained from an exceptional sedimentary archive retrieved the southern Bay of Biscay, enabling the study of Holocene archives at (infra)centennial scales.
Quentin Dubois-Dauphin, Paolo Montagna, Giuseppe Siani, Eric Douville, Claudia Wienberg, Dierk Hebbeln, Zhifei Liu, Nejib Kallel, Arnaud Dapoigny, Marie Revel, Edwige Pons-Branchu, Marco Taviani, and Christophe Colin
Clim. Past, 13, 17–37, https://doi.org/10.5194/cp-13-17-2017, https://doi.org/10.5194/cp-13-17-2017, 2017
Mercè Cisneros, Isabel Cacho, Jaime Frigola, Miquel Canals, Pere Masqué, Belen Martrat, Marta Casado, Joan O. Grimalt, Leopoldo D. Pena, Giulia Margaritelli, and Fabrizio Lirer
Clim. Past, 12, 849–869, https://doi.org/10.5194/cp-12-849-2016, https://doi.org/10.5194/cp-12-849-2016, 2016
Short summary
Short summary
We present a high-resolution multi-proxy study about the evolution of sea surface conditions along the last 2700 yr in the north-western Mediterranean Sea based on five sediment records from two different sites north of Minorca. The novelty of the results and the followed approach, constructing stack records from the studied proxies to preserve the most robust patterns, provides a special value to the study. This complex period appears to have significant regional changes in the climatic signal.
C. Consolaro, T. L. Rasmussen, G. Panieri, J. Mienert, S. Bünz, and K. Sztybor
Clim. Past, 11, 669–685, https://doi.org/10.5194/cp-11-669-2015, https://doi.org/10.5194/cp-11-669-2015, 2015
Short summary
Short summary
A sediment core collected from a pockmark field on the Vestnesa Ridge (~80N) in the Fram Strait is presented. Our results show an undisturbed sedimentary record for the last 14 ka BP and negative carbon isotope excursions (CIEs) during the Bølling-Allerød interstadials and during the early Holocene. Both CIEs relate to periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere, suggesting an apparent correlation with warm climatic events.
I. Hessler, S. P. Harrison, M. Kucera, C. Waelbroeck, M.-T. Chen, C. Anderson, A. de Vernal, B. Fréchette, A. Cloke-Hayes, G. Leduc, and L. Londeix
Clim. Past, 10, 2237–2252, https://doi.org/10.5194/cp-10-2237-2014, https://doi.org/10.5194/cp-10-2237-2014, 2014
A. D. Tegzes, E. Jansen, and R. J. Telford
Clim. Past, 10, 1887–1904, https://doi.org/10.5194/cp-10-1887-2014, https://doi.org/10.5194/cp-10-1887-2014, 2014
D. E. Groot, S. Aagaard-Sørensen, and K. Husum
Clim. Past, 10, 51–62, https://doi.org/10.5194/cp-10-51-2014, https://doi.org/10.5194/cp-10-51-2014, 2014
C. V. Dylmer, J. Giraudeau, F. Eynaud, K. Husum, and A. De Vernal
Clim. Past, 9, 1505–1518, https://doi.org/10.5194/cp-9-1505-2013, https://doi.org/10.5194/cp-9-1505-2013, 2013
C. Giry, T. Felis, M. Kölling, W. Wei, G. Lohmann, and S. Scheffers
Clim. Past, 9, 841–858, https://doi.org/10.5194/cp-9-841-2013, https://doi.org/10.5194/cp-9-841-2013, 2013
G. Siani, M. Magny, M. Paterne, M. Debret, and M. Fontugne
Clim. Past, 9, 499–515, https://doi.org/10.5194/cp-9-499-2013, https://doi.org/10.5194/cp-9-499-2013, 2013
Cited articles
Aagaard, K., Foldvik, A., and Hillman, S.: The West Spitsbergen Current: disposition and water mass transformation, J. Geophys. Res., 92, 3778–3784, 1987.
Akimova, A., Schauer, U., Danilov, S., and Núòez-Riboni, I.: The role of the deep mixing in the Storfjorden shelf water plume, Deep-Sea Res. Pt. I, 58, 403–414, 2011.
Alley, R.: The younger Dryas cold interval as viewed from central Greenland, Quaternary Sci. Rev., 19, 213–226, 2000.
Alve, E. and Goldstein, S. T.: Dispersal, survival and delayed growth of benthic foraminiferal propagules, J. Sea Res., 63, 36–51, 2010.
Andreassen, K., Winsborrow, M., Bjarnadóttir, L. R., and Rüther, D. C.: Ice stream retreat dynamics inferred from an assemblage of landforms in the northern Barents Sea, Quaternary Sci. Rev., 92, 246–257, https://doi.org/10.1016/j.quascirev.2013.09.015, 2014.
Andruleit, H., Freiwald, A., and Schäfer, P.: Bioclastic carbonate sediments on the southwestern Svalbard shelf, Mar. Geol., 134, 163–182, 1996.
Baeten, N. J., Forwick, M., Vogt, C., and Vorren, T. O.: Late Weichselian and Holocene sedimentary environments and glacial activity in Billefjorden, Svalbard, in: Fjord Systems and Archives, edited by: Howe, J. A., Austin, W. E. N., Forwick, M., and Paetzel, M., Geological Society, London, Special Publications, 344, 207–223, 2010.
