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Abstract. Reconstructions of the El Niño–Southern Oscilla-

tion (ENSO) ideally require high-quality, annually resolved

and long-running palaeoclimate proxy records in the eastern

tropical Pacific Ocean, located in ENSO’s centre of action.

However, to date, the palaeoclimate records that have been

extracted in the region are short or temporally and spatially

sporadic, limiting the information that can be provided by

these reconstructions. Consequently, most ENSO reconstruc-

tions exploit the downstream influences of ENSO on remote

locations, known as teleconnections, where longer records

from palaeoclimate proxies exist. However, using telecon-

nections to reconstruct ENSO relies on the assumption that

the relationship between ENSO and the remote location is

stationary in time. Increasing evidence from observations

and climate models suggests that some teleconnections are,

in fact, non-stationary, potentially threatening the validity of

those palaeoclimate reconstructions that exploit teleconnec-

tions.

This study examines the implications of non-stationary

teleconnections on modern multi-proxy reconstructions of

ENSO variance. The sensitivity of the reconstructions to non-

stationary teleconnections were tested using a suite of ide-

alised pseudoproxy experiments that employed output from

a fully coupled global climate model. Reconstructions of the

variance in the Niño 3.4 index representing ENSO variability

were generated using four different methods. Surface temper-

ature data from the GFDL CM2.1 were used as pseudoprox-

ies for these reconstruction methods. As well as sensitivity

of the reconstruction to the method, the experiments tested

the sensitivity of the reconstruction to the number of non-

stationary pseudoproxies and the location of these proxies.

We find that non-stationarities can act to degrade the skill

of ENSO variance reconstructions. However, when global,

randomly spaced networks (assuming a minimum of ap-

proximately 20 proxies) were employed, the resulting pseu-

doproxy ENSO reconstructions were not sensitive to non-

stationary teleconnections. Neglecting proxies from ENSO’s

centre of action still produced skilful reconstructions, but

with a lower likelihood. Different reconstruction methods

exhibited varying sensitivities to non-stationary pseudoprox-

ies, which affected the robustness of the resulting reconstruc-

tions. The results suggest that caution should be taken when

developing reconstructions using proxies from a single tele-

connected region, or those that use less than 20 source prox-

ies.

1 Introduction

Reconstructions of the Earth’s climate prior to instrumen-

tal records are necessary for providing context for anthro-

pogenic climate change, and to provide insight into climate

variability on timescales longer than instrumental records al-

low. Climate proxies are biotic or chemical analogues that

have a sensitivity to some aspect of the climate, for example –

oxygen isotope ratios in coral growth rings contain informa-

tion on temperature and precipitation (Pfeiffer et al., 2004).

However, high-quality proxies can be sparse and difficult to

find (McGregor et al., 2010; Neukom and Gergis, 2012), lim-
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iting the amount of information that can be inferred about the

climate.

One region where information from palaeoclimate proxies

is limited is the central and eastern tropical Pacific Ocean.

This area can be described as the centre of action of the

El Niño–Southern Oscillation (ENSO), which is the most

important regulator of interannual climate variability glob-

ally. ENSO involves changes in eastern equatorial Pacific sea

surface temperature (SST) and an associated swing in pre-

cipitation and pressure anomalies across the tropical Pacific

Ocean. While its most noticeable effects are in the tropical

Pacific region, it also induces downstream effects, influenc-

ing climate variability in many parts of the world via telecon-

nections (e.g. Power et al., 1998; Brönnimann et al., 2006;

Liu et al., 2013; Ding et al., 2014).

Due to the global reach of ENSO, understanding its be-

haviour is of great societal and economic importance (Solow

et al., 1998; McPhaden et al., 2006). There are still uncertain-

ties about past ENSO (Gergis and Fowler, 2009) and whether

ENSO behaviour will change in response to future climate

change (Collins et al., 2010; Vecchi and Wittenberg, 2010;

Watanabe et al., 2012; Yeh et al., 2014). One reason for this

is that the instrumental record is too short (∼ 150 years)

to measure long-term changes in ENSO and its teleconnec-

tions (Wittenberg, 2009; Gergis et al., 2006, and references

therein). Modelling suggests that five centuries of data may

be required to understand the full range of natural ENSO

variability (Wittenberg, 2009). Thus, climate proxy recon-

structions of past fluctuations in ENSO are an essential tool

in determining the full range of natural ENSO variability.

