Articles | Volume 11, issue 12
https://doi.org/10.5194/cp-11-1733-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-1733-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The influence of non-stationary teleconnections on palaeoclimate reconstructions of ENSO variance using a pseudoproxy framework
R. Batehup
Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
ARC Centre of Excellence for Climate System Science (ARCCSS), Monash University, Victoria, Australia
S. McGregor
CORRESPONDING AUTHOR
Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
ARC Centre of Excellence for Climate System Science (ARCCSS), Monash University, Victoria, Australia
School of Earth, Atmosphere and Environment, Monash University, Victoria, Australia
A. J. E. Gallant
ARC Centre of Excellence for Climate System Science (ARCCSS), Monash University, Victoria, Australia
School of Earth, Atmosphere and Environment, Monash University, Victoria, Australia
Related authors
No articles found.
Helen J. Shea, Ailie Gallant, Ariaan Purich, and Tessa R. Vance
EGUsphere, https://doi.org/10.5194/egusphere-2024-2660, https://doi.org/10.5194/egusphere-2024-2660, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The tropical Pacific influences sea salt levels in the ice core from Mount Brown South (MBS), East Antarctica. High sea salt years are linked to stronger westerly winds and increased sea ice near MBS's northeast coast. El Niño events affect wind patterns around MBS, impacting sea salt sources. Low pressure storms off the coast might transport sea salts from sea ice regions to MBS. Identifying these mechanisms aids in the understanding of climate variability before instrumental records.
Willem Huiskamp and Shayne McGregor
Clim. Past, 17, 1819–1839, https://doi.org/10.5194/cp-17-1819-2021, https://doi.org/10.5194/cp-17-1819-2021, 2021
Short summary
Short summary
This study investigates the reliability of paleo-reconstructions of the Southern Annular Mode (SAM) using climate model data. We find that reconstructions are able to capture ~ 60 % of the SAM variability at best, with poorer reconstructions managing only 35 %. Reconstructions perform best when they use more proxies sourced from the entire Southern Hemisphere land mass. Future reconstructions should endeavour to address both sampling and proxy–SAM correlation stability uncertainties.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Tessa R. Vance, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Carly R. Tozer, Ailie J. E. Gallant, Nerilie J. Abram, Tas D. van Ommen, Duncan A. Young, Cyril Grima, Don D. Blankenship, and Martin J. Siegert
Clim. Past, 12, 595–610, https://doi.org/10.5194/cp-12-595-2016, https://doi.org/10.5194/cp-12-595-2016, 2016
Short summary
Short summary
This study details a systematic approach to finding a new high-resolution East Antarctic ice core site. The study initially outlines seven criteria that a new site must fulfil, encompassing specific accumulation, ice dynamics and atmospheric circulation aspects. We then use numerous techniques including Antarctic surface mass balance syntheses, ground-truthing of satellite data by airborne radar surveys and reanalysis products to pinpoint promising regions.
S. McGregor, A. Timmermann, M. H. England, O. Elison Timm, and A. T. Wittenberg
Clim. Past, 9, 2269–2284, https://doi.org/10.5194/cp-9-2269-2013, https://doi.org/10.5194/cp-9-2269-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Modelling only | Timescale: Centennial-Decadal
Quantifying Southern Annular Mode paleo-reconstruction skill in a model framework
Assessing the performance of the BARCAST climate field reconstruction technique for a climate with long-range memory
Willem Huiskamp and Shayne McGregor
Clim. Past, 17, 1819–1839, https://doi.org/10.5194/cp-17-1819-2021, https://doi.org/10.5194/cp-17-1819-2021, 2021
Short summary
Short summary
This study investigates the reliability of paleo-reconstructions of the Southern Annular Mode (SAM) using climate model data. We find that reconstructions are able to capture ~ 60 % of the SAM variability at best, with poorer reconstructions managing only 35 %. Reconstructions perform best when they use more proxies sourced from the entire Southern Hemisphere land mass. Future reconstructions should endeavour to address both sampling and proxy–SAM correlation stability uncertainties.
