Articles | Volume 11, issue 2
https://doi.org/10.5194/cp-11-187-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-187-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Nutrient utilisation and weathering inputs in the Peruvian upwelling region since the Little Ice Age
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
now at: Max Planck Research Group for Marine Isotope Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
P. Grasse
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
D. Gutiérrez
Instituto del Mar del Perú (IMARPE), Dirección de Investigaciones Oceanográficas, Callao, Peru
R. Salvatteci
Instituto del Mar del Perú (IMARPE), Dirección de Investigaciones Oceanográficas, Callao, Peru
Institute of Geoscience, Department of Geology, Kiel University, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany
M. Frank
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Related authors
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Sonja Geilert, Patricia Grasse, Kristin Doering, Klaus Wallmann, Claudia Ehlert, Florian Scholz, Martin Frank, Mark Schmidt, and Christian Hensen
Biogeosciences, 17, 1745–1763, https://doi.org/10.5194/bg-17-1745-2020, https://doi.org/10.5194/bg-17-1745-2020, 2020
Short summary
Short summary
Marine silicate weathering is a key process of the marine silica cycle; however, its controlling processes are not well understood. In the Guaymas Basin, silicate weathering has been studied under markedly differing ambient conditions. Environmental settings like redox conditions or terrigenous input of reactive silicates appear to be major factors controlling marine silicate weathering. These factors need to be taken into account in future oceanic mass balances of Si and in modeling studies.
Kristin Doering, Claudia Ehlert, Philippe Martinez, Martin Frank, and Ralph Schneider
Biogeosciences, 16, 2163–2180, https://doi.org/10.5194/bg-16-2163-2019, https://doi.org/10.5194/bg-16-2163-2019, 2019
Matthew D. Eisaman, Sonja Geilert, Phil Renforth, Laura Bastianini, James Campbell, Andrew W. Dale, Spyros Foteinis, Patricia Grasse, Olivia Hawrot, Carolin R. Löscher, Greg H. Rau, and Jakob Rønning
State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023
Short summary
Short summary
Ocean-alkalinity-enhancement technologies refer to various methods and approaches aimed at increasing the alkalinity of seawater. This chapter explores technologies for increasing ocean alkalinity, including electrochemical-based approaches, ocean liming, accelerated weathering of limestone, hydrated carbonate addition, and coastal enhanced weathering, and suggests best practices in research and development.
Marco Yseki, Bruno Turcq, Sandrine Caquineau, Renato Salvatteci, José Solis, C. Gregory Skilbeck, Federico Velazco, and Dimitri Gutiérrez
Clim. Past, 18, 2255–2269, https://doi.org/10.5194/cp-18-2255-2022, https://doi.org/10.5194/cp-18-2255-2022, 2022
Short summary
Short summary
In the present work we reconstruct changes in river discharge and wind in Peru during the last deglaciation to understand the mechanisms that modulate changes in precipitation and winds during a period of global warming. We found that changes in river discharge and wind intensity in Peru were sensitive to high-latitude forcing (changes in the intensity of the Atlantic Meridional Overturning Circulation) and Walker circulation variations on a millennial timescale, respectively.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Vincent Echevin, Manon Gévaudan, Dante Espinoza-Morriberón, Jorge Tam, Olivier Aumont, Dimitri Gutierrez, and François Colas
Biogeosciences, 17, 3317–3341, https://doi.org/10.5194/bg-17-3317-2020, https://doi.org/10.5194/bg-17-3317-2020, 2020
Short summary
Short summary
The coasts of Peru encompass the richest fisheries in the entire ocean. It is therefore very important for this country to understand how the nearshore marine ecosystem may evolve under climate change. Fine-scale numerical models are very useful because they can represent precisely the evolution of key parameters such as temperature, water oxygenation, and plankton biomass. Here we study the evolution of the Peruvian marine ecosystem in the 21st century under the worst-case climate scenario.