As previously described, the centre of action of ENSO is

largely devoid of long, continuous, high-quality palaeocli-

mate proxy records (Wilson et al., 2010). Tropical corals are

the dominant proxy type in this region, and are known to

provide very skilful reconstructions of the surrounding SSTs

and ENSO. However, the addition of non-climatic noise to

these proxies also complicates the estimation of the signif-

icance of changing in past ENSO variability (Russon et al.,

2014, 2015), as does their limited life span (i.e. records are

on average about 50 years in length, with the longest records

less than two centuries) (Cobb et al., 2013; Li et al., 2013;

McGregor et al., 2013b; Neukom and Gergis, 2012). This

has motivated the use of palaeoclimate proxies from single

or multiple regions that are teleconnected with ENSO for

the generation of reconstructions. For example, ENSO re-

constructions have been developed using palaeoclimate prox-

ies from the south-west US and northern Mexico (D’Arrigo

et al., 2005) and northern New Zealand (Fowler, 2008), as

well as using multiple proxies from locations in the tropical

and subtropical Pacific outside ENSO’s centre of action (Bra-

ganza et al., 2009; Cobb et al., 2013; Wilson et al., 2010).

Multi-proxy reconstructions are generally considered to be

more robust and more likely to contain a larger ratio of cli-

mate signal to local noise (Mann et al., 1998; Gergis and

Fowler, 2009).

There are several issues when using teleconnected prox-

ies for palaeoclimate reconstructions. Teleconnections may

be non-linear in nature, for example, responding to El Niño

events much more strongly than La Niña events (Hoerling

et al., 1997). If this is not detected and accounted for in the

reconstruction, ENSO variability and amplitude may be mis-

represented (McGregor et al., 2013a). However, perhaps an

equally important issue is the variability in the teleconnec-

tion itself. ENSO reconstructions exploiting teleconnected

locations implicitly assume that the teleconnected relation-

ship does not vary significantly in time – that it is stationary.

However, it is often difficult or impossible to assess station-

arity due to the brevity of the instrumental records (Gallant

et al., 2013), causing many to skip this check altogether, not-

ing it as an assumption.

However, significant changes in the relationship between

ENSO and the climates of remote, teleconnected locations

have been detected in models (Coats et al., 2013; Gal-

lant et al., 2013), instrumental observations (López-Parages

and Rodríguez-Fonseca, 2012; Gallant et al., 2013) and

palaeoclimate data (Hendy et al., 2003; Rimbu et al., 2003;

Timm, 2005). If these teleconnections were changed by

some dynamical regime rather than through stochastic influ-

ence (e.g. random weather events), the relationship should

not be considered as stationary. While these dynamical

changes could be related to external climate forcing, such

as with anthropogenic climate change (Müller and Roeck-

ner, 2008; Herceg Bulić et al., 2011), there is evidence that

they also change with internal climate forcing. For exam-

ple, significant changes in teleconnections on near-centennial

timescales are apparent in model simulations forced by inter-

nal dynamics alone (Gallant et al., 2013).

The changes to teleconnections via internal dynamics will

result from either changes to ENSO itself or non-linear in-

teractions with other regulators of climate variability. An ex-

ample of the latter is the Southern Annular Mode, which is

thought to affect the magnitude of South Pacific ENSO tele-

connections (Fogt et al., 2011). The evidence suggests that

this occurs on timescales around 30 years or longer. Using

running correlations as a statistical descriptor of the relation-

ship between ENSO and a remote climate variable, several

studies highlighted that running correlations employing 11–

25-year windows of data exhibit large, stochastic variabil-

ity only (Gershunov et al., 2001; Sterl et al., 2007; van Old-

enborgh and Burgers, 2005). However, a study using longer

windows of data spanning 31–71 years (Gallant et al., 2013)

found that stochastic processes could not explain the changes

in observed and modelled running correlations in a signifi-

cant number of locations in Australasia. Similar results are

also found using model simulations (Coats et al., 2013; Gal-

lant et al., 2013). Thus, there are numerous locations that dis-

play changes in ENSO’s teleconnections that can be classi-

fied as “non-stationary” and thus are thought to be due to

dynamical processes. This places increasing stress on the as-

sumption that teleconnections are stationary. This raises the
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question as to whether non-stationarities have an appreciable

influence on the robustness of past palaeoclimate reconstruc-

tions.