Tine Nilsen, Johannes P. Werner, Dmitry V. Divine, and Martin Rypdal
Clim. Past, 14, 947–967, https://doi.org/10.5194/cp-14-947-2018, https://doi.org/10.5194/cp-14-947-2018, 2018
Short summary
Short summary
The BARCAST climate field reconstruction method is tested using synthetic data experiments. It is demonstrated that the output reconstructions have altered statistical properties compared with the input data, but they are also not necessarily consistent with the model assumption of the reconstruction method. The conclusion is that the statistical properties of a reconstruction not only reflect the statistics of the real climate, but they may very well be affected by the manipulation of the data.
Cited articles
An, S.-I. and Jin, F.-F.: Nonlinearity and asymmetry of ENSO, J. Climate, 17, 2399–2412, 2004.
Braganza, K., Gergis, J. L., Power, S. B., Risbey, J. S., and Fowler, A. M.: A multiproxy index of the El Niño Southern Oscillation, A.D. 1525–1982, J. Geophys. Res., 114, D05106, https://doi.org/10.1029/2008JD010896, 2009.
Brönnimann, S., Xoplaki, E., Casty, C., Pauling, A., and Luterbacher, J.: ENSO influence on Europe during the last centuries, Clim. Dynam., 28, 181–197, 2006.
Coats, S., Smerdon, J. E., Cook, B. I., and Seager, R.: Stationarity of the tropical pacific teleconnection to North America in CMIP5/PMIP3 model simulations, Geophys. Res. Lett., 40, 4927–4932, 2013.
Cobb, K. M., Westphal, N., Sayani, H. R., Watson, J. T., Di Lorenzo, E., Cheng, H., Edwards, R. L., and Charles, C. D.: Highly variable El Niño-Southern Oscillation throughout the Holocene, Science, 339, 67–70, 2013.
Collins, M., An, S.-I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F.-F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G., and Wittenberg, A.: The impact of global warming on the tropical Pacific Ocean and El Niño, Nat. Geosci., 3, 391–397, 2010.
D'Arrigo, R., Cook, E. R., Wilson, R. J., Allan, R., and Mann, M. E.: On the variability of ENSO over the past six centuries, Geophys. Res. Lett., 32, L03711, https://doi.org/10.1029/2004GL022055, 2005.
Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K. A., Durachta, J. W., Findell, K. L., Ginoux, P., Gnanadesikan, A., Gordon, C. T., Griffies, S. M., Gudgel, R., Harrison, M. J., Held, I. M., Hemler, R. S., Horowitz, L. W., Klein, S. A., Knutson, T. R., Kushner, P. J., Langenhorst, A. R., Lee, H.-C., Lin, S.-J., Lu, J., Malyshev, S. L., Milly, P. C. D., Ramaswamy, V., Russell, J., Schwarzkopf, M. D., Shevliakova, E., Sirutis, J. J., Spelman, M. J., Stern, W. F., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, F., and Zhang, R.: GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics, J. Climate, 19, 643–674, 2006.
Ding, Q., Wallace, J. M., Battisti, D. S., Steig, E. J., Gallant, A. J. E., Kim, H.-J., and Geng, L.: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland, Nature, 509, 209–212, 2014.
Esper, J., Frank, D. C., Wilson, R. J. S., and Briffa, K. R.: Effect of scaling and regression on reconstructed temperature amplitude for the past millennium, Geophys. Res. Lett., 32, L07711, https://doi.org/10.1029/2004GL021236, 2005.
Fogt, R. L., Bromwich, D. H., and Hines, K. M.: Understanding the SAM influence on the South Pacific ENSO teleconnection, Clim. Dynam., 36, 1555–1576, 2011.
Fowler, A. M.: ENSO history recorded in Agathis australis (kauri) tree rings. Part B: 423 ears of ENSO robustness, Int. J. Climatol., 28, 21–35, 2008.