Sonja Geilert, Patricia Grasse, Kristin Doering, Klaus Wallmann, Claudia Ehlert, Florian Scholz, Martin Frank, Mark Schmidt, and Christian Hensen
Biogeosciences, 17, 1745–1763, https://doi.org/10.5194/bg-17-1745-2020, https://doi.org/10.5194/bg-17-1745-2020, 2020
Short summary
Short summary
Marine silicate weathering is a key process of the marine silica cycle; however, its controlling processes are not well understood. In the Guaymas Basin, silicate weathering has been studied under markedly differing ambient conditions. Environmental settings like redox conditions or terrigenous input of reactive silicates appear to be major factors controlling marine silicate weathering. These factors need to be taken into account in future oceanic mass balances of Si and in modeling studies.
Kristin Doering, Claudia Ehlert, Philippe Martinez, Martin Frank, and Ralph Schneider
Biogeosciences, 16, 2163–2180, https://doi.org/10.5194/bg-16-2163-2019, https://doi.org/10.5194/bg-16-2163-2019, 2019
April N. Abbott, Brian A. Haley, Aradhna K. Tripati, and Martin Frank
Clim. Past, 12, 837–847, https://doi.org/10.5194/cp-12-837-2016, https://doi.org/10.5194/cp-12-837-2016, 2016
Short summary
Short summary
The Paleocene-Eocene Thermal Maximum (PETM) was a brief period when the Earth was in an extreme greenhouse state. We use neodymium isotopes to suggest that during this time deep-ocean circulation was distinct in each basin (North and South Atlanic, Southern, Pacific) with little exchange between. Moreover, the Pacific data show the most variability, suggesting this was a critical region possibly involved in both PETM triggering and remediation.
Francisco Javier Briceño-Zuluaga, Abdelfettah Sifeddine, Sandrine Caquineau, Jorge Cardich, Renato Salvatteci, Dimitri Gutierrez, Luc Ortlieb, Federico Velazco, Hugues Boucher, and Carine Machado
Clim. Past, 12, 787–798, https://doi.org/10.5194/cp-12-787-2016, https://doi.org/10.5194/cp-12-787-2016, 2016
Short summary
Short summary
Comparison between records reveals a coherent match between the meridional displacement of the ITCZ-SPSH system and the regional fluvial and aeolian terrigenous input variability. The aeolian input intensity and the anoxic conditions recorded by marine sediments showed a close link that suggests a common mechanism associated with SPSH displacement. Changes in sediment discharge to the continental shelf are linked to the southward displacement of the ITCZ-SPSH and Walker circulation.
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
R. Salvatteci, D. Gutiérrez, D. Field, A. Sifeddine, L. Ortlieb, I. Bouloubassi, M. Boussafir, H. Boucher, and F. Cetin
Clim. Past, 10, 715–731, https://doi.org/10.5194/cp-10-715-2014, https://doi.org/10.5194/cp-10-715-2014, 2014
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Centennial-Decadal
Can we use sea surface temperature and productivity proxy records to reconstruct Ekman upwelling?
Palaeoceanographic changes in Hornsund Fjord (Spitsbergen, Svalbard) over the last millennium: new insights from ancient DNA
Development of coccolithophore-based transfer functions in the western Mediterranean sea: a sea surface salinity reconstruction for the last 15.5 kyr
A high-resolution δ18O record and Mediterranean climate variability
Multidecadal to millennial marine climate oscillations across the Denmark Strait (~ 66° N) over the last 2000 cal yr BP
An inter-laboratory investigation of the Arctic sea ice biomarker proxy IP25 in marine sediments: key outcomes and recommendations
Inferred changes in El Niño–Southern Oscillation variance over the past six centuries
Anson Cheung, Baylor Fox-Kemper, and Timothy Herbert
Clim. Past, 15, 1985–1998, https://doi.org/10.5194/cp-15-1985-2019, https://doi.org/10.5194/cp-15-1985-2019, 2019
Short summary
Short summary
We test two assumptions that are often made in paleoclimate studies by using observations and ask whether temperature and productivity proxy records in the Southern California Current can be used to reconstruct Ekman upwelling. By examining the covariation between alongshore wind stress, temperature, and productivity, we found that the dominant covarying pattern does not reflect Ekman upwelling. Other upwelling patterns found are timescale dependent. Multiple proxies can improve reconstruction.