This study examines if and when non-stationary telecon-

nections degrade the skill of multi-proxy reconstructions of

ENSO variance by employing a series of pseudoproxy exper-

iments from a fully coupled global climate model (GCM).

The robustness of ENSO variance changes (Russon et al.,

2014, 2015) is not examined in this paper. The experiments

test how reconstruction skill varies with different proxy net-

work locations and sizes. The sensitivity of the results to the

reconstruction method is also tested. The model and the data

used for these experiments are described in Sect. 2 and the

methods are described in Sect. 3. The experimental outcomes

are presented in Sect. 4, discussed in Sect. 5 and conclusions

are provided in Sect. 6.

2 Model data

This study uses 500 years of a pre-industrial control run of

the Geophysical Fluid Dynamics Laboratory Coupled Model

2.1 (GFDL CM2.1) for all pseudoproxy experiments, which

are described in detail in Sect. 3. ENSO is represented using

the Niño 3.4 index, calculated from the model as the area

average of SST anomalies from the central Pacific region

(5◦ S–5◦ N, 190–240◦ E). In the GFDL CM2.1 simulations,

the monthly variations in the Niño 3.4 index very closely

correspond to the variations of the first empirical orthogonal

function (EOF) of tropical Pacific SSTs, demonstrating that

the Niño 3.4 index accurately represents ENSO variability in

the model (Wittenberg et al., 2006).

Using climate data directly from GCMs is ideal for the

evaluation of reconstruction methods (Zorita et al., 2003; Lee

et al., 2008; von Storch et al., 2009) because models can pro-

vide the long time series necessary to robustly assess mul-

tidecadal to near-centennial-scale variability in teleconnec-

tions (Wittenberg, 2009). The ENSO indices can be calcu-

lated directly from the model, representing a “true” Niño 3.4

index for the reconstructed indices to be compared to. This

allows the skill of reconstructions to be compared and their

sensitivities to be studied.

The GFDL CM2.1 simulation fixes all external climate

forcings at 1860 levels. Thus, any changes to ENSO telecon-

nections will be the product of internal variability only. The

model is fully coupled and comprises of the Ocean Model 3.1

(OM3.1), Atmospheric Model 2.1 (AM2.1), Land Model 2.1

(LM2.1), and the GFDL Sea Ice Simulator (SIS). The OM3.1

resolution is 1◦ latitude by longitude with increasing resolu-

tion equatorward of 30◦, with 50 vertical layers and a tripo-

lar grid (for more information see Griffies et al., 2005). The

AM2.1 and LM2.1 resolution is 2◦ latitude by 2.5◦ longitude

with 24 vertical levels in AM2.1. For more information on

AM2.1 and LM2.1, see Delworth et al. (2006).

The GFDL CM2.1 was selected due to its realistic rep-

resentation of ENSO characteristics (Wittenberg, 2009, and

references therein). The seasonal SST structure and ENSO

evolution is well represented when compared to observations

(Wittenberg et al., 2006; Joseph and Nigam, 2006), while

also matching their power spectra (Wittenberg et al., 2006;

Lin, 2007). The representation of the strength of local tele-

connections in the model (Fig. 1b) shows that the regional

responses of surface temperature (TS) and the Niño 3.4 in-

dex (shading) are quite similar to the observations (con-

tours). Note that hereafter “TS” refers to SST temperatures

over model ocean points and land surface temperatures over

model land points. Hence, ENSO in GFDL CM2.1 is impos-

ing downstream effects, i.e. teleconnections, that are broadly

consistent with the observations, even if the strength of the

connection is not as is observed (Wang et al., 2012). It has

also been shown that the model teleconnections, represented

by correlations in 31-year windows between grid points and

the Niño 3.4 index generated from the model, do change over

time and differ compared to correlations calculated over the

entire period (Fig. 1a; Wittenberg, 2012). There is significant

variation in teleconnection strength (i.e. the range of possible

correlations) when using shorter windows of data compared

to those of the entire data set.