Gallant, A. J. E., Phipps, S. J., Karoly, D. J., Mullan, A. B., and Lorrey, A. M.: Nonstationary Australasian teleconnections and implications for paleoclimate reconstructions, J. Climate, 26, 8827–8849, 2013.
Gergis, J. and Fowler, A. M.: A history of ENSO events since A.D. 1525: implications for future climate change, Climatic Change, 92, 343–387, 2009.
Gergis, J., Braganza, K., Fowler, A. M., Mooney, S., and Risbey, J. S.: Reconstructing El Niño-Southern Oscillation (ENSO) from high-resolution palaeoarchives, J. Quaternary Sci., 21, 707–722, 2006.
Gershunov, A., Schneider, N., and Barnett, T.: Low-frequency modulation of the ENSO-Indian monsoon rainfall relationship: signal or noise?, J. Climate, 14, 2486–2492, 2001.
GISTEMP-Team: GISS Surface Temperature Analysis (GISTEMP), available at: http://data.giss.nasa.gov/gistemp/, last access: 18 March 2015.
Griffies, S. M., Gnanadesikan, A., Dixon, K. W., Dunne, J. P., Gerdes, R., Harrison, M. J., Rosati, A., Russell, J. L., Samuels, B. L., Spelman, M. J., Winton, M., and Zhang, R.: Formulation of an ocean model for global climate simulations, Ocean Sci., 1, 45–79, https://doi.org/10.5194/os-1-45-2005, 2005.
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global surface temperature change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345, 2010.
Hegerl, G. C., Crowley, T. J., Allen, M., Hyde, W. T., Pollack, H. N., Smerdon, J., and Zorita, E.: Detection of human influence on a new, validated 1500-year temperature reconstruction, J. Climate, 20, 650–666, 2007.
Hendy, E. J., Gagan, M. K., and Lough, J. M.: Chronological control of coral records using luminescent lines and evidence for non-stationary ENSO teleconnections in northeast Australia, Holocene, 13, 187–199, 2003.
Herceg Bulić, I., Branković, C., and Kucharski, F.: Winter ENSO teleconnections in a warmer climate, Clim. Dynam., 38, 1593–1613, 2011.
Hoerling, M. P., Kumar, A., and Zhong, M.: El Niño, La Nina, and the nonlinearity of their teleconnections, J. Climate, 10, 1769–1786, 1997.
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T. D., Vinther, B. M., Luterbacher, J., Wahl, E. R., Zwiers, F. W., Mann, M. E., Schmidt, G. A., Ammann, C. M., Buckley, B. M., Cobb, K. M., Esper, J., Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Küttel, M., Mosley-Thompson, E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope, A. W., Villalba, R., Wanner, H., Wolff, E., and Xoplaki, E.: High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects, Holocene, 19, 3–49, 2009.
Joseph, R. and Nigam, S.: ENSO Evolution and teleconnections in IPCC's twentieth-century climate simulations: realistic representation?, J. Climate, 19, 4360–4377, 2006.
Lee, T. C. K., Zwiers, F. W., and Tsao, M.: Evaluation of proxy-based millennial reconstruction methods, Clim. Dynam., 31, 263–281, 2008.
Li, J., Xie, S.-P., Cook, E. R., Morales, M. S., Christie, D. A., Johnson, N. C., Chen, F., D'Arrigo, R., Fowler, A. M., Gou, X., and Fang, K.: El Nino modulations over the past seven centuries, Nature Clim. Change, 3, 822–826, https://doi.org/10.1038/nclimate1936, 2013.
Lin, J.-L.: Interdecadal variability of ENSO in 21 IPCC AR4 coupled GCMs, Geophys. Res. Lett., 34, L12702, https://doi.org/10.1029/2006GL028937, 2007.
Liu, N., Wang, H., Ling, T., and Feng, L.: The influence of ENSO on sea surface temperature variations in the China seas, Acta Oceanol. Sin., 32, 21–29, 2013.
López-Parages, J. and Rodr\'iguez-Fonseca, B.: Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall, Geophys. Res. Lett., 39, L02704, https://doi.org/10.1029/2011GL050049, 2012.