Joanna Pawłowska, Marek Zajączkowski, Magdalena Łącka, Franck Lejzerowicz, Philippe Esling, and Jan Pawlowski
Clim. Past, 12, 1459–1472, https://doi.org/10.5194/cp-12-1459-2016, https://doi.org/10.5194/cp-12-1459-2016, 2016
Short summary
Short summary
The presented study focuses on the last millennium of the palaeoclimatic history of Svalbard region. The investigation was based on classical palaeoceanographic proxies, strengthened by the analysis of ancient foraminiferal DNA in down-core sediment samples. This study is the first attempt to implement the aDNA record in the palaeoenvironmental reconstruction. The aDNA data revealed even small environmetal changes that were not evidenced in the sedimentological and micropalaeontological record.
B. Ausín, I. Hernández-Almeida, J.-A. Flores, F.-J. Sierro, M. Grosjean, G. Francés, and B. Alonso
Clim. Past, 11, 1635–1651, https://doi.org/10.5194/cp-11-1635-2015, https://doi.org/10.5194/cp-11-1635-2015, 2015
Short summary
Short summary
Coccolithophore distribution in 88 surface sediment samples in the Atlantic Ocean and western Mediterranean was mainly influenced by salinity at 10m depth. A quantitative coccolithophore-based transfer function was developed and applied to a fossil sediment core to estimate sea surface salinity (SSS). The quality of this function and the reliability of the SSS reconstruction were assessed by statistical analyses and discussed. Several centennial SSS changes are identified for the last 15.5 ka.
C. Taricco, G. Vivaldo, S. Alessio, S. Rubinetti, and S. Mancuso
Clim. Past, 11, 509–522, https://doi.org/10.5194/cp-11-509-2015, https://doi.org/10.5194/cp-11-509-2015, 2015
Short summary
Short summary
The key to gaining information on climate over the last millennia is the study of proxy records in ice and sediment cores, trees, etc. We measured the oxygen isotopic ratio in planktonic foraminifera of a high-resolution, well-dated central Mediterranean core.
The comparison between the variability detected in this core and that characterizing the Northern Hemisphere allows for local and global (hemispheric) climate variations to be distinguished.
J. T. Andrews and A. E. Jennings
Clim. Past, 10, 325–343, https://doi.org/10.5194/cp-10-325-2014, https://doi.org/10.5194/cp-10-325-2014, 2014
S. T. Belt, T. A. Brown, L. Ampel, P. Cabedo-Sanz, K. Fahl, J. J. Kocis, G. Massé, A. Navarro-Rodriguez, J. Ruan, and Y. Xu
Clim. Past, 10, 155–166, https://doi.org/10.5194/cp-10-155-2014, https://doi.org/10.5194/cp-10-155-2014, 2014
S. McGregor, A. Timmermann, M. H. England, O. Elison Timm, and A. T. Wittenberg
Clim. Past, 9, 2269–2284, https://doi.org/10.5194/cp-9-2269-2013, https://doi.org/10.5194/cp-9-2269-2013, 2013
Cited articles
Abrantes, F., Lopes, C., Mix, A. C., and Pisias, N. G.: Diatoms in Southeast Pacific surface sediments reflect environmental properties, Quaternary Sci. Rev., 26, 155–169, 2007.
Agnihotri, R., Altabet, M. A., Herbert, T. D., and Tierney, J. E.: Subdecadally resolved paleoceanography of the Peru margin during the last two millennia, Geochem. Geophys. Geosys., 9, Q05013, https://doi.org/10.1029/2007GC001744, 2008.