It has been noted that the strengths and temporal and

spatial structures of localised ENSO teleconnections can be

poorly represented in GCMs (Joseph and Nigam, 2006; Row-

ell, 2013; Gallant et al., 2013). This is also seen in CM2.1, as

there are teleconnections that are poorly represented at the lo-

cal level, particularly on the “edges” of the main teleconnec-

tions regions (e.g. on the coast of Australia and North Amer-

ica). This is due to inaccuracies in the representation of the

mean climate, annual cycle, ENSO, and the other modes of

climate variability that are influenced by, or which influence,

ENSO, such as the Southern Annual Mode (Delworth et al.,

2006). While this limits the conclusions that can be drawn

about real-world teleconnections, it still allows for an exam-

ination of reconstructions and the associated influence of the

non-stationarity of teleconnections, internal to the GCM.

As ENSO events are generally synchronised to the sea-

sonal cycle, the modelled TS was converted to July–June

averages to capture ENSO event initiation and termination

within 1 year (Rasmusson and Carpenter, 1982; Tziperman

et al., 1997). This has the added benefit of reducing 500 years

of monthly TS data (6000 values) to 499 annual values,

matching the resolution of the majority of ENSO proxies.

The 499-year mean was removed from the data set and the

grid point time series were then linearly detrended by calcu-

lating the residuals from a line of best fit using linear regres-

sion in order to remove long-term trends such as model drift.

This modified TS data set is used for all calculations and ex-

periments in this study. Modelled precipitation, only briefly

discussed in Sect. 4, was subjected to the same processing

prior to any calculations.
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Figure 1. (a) The percentiles of correlations found in 31-year segments between the model (see Sect. 2) surface temperature (TS) at each grid

point and the model-calculated Niño 3.4 index (y axis), plotted against the corresponding correlations for the whole 499 years of data (x axis).

The lines are the 1st, 5th, 50th, 95th, and 99th percentiles, with the lowest lines indicating the lowest percentiles (i.e. the bottom line is the

1st percentile). (b) The shading is the correlation between of the entire 499 years of TS at each grid point and the model-calculated Niño 3.4

index, both calculated from the GFDL CM2.1 data, also described in Sect. 2. The black contour lines are the correlation coefficients (spacing

of 0.2) of observed surface land–sea temperatures to its corresponding Niño 3.4. Solid lines are positive values, while dashed lines are

negative. These observations were calculated using the last 50 years of annual mean GISTEMP_ersst observational data (GISTEMP-Team,

2015). Data set is described by Hansen et al. (2010).

3 Methods

This section describes how the model data are used as a sub-

stitute for climate proxies and are selected for multi-proxy

reconstructions. Non-stationarity in this paper is defined in

Sect. 3.2, and the palaeoproxy reconstruction methods tested

will be described in Sect. 3.3.

3.1 Pseudoproxy generation

The model TS and precipitation data were used to repre-

sent the climate proxies for all reconstructions. These data

are commonly referred to as pseudoproxies and represent a

“perfect” proxy, free of non-climatic noise (von Storch et al.,

2009). The pseudoproxies are not degraded by adding noise

(e.g. Lee et al., 2008), as the effects of noise on the recon-

structions are not in the scope of this study. Pseudoprox-

ies are randomly selected from a subset of the globe, deter-

mined by several conditions, depending on the experiment.

The most basic condition, present in all experiments, is that

the absolute correlation between the model grid point and the

Niño 3.4 index is above 0.3 in the calibration window. This

threshold is an arbitrary criterion that is simply there to en-

sure the pseudoproxies at least partially represent ENSO. The

calibration window is the time period where relationships be-

tween the TS grid points and the model Niño 3.4 index are

established. It is entrusted to the reconstruction methods to

enhance the signal-to-noise ratio.

Networks of 3 to 70 pseudoproxies were used so that the

effect of increasing network size could be examined. The

same pseudoproxy was not used in the same network more

than once, but could be used in multiple networks. To pro-

duce reconstructions of the model Niño 3.4 index variance,

1000 random networks were selected per network size, cali-

bration window length, and calibration window position. The

randomised selection process over a large number of grid

points means that there is only a very small chance that a net-

work would be replicated within 1000 iterations.