Bakke, J., Lie, Ø., Heegaard, E., Dokken, T., Haug, G. H., Birks, H. H., Dulski, P., and Nilsen, T.: Rapid oceanic and atmospheric changes during the Younger Dryas cold period, Nat. Geosci., 2, 202–205, 2009.
Bauch, H. A., Erlenkeuser, H., Bauch, D., Mueller-Lupp, T., and Taldenkova, E.: Stable oxygen and carbon isotopes in modern benthic foraminifera from the Laptev Sea shelf: implications for reconstruction proglacial and profluvial environments in the Arctic, Mar. Micropaleontol., 51, 285–300, 2004.
Bé, A. W. H. and Tolderlund, D. S.: Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian oceans, in: The Micropaleontology of Oceans, edited by: Funnell, B. M. and Riedel, W. R., Cambridge University Press, Cambridge, UK, 105–149, 1971.
Berben, S. M. P., Husum, K., Cabedo-Sanz, P., and Belt, S. T.: Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea, Clim. Past, 10, 181–198, https://doi.org/10.5194/cp-10-181-2014, 2014.
Berge, J., Johnsen, G., Nilsen, F., Gulliksen, B., Slagstad, D., and Pampanin, D. M.: The Mytilus edulis population in Svalbard: how and why, Mar. Ecol.-Prog. Ser., 309, 305–306, 2006.
Bergsten, H.: Recent benthic foraminifera of a transect from the North Pole to the Yermak Plateau, eastern central Arctic Ocean, Mar. Geol., 119, 251–267, 1994.
Blott, S. J. and Pye, K.: GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Proc. Land., 26, 1237–1248, 2001.
Broecker, W. S.: Was the younger Dryas triggered by a flood?, Science, 312, 1146–1148, https://doi.org/10.1126/science.1123253, 2006.
Cronin, T. M., Rayburn, J. A., Guilbault, J.-P., Thunell, R., and Franzi, D. A.: Stable isotope evidence for glacial lake drainage through the St. Lawrence Estuary, eastern Canada, 13.1–12.9 ka, Quaternary Sci. Rev., 260, 55–65, 2012.
Croudace, I. W., Rindby, A., and Rothwell, R. G.: ITRAX: description and evaluation of a new multi-function X-ray core scanner, Geological Society, London, Special Publications, 267, 51–63, 2006.
Czernik, J. and Goslar, T.: Preparation of graphite targets in the Gliwice Radiocarbon Laboratory for AMS 14C dating, Radiocarbon, 43, 283–291, 2001.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U. C., Hvidberg, S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, https://doi.org/10.1038/364218a0, 1993.
Dowdeswell, J. A., Elverhøi, A., and Spielhagen, R.: Glacimarine sedimentary processes and facies on the polar north Atlantic margins, Quaternary Sci. Rev., 17, 243–272, 1998.
Duplessy, J. C., Cortijo, E., Ivanova, E., Khusid, T., Labeyrie, L., Levitan, M., Murdmaa, I., and Paterne, M.: Paleoceanography of the Barents Sea during the Holocene, Paleoceanography, 20, PA4004, https://doi.org/10.1029/2004PA001116, 2005.
Dylmer, C. V., Giraudeau, J., Eynaud, F., Husum, K., and De Vernal, A.: Northward advection of Atlantic water in the eastern Nordic Seas over the last 3000 yr, Clim. Past, 9, 1505–1518, https://doi.org/10.5194/cp-9-1505-2013, 2013.
Eldevik, T., Risebrobakken, B., Bjune, A. E., Andersson, C., Birks, H. J. B., Dokken, T. M., Drange, H., Glessmer, M. S., Li, C., Nilsen, J. E. Ø., Otterå, O. H., Richter, H., and Skagseth, Ø.: A brief history of climate – the northern seas from the Last Glacial Maximum to global warming, Quaternary Sci. Rev., 106, 225–246, 2014.
Elmore, A. C. and Wright, J. D.: North Atlantic Deep Water and climate variability during the younger Dryas cold period, Geology, 39, 107–110, 2011.
Elverhøi, A., Svendsen, J. I., Solheim, A., Andersen, E. S., Milliman, J., Mangerud, J., and Hooke, R. L.: Late quaternary sediment yield from the high Arctic Svalbard area, J. Geol., 103, 1–17, 1995.
Fer, I., Skogseth, R., Haugan, P. M., and Jaccard, P.: Observations of the Storfjorden overflow, Deep-Sea Res. Pt. I, 50, 1283–1303, https://doi.org/10.1016/S0967-0637(03)00124-9, 2003.
Fer, I., Skogseth, R., and Haugan, P. M.: Mixing of the Storfjorden overflow (Svalbard Archipelago) inferred from density overturns, J. Geophys. Res., 109, C01005, https://doi.org/10.1029/2003JC001968, 2004.
Feyling-Hanssen, R.: Stratigraphy of the marine late-Pleistocene of Billefjorden, Vestspitsbergen, Norsk Polarinst. Skri., 107, 1–186, 1955.