Albarède, F., Telouk, P., Blichert-Toft, J., Boyet, M., Agranier, A., and Nelson, B.: Precise and accurate isotopic measurements using multiple-collector ICPMS, Geochim. Cosmochim. Ac., 68, 2725–2744, 2004.
Altabet, M. A. and Francois, R.: Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilisation, Global Biogeochem. Cy., 8, 103–116, 1994.
Altabet, M. A., Deuser, W. G., Honjo, S., and Stienen, C.: Seasonal and depth-related changes in the source of sinking particles in the North Atlantic, Nature, 354, 136–139, 1991.
Altabet, M. A., Pilskaln, C., Thunell, R. C., Pride, C. J., Sigman, D. M., Chavez, F. P., and Francois, R.: The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific, Deep-Sea Res. Pt. I, 46, 655–679, 1999.
Altabet, M. A., Ryabenko, E., Stramma, L., Wallace, D. W. R., Frank, M., Grasse, P., and Lavik, G.: An eddy-stimulated hotspot for fixed nitrogen-loss from the Peru oxygen minimum zone, Biogeosciences, 9, 4897–4908, https://doi.org/10.5194/bg-9-4897-2012, 2012.
Bird, B. W., Abbott, M. B., Vuille, M., Rodbell, D. T., Stansell, N. D., and Rosenmeier, M. F.: A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes, PNAS, 108, 8583–8588, 2011.
Brink, K. H., Halpern, D., Huyer, A., and Smith, R. L.: The Physical Environment of the Peruvian Upwelling System, Prog. Oceanogr., 12, 285–305, 1983.
Bruland, K. W., Rue, E. L., Smith, G. J., and DiTullio, G. R.: Iron, macronutrients and diatom blooms in the Peru upwelling regime: brown and blue waters of Peru, Mar. Chem., 93, 81–103, 2005.
Brzezinski, M. A.: The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables, Journal of Phycology, 21, 347–357, 1985.
Brzezinski, M. A., Pride, C. J., Franck, V. M., Sigman, D. M., Sarmiento, J. L., Matsumoto, K., Gruber, N., Rau, G. H., and Coale, K. H.: A switch from Si(OH)4 to NO3- depletion in the glacial Southern Ocean, Geophys. Res. Lett., 29, 3–6, 2002.
Codispoti, L. A., Brandes, J. A., Christensen, J. P., Devol, A. H., Naqvi, S. W. A., Paerl, H. W., and Yoshinary, T.: The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene?, Sci. Mar., 65, 85–105, 2001.
Cohen, A. S., O'Nions, R. K., Siegenthaler, R., and Griffin, W. L.: Chronology of the pressure-temperature history recorded by a granulite terrain, Contribut. Mineral. Petrol., 98, 303–311, 1988.
Conroy, J. L., Restrepo, A., Overpeck, J. T., Steinitz-Kannan, M., Cole, J. E., Bush, M. B., and Colinvaux, P. A.: Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean, Nature Geosci., 2, 46–50, 2008.
Dalsgaard, T., Canfield, D. E., Petersen, J., Thamdrup, B., and Acuna-González, J.: N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica, Nature, 422, 606–608, 2003.
De La Rocha, C. L., Brzezinski, M. A., and DeNiro, M. J.: Fractionation of silicon isotopes by marine diatoms during biogenic silica formation, Geochim. Cosmochim. Ac., 61, 5051–5056, 1997.
De La Rocha, C. L., Brzezinski, M. A., DeNiro, M. J., and Shemesh, A.: Silicon-isotope composition of diatoms as an indicator of past oceanic changes, Nature, 395, 680–683, 1998.
DeMaster, D. J.: The supply and accumulation of silica in the marine environment, Geochim. Cosmochim. Ac., 45, 1715–1732, 1981.