The correlation between ENSO and each grid point time

series (i.e. Niño 3.4 and TS) over the whole time period

(499 years) is assumed to represent the true teleconnection

strength. In reality, however, information is limited to the ob-

servational record. As such, calibration can only occur during

a relatively brief period, which we expect to result in recon-

structions that are not as accurate as they potentially could

be. To assess the effects of the use of different calibration

windows, we carry out three versions of each experiment.

– The first version represents the scenario where all pseu-

doproxies with a good correlation, defined as |r| ≥ 0.3

over the whole time period (499 years long), can be used

in the reconstructions (Fig. 1b). This can be conceptu-

alised by using Fig. 1a, with this version corresponding

to selecting the areas where |r|> 0.3 on the x axis (r is

499-year correlation). Information from the entire time

series is available in this scenario, and can be thought of

as using a calibration window 499 years long.

– The second version represents the realistic scenario,

where calibration information is restricted to within

a relatively small window and the long-term correlation

is unknown, much like the effects of limited instrumen-

tal data in reality. This can be thought of selecting the ar-

eas where |r|> 0.3 on the y axis (r is correlation in the

calibration window). This implies that there is a chance

that the mean correlation over the whole time series is

zero, or perhaps the opposite to the expected sign, and
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this is when non-stationarities are likely to be the largest

problem for reconstructions. This would vary with cali-

bration window, and is reflected in Fig. 2b, d and f, with

the narrowing of the percentile lines as the length of the

calibration window increases.

– The third version represents a combination of the first

two versions, selecting the proxies with a good correla-

tion in the calibration window but also over the whole

time period (which would normally be unknown). This

is equivalent to the case where a proxy is selected dur-

ing a calibration period but also happens to have good

correlations outside the window – the ideal proxy. This

is represented by the overlapping areas of the first two

versions in Figs. 1a, and 2b, d and f for corresponding

window lengths. This scenario uses a small calibration

window like the second version of experiments but uses

information from the 499 years of data as an additional

more stringent pseudoproxy selection criterion.

The first and third versions of experiments produced sub-

stantially better reconstructions than the second version. This

was ultimately because using much larger calibration win-

dows and using information about the long-term strength of

teleconnections results in more robust reconstructions. How-

ever, in reality, the generation of palaeoclimate reconstruc-

tions would apply an assumption equivalent to that of the

second version of experiments, which limit the information

on teleconnection strength to the calibration period only as

they are constrained by the instrumental record.

As the second case is the most realistic case, we mainly

focus on the second version of experiments for the remain-

der of the paper. For each grid box, the 499-year time series

was split into ten calibration windows, of lengths 31, 61 and

91 years to match the running correlations performed previ-

ously. The mid-point of the calibration windows were spaced

evenly in the 499-year data set, regardless of the amount of

overlap or gap between them. Experiments were repeated for

the different calibration window lengths and positions so that

the sensitivity of reconstruction skill to calibration window

characteristics could be examined. This resulted in 10 000

reconstructions for each calibration window length, for each

experiment. The experiments based on pseudoproxy selec-

tion are described in Sect. 4.

3.2 Identifying non-stationarities

This study examines the conditions when non-stationary tele-

connections impact the validity of palaeoclimate reconstruc-

tions. Therefore it is necessary to identify which grid points

have non-stationary teleconnections, so that its impact on

the reconstruction of ENSO can be assessed. The strength

and variability in a location’s relationship with ENSO was

measured by calculating the running correlation between the

grid point TS or precipitation time series and the modelled

Niño 3.4 index. Running correlations used windows of 31,

61 or 91 years in order to examine multidecadal scale varia-

tions on a number of timescales.