Feyling-Hanssen, R. and Jørstad, F.: Quaternary fossil from the Sassen-area in Isfjorden, west-Spitsbergen (the marine mollusk fauna), Norsk Polarinst. Skri., 94, 1–85, 1950.
Forman, S. L.: Post-glacial relative sea level history of northwestern Spitsbergen, Svalbard, Bull. Geol. Soc. Am., 102, 1580–1590, 1990.
Forman, S. L., Lubinski, D. J., Ingólfsson, Ó., Zeeberg, J. J., Snyder, J. A., Siegert, M. J., and Matishov, G. G.: A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia, Quaternary Sci. Rev., 23, 1391–1434, 2004.
Forwick, M. and Vorren, T. O.: Holocene mass-transport activity in and climate outer Isfjorden, Spitsbergen: marine and subsurface evidence, Holocene, 17, 707–716, 2007.
Forwick, M. and Vorren, T. O.: Late Weichselian and Holocene sedimentary environments and ice rafting in Isfjorden, Spitsbergen, Palaeogeogr. Palaeocl., 280, 258–274, 2009.
Forwick, M., Vorren, T. O., Hald, M., Korsun, S., Roh, Y., Vogt, C., and Yoo, K.-C.: Spatial and temporal influence of glaciers and rivers on the sedimentary environment in Sassenfjorden and Tempelfjorden, Spitsbergen, in: Fjord Systems and Archives, edited by: Howe, J. A., Austin, W. E. N., Forwick, M., and Paetzel, M., Geological Society, London, Special Publications, 344, 163–193, 2010.
Gammelsrod, T. and Rudels, B.: Hydrographic and current measurements in the Fram Strait, Pol. Res., 1, 115–126, 1983.
Geyer, F., Fer, I., and Smedsrud, L. H.: Structure and forcing of the overflow at the Storfjorden sill and its connection to the Arctic coastal polynya in Storfjorden, Ocean Sci., 6, 401–411, https://doi.org/10.5194/os-6-401-2010, 2010.
Gilbert, R.: Environmental assessment from the sedimentary record of highlatitude fiords, Geomorphology, 32, 295–314, 2000.
Gildor, H. and Tziperman, E.: A sea ice climate switch mechanism for the 100 kyr glacial cycles, J. Geophys. Res., 106, 9117–9133, 2001.
Goslar, T., Czernik, J., and Goslar, E.: Low-energy 14C AMS in Pozna\'n Radiocarbon Laboratory, Poland, Nucl. Instrum. Meth. B, 223/224, 5–11, 2004.
Groot, D. E., Aagaard-Sørensen, S., and Husum, K.: Reconstruction of Atlantic water variability during the Holocene in the western Barents Sea, Clim. Past, 10, 51–62, https://doi.org/10.5194/cp-10-51-2014, 2014.
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J., and Jouzel, J.: Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 366, 552–554, 1993.
Haarpaintner, J., Gascard, J., and Haugan, P. M.: Ice production and brine formation in Storfjorden, Svalbard, J. Geophys. Res., 106, 14001–140013, https://doi.org/10.1029/1999JC000133, 2001.
Hald, M. and Korsun, S.: Distribution of modern Arctic benthic foraminifera from fjords of Svalbard, J. Foramin. Res., 27, 101–122, 1997.
Hald, M. and Steinsund, P. I.: Benthic foraminifera and carbonate dissolution in surface sediments of the Barents- and Kara Seas, Surface-sediment composition and sedimentary processes in the central Arctic Ocean and along the Eurasian Continental Margin, Ber. Polarforsch., 212, 285–307, 1996.
Hald, M., Ebbsen, H., Forwick, M., Godtliebsen, F., Khomenko, L., Korsun, S., Olsen, L. R., and Vorren, T. O.: Holocene paleoceanography and glacial history of the West Spitsbergen area, Euro-Arctic margin, Quaternary Sci. Rev., 23, 2075–2088, 2004.
Hald, M., Andersson, C., Ebbesen, H., Jansen, E., Klitgaard-Kristensen, D., Risebrobakken, B., Salomonsen, G. R., Sarnthein, M., Sejrup, H. P., and Telford, R. J.: Variations in temperature and extent of Atlantic Water in the Northern North Atlantic during the Holocene, Quaternary Sci. Rev., 26, 3423–40, 2007.
Hansen, J., Hanken, N.-M., Nielsen, J. K., Nielsen, J. K., and Thomsen, E.: Late Pleistocene and Holocene distribution of Mytilus edulis in the Barents Sea region and its paleoclimatic implications, J. Biogeogr., 38, 1197–1212, 2011.
Hass, H. C.: A method to reduce the influence of ice-rafted debris on a grain size record from northern Fram Strait, Polar Res., 21, 299–306, 2002.
Hjort, C., Andrielsson, L., Bondevik, S., Landvik, J., Mangerud, J., and Salvigsen, O.: Mytilus edulis on eastern Svalbard – dating the Holocene Atlantic Water influx maximum, in: Weichselian and Holocene glacial and marine history of East Svalbard: preliminary report on the PONAM field work in 1991, edited by: Moller, P., Hjort, C., and Ingolfsson, 0., Lundqua Rep., 35, 171–175, 1992.