DeNiro, M. J. and Epstein, S.: Influence of diet on the distribution of nitrogen isotopes in animals, Geochim. Cosmochim. Ac., 45, 341–351, 1981.
De Pol-Holz, R., Ulloa, O., Dezileau, L., Kaiser, J., Lamy, F., and Hebbeln, D.: Melting of the Patagonian Ice Sheet and deglacial perturbations of the nitrogen cycle in the eastern South Pacific, Geophys. Res. Lett., 33, L04704, https://doi.org/10.1029/2005GL024477, 2006.
De Pol-Holz, R., Ulloa, O., Lamy, F., Dezileau, L., Sabatier, P., and Hebbeln, D.: Late Quaternary variability of sedimentary nitrogen isotopes in the eastern South Pacific Ocean, Paleoceanography, 22, PA2207, https://doi.org/10.1029/2006PA001308, 2007.
De Pol-Holz, R., Robinson, R. S., Hebbeln, D., Sigman, D. M., and Ulloa, O.: Controls on sedimentary nitrogen isotopes along the Chile margin, Deep-Sea Res. Pt. II, 56, 1042–1054, 2009.
De Souza, G. F., Reynolds, B. C., Rickli, J., Frank, M., Saito, M. A., Gerringa, L. J. A., and Bourdon, B.: Southern Ocean control of silicon stable isotope distribution in the deep Atlantic Ocean, Global Biogeochem. Cy., 26, GB2035, https://doi.org/10.1029/2011GB004141, 2012.
Díaz-Ochoa, J. A., Lange, C. B., Pantoja, S., De Lange, G. J., Gutiérrez, D., Munoz, P., and Salamanca, M.: Fish scales in sediments from off Callao, central Peru, Deep-Sea Res. Pt. II, 56, 1113–1124, 2009.
Díaz-Ochoa, J. A., Pantoja, S., De Lange, G. J., Lange, C. B., Sánchez, G. E., Acuña, V. R., Muñoz, P., and Vargas, G.: Oxygenation variability in Mejillones Bay, off northern Chile, during the last two centuries, Biogeosciences, 8, 137–146, https://doi.org/10.5194/bg-8-137-2011, 2011.
Egan, K. E., Rickaby, R. E. M., Leng, M. J., Hendry, K. R., Sloane, H. J., Bostock, H. C., and Halliday, A. N.: Diatom silicon isotopes as a proxy for silicic acid utilisation: A Southern Ocean core top calibration, Geochim. Cosmochim. Ac., 96, 174–192, 2012.
Ehlert, C., Grasse, P., Mollier-Vogel, E., Böschen, T., Franz, J., De Souza, G. F., Reynolds, B. C., Stramma, L., and Frank, M.: Factors controlling the silicon isotope distribution in waters and surface sediments of the Peruvian coastal upwelling, Geochim. Cosmochim. Ac., 99, 128–145, 2012.
Ehlert, C., Grasse, P., and Frank, M.: Changes in silicate utilisation and upwelling intensity off Peru since the Last Glacial Maximum – insights from silicon and neodymium isotopes, Quaternary Sci. Rev., 72, 18–35, 2013.
Estrada, M. and Blasco, D.: Phytoplankton assemblages in coastal upwelling areas, in: Simposio Internacional Sobre Las Areas de Afloramiento Mas Importantes del Oeste Africano (Cabo Blanco y Benguela), edited by: Bas, C., Margalef, R., and Rubies, P., Barcelona, Instituto de Investigaciones Pesqueras, 379–402, 1985.
Georg, R. B., Reynolds, B. C., Frank, M., and Halliday, A. N.: New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS, Chem. Geol., 235, 95–104, 2006.
Goldstein, S. L., O'Nions, R. K., and Hamilton, P. J.: A Sm–Nd isotopic study of atmospheric dusts and particulates from major river systems, Earth Planet. Sci. Lett., 70, 221–236, 1984.