This study uses the same definition of non-stationarity as

described in detail in Gallant et al. (2013). Non-stationarity

was tested against the null hypothesis that the running cor-

relations from the GFDL CM2.1 were stationary. For this

purpose, the running correlations computed from the GFDL

CM2.1 were compared to the expected range of variation that

the running correlations would exhibit if they were only in-

fluenced by random noise (e.g. weather events) at the grid

point location. A Monte Carlo approach (similar to van Old-

enborgh and Burgers, 2005; Sterl et al., 2007; Gallant et al.,

2013) was used to generate stochastic simulations of TS and

precipitation data at each grid point. The simulated data were

constructed to have the same statistical attributes as the TS

and precipitation data from the GFDL CM2.1 simulation.

One thousand stochastic time series were computed for each

grid point in order to determine this range, according to the

following equation from Gallant et al. (2013).

υ(t)= a0+ a1c(t)+ συ

√
1− r2[ηυ (t)+Bηυ (t − 1)] (1)

υ(t) is the stochastic TS or precipitation time series. The first

two terms represent the stationary teleconnection strength,

with a0 and a1 the regression coefficients between the grid

point temperature or precipitation and the Niño 3.4 index

c(t). The other terms represent the added noise. A red-noise

process, ηυ (t)+Bηυ (t−1), was used and is weighted by the

standard deviation συ of the local TS or precipitation time se-

ries, and the proportion of the regression’s unexplained vari-

ance
√

1− r2 (where r is correlation of the local time series

to the Niño 3.4 index). The red noise is generated by the sum

of Gaussian noise (ηυ ) and autocorrelation (B) of the TS or

precipitation time series at a lag of 1 year.

A 95 % confidence interval was generated at each grid

point from the stochastic simulations and was used to rep-

resent the range of running correlations possible, assuming

a teleconnection was stationary. Thus, if a running correla-

tion from the GFDL CM2.1 fell outside the range from the

stochastic simulations, it was unlikely to have been influ-

enced by stochastic processes alone. Hence, the teleconnec-

tion is defined as non-stationary. However, as a 95 % confi-

dence interval was employed, and assuming independent and

identically distributed data, such a test would falsely detect

a non-stationarity in around 5 % of the time series. Thus, to

decrease the likelihood of detecting false positives in the time

series of running correlations, a grid point was defined as

non-stationary only if the model running correlation time se-

ries fell outside the 95 % confidence interval more than 10 %

of the time, which is double that expected by chance alone.

As correlations are bounded, the running correlations were

converted to Fisher Z scores using the following equation:

Z = 1/2ln[(1+ r)/(1− r)], (2)

where Z is the Fisher Z score and r is the running correlation

values.
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Figure 2. Panels (a), (c) and (e) show the number of non-stationary windows (coloured shading) for each grid point over the entire data

set for 31-, 61- and 91-year windows, respectively. This shading has been adjusted for the slightly different lengths of data available for the

different calibration window length. The number of non-stationary grid points (using 499 years of data) for any window is shown in the

bottom right corner of each panel as N . Panels (b), (d) and (f) show the percentiles of correlations between global TS and Niño 3.4 in 31-,

61- and 91-year windows respectively (y axis) versus the corresponding correlations for the whole 499 years of data (x axis). This plot is

very similar to Fig. 1a, but with the underlying coloured shading representing the y axis positions of non-stationary windows in the plot

(according to definition of non-stationarity; see Sect. 3). A deeper red indicates a higher density of points, as many points can occupy the

same correlation values.

Figure 2a, c and e show the number of non-stationary

windows (outside the 95 % confidence interval) identified in

the TS time series at each grid point for the different run-

ning correlation windows. Note that the points classified as

non-stationary are denoted by the coloured areas in pan-

els a, c, and e, while white areas indicate stationary tele-

connections. There are more non-stationary grid points (N

value on plot) with larger running correlation windows, sug-

gesting that non-stochastic influences on teleconnections in-

crease as timescales increase. Of further note is a large non-

stationary area in the equatorial Pacific; given this is the area

surrounding our ENSO index, it is debatable whether this

should be considered as a non-stationarity. Rather, we ex-

pect the changing relationship in this surrounding region to

be the result of complexities of ENSO that may not cap-

tured by the simple stochastic model of stationarity. For in-

stance, ENSO displays (i) significant non-linearities in its

magnitude (An and Jin, 2004) and duration (Okumura and

Deser, 2010); (ii) differences in the evolution of events with

La Niñas and most small to moderate El Niños having SSTAs

(sea surface temperature anomalies) that propagate from east

to west, while the SSTAs of large El Niño events propa-

gate from west to east (McPhaden and Zhang, 2009; Santoso

et al., 2013); and (iii) changes in its spatial structure (cen-

tral Pacific–eastern Pacific events) which may be considered

different flavours of events rather than non-stationary tele-

connections of the event (Gallant et al., 2013; Sterl et al.,

2007).