Hjort, C., Mangerud, J., Adrielsson, L., Bondevik, S., Landvik, J. Y., and Salvigsen, O.: Radiocarbon dated common mussels Mytilus edulis from eastern Svalbard and the Holocene marine climatic optimum, Polar Res., 14, 239–243, 1995.
Hormes, A., Gjermundsen, E. F., and Rasmussen, T. L.: From mountain top to the deep sea – deglaciation in 4-D of the northwestern Barents Sea, Quaternary Sci. Rev., 75, 78–99, 2013.
Husum, K. and Hald, M.: A continuous marine record 8000–1600 cal yr BP from the Malangenfjord, north Norway: foraminiferal and isotopic evidence, Holocene, 14, 877–887, 2004.
Jennings, A. E. and Helgadottir, G.: Foraminiferal assemblages from the fjords and shelf of Eastern Greenland, J. Foramin. Res., 24, 123–44, 1994.
Jennings, A. E., Hald, M., Smith, M., and Andrews, J. T.: Freshwater forcing from the Greenland Ice Sheet during the Younger Dryas: evidence from southeastern Greenland shelf cores, Quaternary Sci. Rev., 25, 282–298, 2006.
Jessen, S. P., Rasmussen, T. L., Nielsen, T., and Solheim, A.: A new late Weichselian and Holocene marine chronology for the western Svalbard slope 30 000–0 Cal years BP, Quaternary Sci. Rev., 29, 1301–1312, https://doi.org/10.1016/j.quascirev.2010.02.020, 2010.
Johannessen, T., Jansen, E., Flatøy, A., and Ravelo, A. C.: The relationship between surface water masses, oceanographic fronts and paleoclimatic proxies in surface sediments of the Greenland, Iceland, Norwegian Seas, in: Carbon cycling in glacial ocean: constraints on the ocean's role in global change, edited by: Zahn, R., Kominski, M., and Labyrie, L., Springer-Verlag, 61–85, 1994.
Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J. T., Bartlein, P. J., Brubaker, L. B., Coats, L. L., Cwynar, L. C., Duvall, M. L., Dyke, A. S., Edwards, M. E., Eisner, W. R., Gajewski, K., Geirsdóttir, A., Hu, F. S., Jennings, A. E., Kaplan, M. R., Kerwin, M. W., Lozhkin, A. V., MacDonald, G. M., Miller, G. H., Mock, C. J., Oswald, W. W., Otto-Bliesner, B. L., Porinchu, D. F., Rühland, K., Smol, J. P., Steig, E. J., and Wolfe, B. B.: Holocene thermal maximum in the western Arctic (0–180° W), Quaternary Sci. Rev., 23, 529–560, 2004.
Kempf, P., Forwick, M., Laberg, J. S., and Vorren, T. O.: Late Weichselian – Holocene sedimentary palaeoenvironment and glacial activity in the high-Arctic van Keulenfjorden, Spitsbergen, Holocene, 23, 1605–1616, 2013.
Klitgaard Kristensen, D., Rasmussen, T. L., and Koç, N.: Palaeoceanographic changes in the northern Barents Sea during the last 16 000 years – new constraints on the last deglaciation of the Svalbard-Barents Sea Ice Sheet, Boreas, 42, 798–813, 2013.
Knudsen, K. L., Eiríksson, J., and Bartels-Jónsdóttir, H. B.: Oceanographic changes through the last millennium off North Iceland: temperature and salinity reconstructions based on foraminifera and stable isotopes, Mar. Micropaleontol., 54–73, 2012.
Korsun, S. and Hald, M.: Modern benthic foraminifera off tide water glaciers, Novaja Semlja, Russian Arctic, Arctic Alpine Res., 30, 61–77, 1998.
Korsun, S. and Hald, M.: Seasonal dynamics of benthic foraminifera in a glacially fed fjord of Svalbard, European Arctic, J. Foramin. Res., 30, 251–271, 2000.
Kubischta, F., Knudsen, K. L., Kaakinen, A., and Salonen, V.-P.: Late Quaternary foraminiferal record in Murchisonfjorden, Nordaustlandet, Svalbard, Polar Res., 29, 283–297, 2010.
Ł\kacka, M., Zaj\kaczkowski, M., Pawłowska, J., Forwick, M., and Szczuci\'nski, M.: The 600-years record of Atlantic Water variability in the Storfjordrenna, in preparation, 2015.
Landvik, J. Y., Hjort, C., Mangerud, J., Möller, P., and Salvigsen, O.: The Quaternary record of eastern Svalbard: an overview, Polar Res., 14, 95–103, 1995.
Loeblich, A. R. and Tappan, H.: Foraminiferal Genera and Their Classification, Van Nostrand Reinhold, New York, 970 pp., 1987.
Loeng, H.: Features of the physical oceanographic conditions of the Barents Sea, Polar Res., 10, 5–18, 1991.