Grasse, P., Stichel, T., Stumpf, R., Stramma, L., and Frank, M.: The distribution of neodymium isotopes and concentrations in the Eastern Equatorial Pacific: Water mass advection versus particle exchange, Earth Planet. Sci. Lett., 353/354, 198–207, 2012.
Grasse, P., Ehlert, C., and Frank, M.: The Influence of Water Mass Mixing on the Dissolved Si Isotope Composition in the Eastern Equatorial Pacific, Earth Planet. Sci. Lett., 380, 60–71, 2013.
Grousset, F. E., Biscaye, P. E., Zindler, A., Prospero, J., and Chester, R.: Neodymium isotopes as tracers in marine sediments and aerosols: North Atlantic, Earth Planet. Sci. Lett., 87, 367–378, 1988.
Grove, M. J.: The initiation of the "Little Ice Age" in regions round the North Atlantic, Clim. Change, 48, 53–82, 2001.
Gutiérrez, D., Sifeddine, A., Reyss, J.-L., Vargas, G., Velazco, F., Salvatteci, R., Ferreira-Bartrina, V., Ortlieb, L., Field, D. B., Baumgartner, T., Boussafir, M., Boucher, H., Valdés, J., Marinovic, L., Soler, P., and Tapia, P. M.: Anoxic sediments off Central Peru record interannual to multidecadal changes of climate and upwelling ecosystem during the last two centuries, Adv. Geosci., 6, 119–125, 2006.
Gutiérrez, D., Sifeddine, A., Field, D. B., Ortlieb, L., Vargas, G., Chavez, F. P., Velazco, F., Ferreira-Bartrina, V., Tapia, P. M., Salvatteci, R., Boucher, H., Morales, M. C., Valdés, J., Reyss, J.-L., Campusano, A., Boussafir, M., Mandeng-Yogo, M., García, M., and Baumgartner, T.: Rapid reorganization in ocean biogeochemistry off Peru towards the end of the Little Ice Age, Biogeosciences, 6, 835–848, https://doi.org/10.5194/bg-6-835-2009, 2009.
Horn, M. G., Robinson, R. S., Rynearson, T. A., and Sigman, D. M.: Nitrogen isotopic relationship between diatom-bound and bulk organic matter of cultured polar diatoms, Paleoceanography, 26, PA3208, https://doi.org/10.1029/2010PA002080, 2011.
Horwitz, E. P., Chiarizia, R., and Dietz, M. L.: A Novel Strontium-Selective Extraction Chromatographic Resin, Solv. Extract. Ion Exch., 10, 313–336, 1992.
Hutchins, D. A., Hare, C. E., Weaver, R. S., Zhang, Y., Firme, G. F., DiTullio, G. R., Alm, M. B., Riseman, S. F., Maucher, J. M., Geesey, M. E., Trick, C. G., Smith, G. J., Rue, E. L., Conn, J., and Bruland, K. W.: Phytoplankton iron limitation in the Humboldt Current and Peru Upwelling, Limnol. Oceanogr., 47, 997–1011, 2002.
Kanner, L. C., Burns, S. J., Cheng, H., Edwards, R. L., and Vuille, M.: High-resolution variability of the South American summer monsoon over the last seven millennia: insights from a speleothem record from the central Peruvian Andes, Quaternary Sci. Rev., 75, 1–10, 2013.
Kessler, W. S.: The circulation of the eastern tropical Pacific: A review, Prog. Oceanogr., 69, 181–217, 2006.
Lacan, F. and Jeandel, C.: Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and Rare Earth Element patterns, Earth Planet. Science Lett., 186, 497–512, 2001.
Lam, P., Lavik, G., Jensen, M. M., Van de Vossenberg, J., Schmid, M., Woebken, D., Gutiérrez, D., Amann, R., Jetten, M. S. M., and Kuypers, M. M. M.: Revising the nitrogen cycle in the Peruvian oxygen minimum zone, PNAS, 106, 4752–4757, 2009.