Mann, M. E.: The value of multiple proxies, Science, 297, 1481–1482, 2002.
Mann, M. E., Bradley, R. S., and Hughes, M. K.: Global-scale temperature patterns and climate forcing over the past six centuries, Nature, 392, 779–787, 1998.
Mann, M. E., Rutherford, S., Wahl, E., and Ammann, C.: Robustness of proxy-based climate field reconstruction methods, J. Geophys. Res., 112, D12109, https://doi.org/10.1029/2006JD008272, 2007.
McGregor, S., Timmermann, A., and Timm, O.: A unified proxy for ENSO and PDO variability since 1650, Clim. Past, 6, 1–17, https://doi.org/10.5194/cp-6-1-2010, 2010.
McGregor, S., Timmermann, A., England, M. H., Elison Timm, O., and Wittenberg, A. T.: Inferred changes in El Niño–Southern Oscillation variance over the past six centuries, Clim. Past, 9, 2269–2284, https://doi.org/10.5194/cp-9-2269-2013, 2013a.
McGregor, H. V., Fischer, M. J., Gagan, M. K., Fink, D., Phipps, S. J., Wong, H., and Woodroffe, C. W.: A weak El Niño/Southern Oscillation with delayed seasonal growth around 4,300 years ago, Nat. Geosci., 6, 949–953, https://doi.org/10.1038/ngeo1936, 2013.
McPhaden, M. J. and Zhang, X.: Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies, Geophys. Res. Lett., 36, L13703, https://doi.org/10.1029/2009GL038774, 2009.
McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO as an integrating concept in earth science, Science, 314, 1740–1745, 2006.
Müller, W. A. and Roeckner, E.: ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM, Clim. Dynam., 31, 533–549, 2008.
Neukom, R. and Gergis, J.: Southern Hemisphere high-resolution palaeoclimate records of the last 2000 years, Holocene, 22, 501–524, 2012.
Okumura, Y. M. and Deser, C.: Asymmetry in the Duration of El Niño and La Niña, J. Climate, 23, 5826–5843, https://doi.org/10.1175/2010JCLI3592.1, 2010.
Pfeiffer, M., Dullo, W.-C., and Eisenhauer, A.: Variability of the intertropical convergence zone recorded in coral isotopic records from the central Indian Ocean (Chagos Archipelago), Quaternary Res., 61, 245–255, 2004.
Power, S. B., Tseitkin, F., Torok, S., Lavery, B., Dahni, R., and McAvaney, B.: Australian temperature, Australian rainfall and the Southern Oscillation, 1910–1992: coherent variability and recent changes, Aust. Meteorol. Mag., 47, 85–101, 1998.
Rasmusson, E. M. and Carpenter, T. H.: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño, Mon. Weather Rev., 110, 354–384, 1982.
Rimbu, N., Lohmann, G., Felis, T., and Pätzold, J.: Shift in ENSO teleconnections recorded by a northern red sea coral, J. Climate, 16, 1414–1422, 2003.
Rowell, D. P.: Simulating SST teleconnections to Africa: What is the state of the art?, J. Climate, 26, 5397–5418, 2013.
Russon, T., Tudhope, A. W., Hegerl, G., Collins, M., and Schurer, A.: Assessing the significance of changes in ENSO amplitude using variance metrics, J. Climate, 27, 4911–4922, https://doi.org/10.1175/JCLID-13-00077.1, 2014.
Russon, T., Tudhope, A. W., Collins, M., and Hegerl, G. C.: Inferring changes in ENSO amplitude from the variance of proxy records, Geophys. Res. Lett., 42, 1197–1204, https://doi.org/10.1002/2014GL062331, 2015.
Santoso, A., McGregor S., Jin, F.-F., Cai, W., England, M. H., An, S.-I., McPhaden, M. J., and Guilyardi, E.: Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections, Nature, 504, 126–130, https://doi.org/10.1038/nature12683, 2013.