Lucchi, R. G., Camerlenghi, A., Rebesco, M., Colmenero-Hidalgo, E., Sierro, F. J., Sagnotti, L., Urgeles, R., Melis, R., Morigi, C., Bárcena, M.-A., Giorgetti, G., Villa, G., Persico, D., Flores, J.-A., Rigual-Hernández, A. S., Pedrosa, M. T., Macri, P., and Caburlotto, A.: Postglacial sedimentary processes on the Storfjorden and Kveithola trough mouth fans: Significance of extreme glacial sedimentation, Global Planet. Change, 111, 309–326, 2013.
Lydersen, C., Nøst, O., Lovell, P., McConell, B., Gammelsrød, T., Hunter, C., Fedak, M., and Kovacs, K.: Salinity and temperature structure of a freezing Arctic fjord – monitored by white whales (Delphinapterus leucas), Geophys. Res. Lett., 29, 2119, https://doi.org/10.1029/2002GL015462, 2002.
Majewski, W. and Zaj\kaczkowski, M.: Benthic foraminifera in Adventfjorden, Svalbard: Last 50 years of local hydrographic changes, J. Foramin. Res., 37, 107–124, 2007.
Mangerud, J., Bondevik, S., Gulliksen, S., Hufthammer, A. K., and Høisæter, T.: Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic, Quaternary Sci. Rev., 25, 3228–3245, 2006.
Matthiessen, J., Baumann, K. H., Schröder-Ritzrau, A., Hass, C., Andruleit, H., Baumann, A., Jensen, S., Kohly, A., Pflaumann, U., Samtleben, C., Schäfer, P., and Thiede, J.: Distribution of calcareous, siliceous and organic-walled planktic microfossils in surface sediments of the Nordic seas and their relation to surface-water masses, in: The northern North Atlantic: a changing environment, edited by: Schäfer, P., Ritzrau, W., Schlüter, M., and Thiede, J., Springer, 105–27, 2001.
Mayewski, P. A., Meeker, L. D., Morrison, M. C., Twickler, M. S., Whitlow, S. I., Ferland, K. K., Meese, D. A., Legrand, M. R., and Steffensen, J. P.: Greenland ice core "signal" characteristics: an expanded view of climate change, J. Geophys. Res., 98, 12839–12847, https://doi.org/10.1029/93JD01085, 1993.
Munsell\textsuperscript\textregistered Color Geological Rock: Color Chart Revised Washable Edition, Geological Society of America (GSA), 2009.
Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T,. and Yang, Z.: Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean, Nature, 464, 740–743, 2010.
Norges Sjøkartverk: Den norske los – Arctic pilot, Farvannbeskrivelse, sailing directions, Svalbard–Jan Mayen, 7th Edn., Stavanger, Norwegian Hydrographic Service, Norwegian Polar Institute, Tromsø, 1988.
O'Dwyer, J., Kasajima, Y., and Nøst, O.: North Atlantic water in the Barents Sea opening, 1997 to 1999, Polar Res., 2, 209–216, 2001.
Ojala, A. E. K., Salonen, V.-P., Moskalik, M., Kubischta, F., and Oinonen, M.: Holocene sedimentary environment of a High-Arctic fjord in Nordaustlandet, Svalbard, Pol. Polar Res., 35, 73–98, 2014.
Østby, K. L. and Nagy, J.: Foraminiferal distribution in the Western Barents Sea, recent and quaternary, Polar Res., 1, 55–95, 1982.
Osterman, L. E. and Nelson, A. R.: Latest Quaternary and Holocene paleoceanography of the eastern Baffin Island continental shelf, Canada: benthic foraminiferal evidence, Can. J. Earth Sci., 26, 2236–2248, 1989.
Ottesen, D., Dowdeswel, L. J. A., and Rise, L.: Submarine landforms and the reconstruction of fast-flowing ice streams within a large Quaternary ice sheet: the 2500 km-long Norwegian–Svalbard margin (57–80° N), Geol. Soc. Am. Bull., 117, 1033–1050, 2005.
Pearce, C., Seidenkrantz, M.-S,, Kuijpers, A., Massé, G., Reynisson, N. F., and Kristiansen, S. M.: Ocean lead at the termination of the Younger Dryas cold spell, Nature Communications, 4, 1664, https://doi.org/10.1038/ncomms2686, 2013.
Pedrosa, M. T., Camerlenghi, A., de Mol, B., Urgeles, R., Rebesco, M., Lucchi, R. G., Amblas, D., Calafat, A., Canals, M., Casamor, J. L., Costa, S., Frigola, J., Iglesias, O., Lafuerza, S., Lastras, G., Lavoie, C., Liquete, C., Hidalgo, E. C., Flores, J. A., Sierro, F. J., Carburlotto, A., Grossi, M., Winsborrow, M., Zgur, F., Deponte, D., De Vittor, C., Facchin, L., Tomini, I., De Vittor, R., Pelos, C., Persissinotto, G., Ferrante, N., and Di Curzio, E.: Seabed morphology and shallow sedimentary structure of the Storfjorden and Kveithola trough-mouth fans northwest Barents Sea, Mar. Geol., 286, 1–4, 2011.
Piechura, J.: Dense bottom waters in Storfjord and Storfjordrenna, Oceanologia, 38, 285–292, 1996.