Lamb, H. H.: The early Medieval Warm Epoch and its sequel, Palaeogeography, Palaeoclimatology, Palaeoecology, 1, 13–37, 1965.
Lamy, F., Hebbeln, D., Röhl, U., and Wefer, G.: Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies, Earth Planet. Science Lett., 185, 369–382, 2001.
Liu, K.-K. and Kaplan, I. R.: The eastern tropical Pacific as a source of 15N-enriched nitrate in seawater off southern Califomia, Limnol. Oceanogr., 34, 820–830, 1989.
Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., and Tardieux, P.: Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes, Plant Soil, 62, 413–430, 1981.
Meysman, F. J. R., Boudreau, B. P., and Middelburg, J. J.: Modeling reactive transport in sediments subject to bioturbation and compaction, Geochim. Cosmochim. Ac., 69, 3601–3617, 2005.
Minagawa, M. and Wada, E.: Stepwise enrichment of 15N along food chains: Further evidence and the relation between d15N and animal age, Geochim. Cosmochim. Ac., 48, 1135–1140, 1984.
Molina-Cruz, A.: The Relation of the Southern Trade Winds to Upwelling Processes during the Last 75,000 Years, Quaternary Res., 8, 324–338, 1977.
Mollier-Vogel, E., Ryabenko, E., Martinez, P., Wallace, D. W. R., Altabet, M. A., and Schneider, R. R.: Nitrogen isotope gradients off Peru and Ecuador related to upwelling, productivity, nutrient uptake and oxygen deficiency, Deep-Sea Res. Pt. I, 70, 14–25, 2012.
Montes, I., Schneider, W., Colas, F., Blanke, B., and Echevin, V.: Subsurface connections in the eastern tropical Pacific during La Niña 1999 – 2001 and El Niño 2002–2003, J. Geophys. Res., 116, C1202), https://doi.org/10.1029/2011JC007624, 2011.
Morley, D. W., Leng, M. J., Mackay, A. W., Sloane, H. J., Rioual, P., and Battarbee, R. W.: Cleaning of lake sediment samples for diatom oxygen isotope analysis, J. Paleilimno., 31, 391–401, 2004.
Müller, P. J. and Schneider, R. R.: An automated leaching method for the determination of opal in sediments and particulate matter, Deep-Sea Res. Pt. I, 40, 425–444, 1993.
Piepgras, D. J. and Wasserburg, G. J.: Isotopic Composition of Neodymium in Waters from the Drake Passage, Science, 217, 207–214, 1982.
Rabatel, A., Francou, B., Jomelli, V., Naveau, P., and Grancher, D.: A chronology of the Little Ice Age in the tropical Andes of Bolivia (16° S) and its implications for climate reconstruction, Quaternary Res., 70, 198–212, 2008.
Reuter, J., Stott, L., Khider, D., Sinha, A., Cheng, H., and Edwards, R. L.: A new perspective on the hydroclimate variability in northern South America during the Little Ice Age, Geophys. Res. Lett., 36, L21706, https://doi.org/10.1029/2009GL041051, 2009.
Reynolds, B. C., Aggarwal, J., André, L., Baxter, D. C., Beucher, C. P., Brzezinski, M. A., Engström, E., Georg, R. B., Land, M., Leng, M. J., Opfergelt, S., Rodushkin, I., Sloane, H. J., Van den Boorn, S. H. J. M., Vroon, P. Z., and Cardinal, D.: An inter-laboratory comparison of Si isotope reference materials, J. Anal. Atom. Spectrom., 22, 561–568, https://doi.org/10.1039/b616755a, 2007.
Reynolds, B. C., Frank, M., and Halliday, A. N.: Evidence for a major change in silicon cycling in the subarctic North Pacific at 2.73 Ma, Paleoceanography, 23, PA4219, https://doi.org/10.1029/2007PA001563, 2008.