3.3 Reconstruction methods

This study examines the potential effects of non-stationarities

on multi-proxy reconstructions of the running variance of the

Niño 3.4 index (representing the variability in ENSO) using

pseudoproxy data. All running variances were calculated us-

ing 30-year windows. Four simple, commonly used multi-

proxy reconstruction methods were selected. In some meth-

ods, such as composite plus scaling (CPS), there are variants

to the technique designed to improve climate proxy recon-

structions (Jones et al., 2009). However, the impact of non-

stationarity on these will not be examined in this study. The

reconstruction methods to be tested are as follows.
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3.3.1 Median running variance (MRV) method

The MRV method was developed by McGregor et al. (2013a)

to reconstruct the running variance of palaeo-ENSO from

climate proxy data. It involves calculating the running vari-

ance of each of the normalised (zero mean and unit variance)

proxy time series, and then calculating the median of these

time series. The selected proxies have a demonstrated link to

ENSO, identified by a correlation above the prescribed value,

to ensure the resulting median time series contains informa-

tion about ENSO variability.

3.3.2 Running variance of median (RVM) method

This method was also devised by McGregor et al. (2013a),

as an alternate to the MRV for calculating ENSO running

variance. Here, if the constituent pseudoproxy series is nega-

tively correlated to Niño 3.4, it is flipped in sign before being

used for calculations. Each of the proxy time series are nor-

malised to zero mean and unit variance before the median

of the group is calculated. This median time series is then

normalised prior to calculating its running variance, which is

the RVM reconstruction. Despite only differing in the order

of operations with the MRV, this method was included in the

study as it uses raw time series data, rather than preprocessed

data as for the MRV method.

3.3.3 Composite plus scaling (CPS) method

CPS is a common method for reconstructing climate data

from climate proxies (Esper et al., 2005; Hegerl et al., 2007;

Mann et al., 2007, and references therein). In this study, the

CPS described in Esper et al. (2005) and Hegerl et al. (2007)

is employed. The proxy time series are normalised to zero

mean and unit variance and are weighted by their correla-

tion to Niño 3.4, before being summed to form a single time

series. After normalising this single time series, running vari-

ance is taken to reconstruct ENSO variance, hereafter called

“CPS_RV”.

3.3.4 Empirical orthogonal function principal component

(EPC) method

This method, described in detail in Braganza et al. (2009), is

based on the ability of EOFs to extract the leading modes of

variability from a data set (Xiao et al., 2014, and references

therein). Like the MRV method, the proxy data must have

established connections to ENSO to ensure that the com-

mon dominant signal is an ENSO signal. The leading EOF is

then multiplied by the original pseudoproxies, and summed

to produce a principal component (PC) time series that is

a reconstruction of the ENSO index. The sign of the lead-

ing EOF is flipped, if necessary, to ensure that the resulting

PC has a positive correlation with the modelled ENSO. Like

the CPS method, the running variance of this normalised PC
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Figure 3. The 5th (lower dashed), 50th (thick) and 95th (upper dot-

ted and dashed) percentiles of correlation coefficients calculated be-

tween the pseudo-reconstructions of running variance and ENSO

running variance (y axis) plotted against the proxy network size

(x axis). The percentiles are calculated across the 1000 iterations of

randomly selected groups of source proxies. These reconstructions

are from the first series of experiments (see Sect. 3), which utilize

the entire 499 years of data.

time series is calculated to produce a reconstruction of ENSO

variance (hereafter named “EPC_RV”).