Polyak, L. and Mikhailov, V.: Post-glacial environments of the southeastern Barents Sea: Foraminiferal evidence, Geological Society, London, Special Publications, 111, 323–337, 1996.
Polyak, L. and Solheim, A.: Late- and post-glacial environments in the northern Barents Sea west of Franz Josef Land, Polar Res., 13, 97–207, 1994.
Quadfasel, D., Rudels, B., and Kurz, K.: Outflow of dense water from a Svalbard fjord into the Fram Strait, Deep-Sea Res., 35, 1143–1150, 1988.
Quadfasel, D. A., Sy, A., Wells, D., and Tunik, A.: Warming in the Arctic, Nature, 350, 6317, https://doi.org/10.1038/350385a0, 1991.
Rasmussen, T. L. and Thomsen, E.: Stable isotope signals from brines in the Barents Sea: implications for brine formation during the last glaciation, Geology, 37, 903–906, https://doi.org/10.1130/G25543A.1, 2009.
Rasmussen, T. L. and Thomsen, E.: Brine formation in relation to climate changes and ice retreat during the last 15,000 years in Storfjorden, Svalbard, 76–78° N, Paleoceanography, 29, 911–929, https://doi.org/10.1002/2014PA002643, 2014.
Rasmussen, T. L. and Thomsen, E.: Palaeoceanographic development in Storfjorden, Svalbard, during the deglaciation and Holocene: evidence from benthic foraminiferal records, Boreas, 44, 24–44, https://doi.org/10.1111/bor.12098, 2015.
Rasmussen, T. L., Thomsen, E., Slubowska-Woldengen, M., Jessen, S., Solheim, A., and Koc, N.: Paleoceanographic evolution of the SW Svalbard margin (76° N) since 20 000 14C yr BP, Quaternary Res., 67, 100–114, https://doi.org/10.1016/j.yqres.2006.07.002, 2007.
Rasmussen, T. L., Forwick, M., and Mackensen, A.: Reconstruction of inflow of Atlantic Water to Isfjorden, Svalbard during the Holocene: correlation to climate and seasonality, Mar. Micropaleontol., 94–95, 80–90, https://doi.org/10.1016/j.marmicro.2012.06.008, 2012.
Rasmussen, T. L., Thomsen, E., Skirbekk, K., \'Slubowska-Woldengen, M., Klitgaard Kristensen, D., and Koç, N.: Spatial and temporal distribution of Holocene temperature maxima in the northern Nordic seas: interplay of Atlantic-, Arctic- and polar water masses, Quaternary Sci. Rev., 92, 280–291, https://doi.org/10.1016/j.quascirev.2013.10.034, 2013.
Rasmussen, T. L., Thomsen, E., Skirbekk, K., \'Slubowska-Woldengen, M., Klitgaard Kristensen, D., and Koç, N.: Spatial and temporal distribution of Holocene temperature maxima in the northern Nordic seas: interplay of Atlantic-, Arctic- and polar water masses, Quaternary Sci. Rev., 92, 280–291, https://doi.org/10.1016/j.quascirev.2013.10.034, 2014.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., HattĂŠ, C., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., and van der Plicht, J.: IntCal13 and MARINE13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887, 2013.
Risebrobakken, B., Moros, M., Ivanova, E. V., Chistyakova, N., and Rosenberg, R.: Climate and oceanographic variability in the SW Barents Sea during the Holocene, The Holocene, 20, 609–621, https://doi.org/10.1177/0959683609356586, 2010.
Risebrobakken, B., Dokken, T., Smedsrud, L., Andersson, C., Jansen, E., Moros, M., and Ivanova, E.: Early Holocene temperature variability in the Nordic Seas: The role of oceanic heat advection versus changes in orbital forcing, Paleoceanography, 26, PA4206, https://doi.org/10.1029/2011PA002117, 2011.
Rüther, D., Bjarnadóttir, L., R., Junttila, J., Husum, K., Rasmussen, T. L., Lucchi, R. G., and Andreassen, K.: Pattern and timing of the northwestern Barents Sea Ice Sheet deglaciation and indications of episodic Holocene deposition, Boreas, 41, 494–512, https://doi.org/10.1111/j.1502-3885.2011.00244.x, 2012.
Saher, M. H., Klitgaard Kristensen, D., Hald, M., Korsun, S., and Jørgensen, L. L.: Benthic foraminifera assemblages in the Central Barents Sea: an evaluation of the effect of combining live and total fauna studies in tracking environmental change, Norw. J. Geol., 89, 149–161, 2009.
Salvigsen, O., Forman, S., and Miller, G.: Thermophilous mollusks on Svalbard during the Holocene and their paleoclimatic implications, Polar Res., 11, 1–10, 1992.
Sarnthein, M., van Kreveld, S., Erlenkeuser, H., Grootes, P. M., Kucera, M., Pflaumann, U., and Sculz, M.: Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75° N, Boreas, 32, 447–461, 2003.
Schauer, U.: The release of brine-enriched shelf water from Storfjord into the Norwegian Sea, J. Geophys. Res., 100, 60515–16028, 1995.
Schauer, U. and Fahrbach, E.: A dense bottom water plume in the western Barents Sea: downstream modification and interannual variability, Deep-Sea Res. Pt. I, 46, 2095–2108, 1999.