Sachs, J. P., Sachse, D., Smittenberg, R. H., Zhang, Z., Battisti, D. S., and Golubic, S.: Southward movement of the Pacific intertropical convergence zone AD 1400–1850, Nat. Geosci., 2, 519–525, 2009.
Salvatteci, R., Gutiérrez, D., Field, D. B., Sifeddine, A., Ortlieb, L., Bouloubassi, I., Boussafir, M., Boucher, H., and Cetin, F.: The response of the Peruvian Upwelling Ecosystem to centennial-scale global change during the last two millennia, Clim. Past, 10, 715–731, https://doi.org/10.5194/cp-10-715-2014, 2014a.
Salvatteci, R., Field, D. B., Sifeddine, A., Ortlieb, L., Ferreira-Bartrina, V., Baumgartner, T., Caquineau, S., Velazco, F., Reyss, J.-L., Sanchez-Cabeza, J. A., and Gutiérrez, D.: Cross-stratigraphies from a seismically active mud lens off Peru indicate horizontal extensions of laminae, missing sequences, and a need for multiple cores for high resolution records, Mar. Geol., 357, 72–89, 2014b.
Sarbas, B. and Nohl, U.: The GEOROC database – A decade of "online geochemistry", Geochim. Cosmochim. Ac., (Goldschmidt Abstracts), A1158, 2009.
Scheidegger, K. F. and Krissek, L. A.: Dispersal and deposition of eolian and fluvial sediments off Peru and northern Chile, Geol. Soc. Am. Bull., 93, 150–162, 1982.
Sifeddine, A., Gutiérrez, D., Ortlieb, L., Boucher, H., Velazco, F., Field, D. B., Vargas, G., Boussafir, M., Salvatteci, R., Ferreira-Bartrina, V., García, M., Valdés, J., Caquineau, S., Mandeng-Yogo, M., Cetin, F., Solis, J., Soler, P., and Baumgartner, T.: Laminated sediments from the central Peruvian continental slope: A 500 year record of upwelling system productivity, terrestrial runoff and redox conditions, Prog. Oceanogr., 79, 190–197, 2008.
Sutton, J. N., Varela, D. E., Brzezinski, M. A., and Beucher, C. P.: Species-dependent silicon isotope fractionation by marine diatoms, Geochim. Cosmochim. Ac., 104, 300–309, 2013.
Takeda, S.: Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters, Nature, 393, 774–777, 1998.
Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., and Dragusanu, C.: JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium, Chem. Geol., 168, 279–281, 2000.
Unkel, I., Kadereit, A., Mächtle, B., Eitel, B., Kromer, B., Wagner, G., and Wackler, L.: Dating methods and geomorphic evidence of palaeoenvironmental changes at the eastern margin of the South Peruvian coastal desert (14°30´ S) before and during the Little Ice Age, Quaternary Internat., 175, 3–28, 2007.
Valdés, J., Ortlieb, L., Gutiérrez, D., Marinovic, L., Vargas, G., and Sifeddine, A.: 250 years of sardine and anchovy scale deposition record in Mejillones Bay, northern Chile, Prog. Oceanogr., 79, 198–207, 2008.
Vargas, G., Pantoja, S., Rutllant, J. A., Lange, C. B., and Ortlieb, L.: Enhancement of coastal upwelling and interdecadal ENSO-like variability in the Peru-Chile Current since late 19th century, Geophys. Res. Lett., 34, L13607, https://doi.org/10.1029/2006GL028812, 2007.
Vuille, M., Francou, B., Wagnon, P., Juen, I., Kaser, G., Mark, B. G., and Bradley, R. S.: Climate change and tropical Andean glaciers: Past, present and future, Earth-Sci. Rev., 89, 79–96, 2008.
Wada, E. and Hattori, A.: Nitrogen isotope effects in the assimilation of inorganic nitrogenous compounds by marine diatoms, Geomicrobiol. J., 1, 85–101, 1978.