Solow, A. R., Adams, R. F., Bryant, K. J., Legler, D. M., O'Brien, J. J., McCarl, B. A., Nayda, W., and Weiher, R.: The Value of improved ENSO prediction to U.S. agriculture, Climatic Change, 39, 47–60, 1998.
Sterl, A., Oldenborgh, G. J., Hazeleger, W., and Burgers, G.: On the robustness of ENSO teleconnections, Clim. Dynam., 29, 469–485, 2007.
Timm, O.: Nonstationary ENSO-precipitation teleconnection over the equatorial Indian Ocean documented in a coral from the Chagos Archipelago, Geophys. Res. Lett., 32, L02701, https://doi.org/10.1029/2004GL021738, 2005.
Tziperman, E., Zebiak, S. E., and Cane, M. A.: Mechanisms of seasonal – ENSO interaction, J. Atmos. Sci., 54, 61–71, 1997.
van Oldenborgh, G. J. and Burgers, G.: Searching for decadal variations in ENSO precipitation teleconnections, Geophys. Res. Lett., 32, L15701, https://doi.org/10.1029/2005GL023110, 2005.
Vecchi, G. A. and Wittenberg, A. T.: El Niño and our future climate: where do we stand?, Wiley Interdisciplinary Reviews: Climate Change, 1, 260–270, 2010.
von Storch, H., Zorita, E., and González-Rouco, F.: Assessment of three temperature reconstruction methods in the virtual reality of a climate simulation, Int. J. Earth Sci., 98, 67–82, 2009.
Wang, C., Deser, C., Yu, J.-Y., DiNezio, P., and Clement, A.: El Niño and Southern Oscillation (ENSO): A Review, Spring Science Publisher, Berlin, 2012.
Watanabe, M., Kug, J.-S., Jin, F.-F., Collins, M., Ohba, M., and Wittenberg, A. T.: Uncertainty in the ENSO amplitude change from the past to the future, Geophys. Res. Lett., 39, L20703, https://doi.org/10.1029/2012GL053305, 2012.
Wilson, R., Cook, E., D'Arrigo, R., Riedwyl, N., Evans, M. N., Tudhope, A., and Allan, R.: Reconstructing ENSO: the influence of method, proxy data, climate forcing and teleconnections, J. Quaternary Sci., 25, 62–78, 2010.
Wittenberg, A. T.: Are historical records sufficient to constrain ENSO simulations?, Geophys. Res. Lett., 36, L12702, https://doi.org/10.1029/2009GL038710, 2009.
Wittenberg, A. T.: Variation of ENSO Teleconnections, 2012 AGU Fall Meeting, San Francisco, California, Abstract OS52B-07, 7 December 2012.
Wittenberg, A. T., Rosati, A., Lau, N.-C., and Ploshay, J. J.: GFDL's CM2 global climate models. Part III: Tropical pacific climate and ENSO, J. Climate, 19, 698–722, https://doi.org/10.1175/JCLI3631.1, 2006.
Xiao, M., Zhang, Q., and Singh, V. P.: Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China, Int. J. Climatol., 35, 3556–3567, https://doi.org/10.1002/joc.4228, 2014.
Yeh, S.-W., Kug, J.-S., and An, S.-I.: Recent progress on two types of El Niño: observations, dynamics, and future changes, Asia-Pac. J. Atmos. Sci., 50, 69–81, 2014.
Zorita, E., González-Rouco, F., and Legutke, S.: Testing the Mann et al. (1998) Approach to Paleoclimate Reconstructions in the Context of a 1000-Yr Control Simulation with the ECHO-G Coupled Climate Model, Science, 339, 67–70, 2013.
Short summary
Climate indices of the past are often reconstructed using proxy information from various locations and it is assumed that the relationship between the two does not change over time. As this assumption has been recently questioned, we use a climate model to examine the effect of these changing relationships on the skill of El Nino-Southern Oscillation variance reconstructions. Our study finds that these changes reduce reconstruction skill, while also showing how this impact can be mitigated.
Climate indices of the past are often reconstructed using proxy information from various...