Schauer, U., Fahrbach, E., Østerhus, S., and Rohardt, G.: Arctic Warming through the Fram Strait: oceanic heat transport from 3 years of measurements, J. Geophys. Res., 109, C06026, https://doi.org/10.1029/2003JC001823, 2004.
Schröder-Adams, C. J., Cole, F. E., Medioli, F. S., Mudie, P. J., Scott, D. B., and Dobbin, L.: Recent Arctic shelf foraminifera: seasonally ice covered areas vs. perennially ice covered areas, J. Foramin. Res., 20, 8–36, 1990.
Sejrup, H. P., Birks, H. J. B., Kristensen, D. K., and Madsen, H.: Benthonic foraminiferal distributions and quantitative transfer functions for the northwest European continental margin. Mar. Micropaleontolog., 53, 197–226, https://doi.org/10.1016/j.marmicro.2004.05.009, 2004.
Serreze, M. C., Maslanik, J. A., Scambos, T. A., Fetterer, F., Stroeve, J., Knowles, K., Fowler, C., Drobot, S., Barry, R. G., and Haran, T. M.: A new record minimum Arctic sea ice and extent in 2002, Geophys. Res. Lett., 30, 1110, https://doi.org/10.1029/2002GL016406, 2003.
Siegert, M. J. and Dowdeswell, J. A.: Late Weichselian iceberg, surface-melt and sediment production from the Eurasian Ice Sheet: results from numerical ice sheet modeling, Mar. Geol., 188, 109–127, 2002.
Skirbekk, K., Klitgaard Kristensen, D., Rasmussen, T., Koç, N., and Forwick, M.: Holocene climate variations at the entrance to a warm Arctic fjord: evidence from Kongsfjorden Trough, Svalbard, in: Fjord Systems and Archives, edited by: Howe, J. A., Austin, W. E. N., Forwick, M., and Paetzel, M., Geological Society, London, Special Publications, 344, 289–304, 2010.
Skogseth, R., Haugan, P. M., and Haarpaintner, J.: Ice and brine production in Storfjorden from four winters of satellite and in situ observations and modeling, J. Geophys. Res., 109, C10008, https://doi.org/10.1029/2004JC002384, 2004.
Skogseth, R., Haugan, P. M., and Jakobsson, M.: Watermass transformations in Storfjorden, Cont. Shelf Res., 25, 667–695, 2005.
\'Slubowska, M. A., Koç, N., Rasmussen, T. L., and Klitgaard-Kristensen, D.: Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: evidence from the northern Svalbard continental margin, 80° N, Paleoceanography, 20, 1–16, https://doi.org/10.1029/2005PA001141, 2005.
\'Slubowska-Woldengen, M., Rasmussen, T. L., Koç, N., Klitgaard-Kristensen, D., Nilsen, F., and Solheim, A.: Advection of Atlantic Water to the western and northern Svalbard shelf since 17,500 cal yr BP, Quaternary Sci. Rev., 26, 463–478, https://doi.org/10.1016/j.quascirev.2006.09.009, 2007.
\'Slubowska-Woldengen, M., Koç, N., Rasmussen, T. L., Klitgaard-Kristensen, D., Hald, M., and Jennings, A. E.: Time-slice reconstructions of ocean circulation changes on the continental shelf in the Nordic and Barents Seas during the last 16 000 cal yr BP, Quaternary Sci. Rev., 27, 1476–1492, https://doi.org/10.1016/j.quascirev.2008.04.015, 2008.
Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M., Li, C., Lien, V. S., Olsen, A., Omar, A. M., Otterå, O. H., Risebrobakken, B., Sandø, A. B., Semenov, V. A., and Sorokina, S. A.: The role of the Barents Sea in the Arctic climate system, Rev. Geophys, 51, 415–449, 2013.
Spielhagen, R. F., Werner, K., Sørensen, S. A., Zamelczyk, K., Kandiano, E., Budéus, G., Husum, K., Marchitto, T. M., and Hald, M.: Enhanced modern heat transfer to the Arctic by warm Atlantic water, Science, 331, 450–453, https://doi.org/10.1126/science.1197397, 2011.
Steinsund, P. I.: Benthic foraminifera in surface sediments of the Barents and Kara seas: modern and late Quaternary applications, PhD thesis, University of Tromsø, Norway, 1994.
Sternal, B., Szczuci\'nski, W., Forwick, M., Zaj\kaczkowski, M., Lorenc, S., and Przytarska, J.: Postglacial variability in near-bottom current speed on the Continental shelf off south-west Spitsbergen, J. Quaternary Sci., 29, 767–777, 2014.
Stuiver, M. and Reimer, P. J.: Extended 14C database and revised CALIB radiocarbon calibration program, Radiocarbon, 35, 215–230, 1993.
Stuiver, M., Grootes, P. M., and Braziunas, T. F.: The GISP2 18O climate record of the past 16,500 years and the role of the sun, ocean and volcanoes, Quaternary Res., 44, 341–354, 1995.
Stuiver, M., Reimer, P. J., and Reimer, R. W.: CALIB 5.0. [WWW program and documentation], 2005.
Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland, S., Ørebæk, J. B., Bischof, K., Papucci, C., Zaj\kaczkowski, M., Azzolini, R., Bruland, O., Wiemcke, C., Winther, J.-G., and Dallmann, W.: The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard, Polar Res., 21, 133–166, 2002.
Svendsen, J. I. and Mangerud, J.: Holocene glacial and climatic variations on Spitsbergen, Svalbard, Holocene, 7, 45–57, 1997.
Szczuci\'nski, W., Zaj\kaczkowski, M., and Scholten, J.: Sediment accumulation rates in subpolar fjords – impact of post-Little Ice Age glaciers retreat, Billefjorden, Svalbard, Estuar. Coast. Shelf S., 85, 345–356, 2009.
Taldenkova, E., Bauch, H. A., Stepanova, A., Ovsepyan, Y., Pogodina, I., Klyuvitkina, T., and Nikolaev, S.: Benthic and planktic community changes at the North Siberian margin in response to Atlantic water mass variability since last deglacial times, Mar. Micropaleontol., 96–97, 13–28, 2012.
Thorarinsdóttir, G. and Gunnarson, K.: Reproductive cycles of Mytilus edulis L. on the west and east coast of Iceland, Polar Res., 22, 217–223, 2003.
Vilks, G.: Late glacial-postglacial foraminiferal boundary in sediments of eastern Canada, Denmark and Norway, Geosci. Canada, 8, 48–55, 1981.
Walczowski, W. and Piechura, J.: New evidence of warming propagating toward the Arctic Ocean, Geophys. Res. Lett., 33, L12601, https://doi.org/10.1029/2006GL025872, 2006.
Walczowski, W. and Piechura, J.: Pathways of the Greenland Sea warming, Geophys. Res. Lett., 34, L10608, https://doi.org/10.1029/2007GL029974, 2007.
Walczowski, W., Piechura, J., Goszczko, I., and Wieczorek, P.: Changes in Atlantic water properties: an important factor in the European Arctic marine climate, ICES J. Mar. Sci., 69, 864–869, https://doi.org/10.1093/icesjms/fss068, 2012.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to late Holocene climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828, 2008.
Weber, M. E., Niessen, F., Kuhn, G., and Wiedicke-Hombach, M.: Calibration and app lication of marine sedimentary physical properties using a multi-sensor core logger, Mar. Geol., 136, 151–172, https://doi.org/10.1016/S0025-3227(96)00071-0, 1997.
Werner, K., Spielhagen, R. F., Bauch, D., Hass, H. C., Kandiano, E. S., and Zamelczyk, K.: Atlantic Water advection to the eastern Fram Strait – multiproxy evidence for late Holocene variability, Palaeogeogr. Palaeocl., 308, 264–276, 2011.
Winsborrow, M. C. M., Andreassen, K., Corner, G. D., and Laberg, J. S.: Deglaciation of a marine-based ice sheet: Late Weichselian Palaeo-ice dynamics and retreat in the southern Barents Sea reconstructed from onshore and offshore glacial geomorphology, Quaternary Sci. Rev., 29, 424–442, 2010.
Witus, A. E., Branecky, C. M., Anderson, J. B., Szczuci\'nski, W., Schroeder, D. D., and Jakobsson, M.: Meltwater intensive glacial retreat in polar environments and investigation of associated sediments: example from Pine Island Bay, West Antarctica, Quaternary Sci. Rev., 85, 99–118, 2014.
Włodarska-Kowalczuk, M., Pawłowska, J., and Zaj\kaczkowski, M.: Do foraminifera mirror diversity and distribution patterns of macrobenthic fauna in an Arctic glacial fjord?, Mar. Micropaleontol., 103, 30–39, 2013.
Wollenburg, J. E., Knies, J., and Mackensen, A.: High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean, Palaeogeogr. Palaeocl., 204, 209–238, 2004.
Zaj\kaczkowski, M., Szczuci\'nski, W., and Bojanowski, R.: Recent sediment accumulation rates in Adventfjorden, Svalbard, Oceanologia, 46, 217–231, 2004.
Zaj\kaczkowski, M., Nygård, H., Hegseth, E. N., and Berge, J.: Vertical flux of particulate matter in an Arctic fjord: the case of lack of the sea-ice cover in Adventfjorden 2006–2007, Polar Biol., 33, 223–239, 2010.
Zamelczyk, K., Rasmussen, T. L., Husum, K., Haflidason, H., de Vernal, A., Ravna, E. K., Hald, M., and Hillaire-Marcel, C.: Paleoceanographic changes and calcium carbonate dissolution in the central Fram Strait during the last 20 ka, Quaternary Res., 78, 405–416, 2012.
Short summary
Storfjordrenna was deglaciated about 13,950 cal yr BP. During the transition from the sub-glacial to glaciomarine setting, Arctic Waters dominated its hydrography. However, the waters were not uniformly cold and experienced several warmer spells. Atlantic Water began to flow onto the shelves off Svalbard and into Storfjorden during the early Holocene, leading to progressive warming and significant glacial melting. A surface-water cooling and freshening occurred in late Holocene.
Storfjordrenna was deglaciated about 13,950 cal yr BP. During the transition from the...