3.4 Reconstruction performance

To measure the skill of the reconstructions, each is quan-

titatively compared to the running variance of the ENSO

index in the model (calculated in Sect. 2) by calculating

Pearson correlation coefficients and root-mean-squared er-

ror (RMSE). Figure 3 shows that each of these four methods

captures the running variance well when the entire data set is

available (and with larger proxy networks). Therefore, these

methods can be viewed as effective in performing climate re-

constructions of ENSO variance. Using all data, the CPS_RV

method performs significantly better than the other methods

(to a 1 % level of the two-sample Kolmogorov–Smirnov test

and Mann–Whitney U test), while the RVM is the worst-

performing index.

4 Results

The results of the pseudoproxy experiments are presented in

this section. Calibration windows of 31, 61 or 91 years are

used to generate the reconstructions, and this window length

also corresponds to that used for the running correlation.

Only grid points with a good absolute correlation to ENSO

(> 0.3) within the given calibration window were used as

pseudoproxies. Here we examine the sensitivity of the re-

construction methods to non-stationarities, and the effect of

proxy location on reconstruction skill. As stated previously,

there will be a focus on the reconstructions produced using

grid point TS as the pseudoproxies.
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Figure 4. A comparison of reconstruction skill of the global RNDglb_ts (blue) and the non-tropical RNDntrop_ts (yellow) experiments.

Correlation coefficients are calculated between the reconstructed running variance and ENSO running variance (y axis), plotted against the

proxy network size (x axis). The coloured regions show the range of these coefficients, from the 5th to the 95th percentile, with overlapping

regions shown by the yellow-green colouring. The thick blue and orange lines show the proportion of skilful reconstructions for the RNDglb_ts

and RNDntrop_ts experiments respectively. Skilful reconstructions are defined as explaining greater than 50 % of variance (grey line). The

black line is the difference in skill between the RNDglb_ts (blue line) and RNDntrop_ts (orange line) experiments. Each row corresponds to

different calibration window lengths, titled on the y axis. Each column represents different reconstruction methods, titled at the top of the

columns.

4.1 Proxy location effects

ENSO reconstructions are thought to be affected by the lo-

cations of the constituent proxies, with many scientists view-

ing proxies from within the tropical region with higher re-

gard than those sourced elsewhere. These proxies are closest

to the centre of action and thus expected to be more skil-

ful. Here we examine the impact of tropical Pacific region

proxies on reconstructions by comparing two experiments:

RNDglb_ts, which selects n pseudoproxies randomly from

the global domain (see Supplement Fig. S1 for locations),

and RNDntrop_ts, which has similar random selection but ex-

cludes the tropical region: 10◦ S to 10◦ N, 100 to 300◦ E

(RNDntrop_ts). Note that both experiments do not discrimi-

nate between stationary and non-stationary locations in this

section.

The reconstruction skill, which is represented by the

correlation between the pseudoproxy reconstruction of the

Niño 3.4 running variance and the model Niño 3.4 run-

ning variance, of both experiments is presented in Fig. 4.

Here, network size n is varied from 3 to 70 (described in

Sect. 3.1) on the x axis of each panel, while rows represent

the different-sized calibration windows and columns the dif-

ferent reconstruction methods (see Sect. 3.3). Looking at the

percentile range (Fig. 4, shading) of the correlations between

experiments reveals that the removal of tropical Pacific prox-

ies clearly acts to decrease the skill of the resulting recon-

structions.

These differences are most easily highlighted by arbitrar-

ily defining skilful reconstructions by some threshold and

calculating what proportion of experiment’s reconstructions

can be classified as skilful. Here we define skilful reconstruc-

tions as those that explain more than half the variance of

the model ENSO variance (grey line at ∼ 0.7 correlation).

The proportion of skill metrics for the global RNDglb_ts and

non-tropical RNDntrop_ts experiments, which are respectively
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Figure 5. A comparison of reconstruction skill of the “stationary” STATntrop_ts (green) and non-stationary NSTATntrop_ts (pink) experiments.

Correlation coefficients are calculated between the reconstructed running variance and ENSO running variance (y axis), plotted against the

proxy network size (x axis). The coloured regions show the range, from the 5th to the 95th percentile, with overlapping regions shown by

the brownish colouring. The thick green and red lines show the proportion of skilful reconstructions for the STATntrop_ts and NSTATntrop_ts

experiments respectively. Skilful reconstructions are defined as explaining greater than 50 % of explained variance (grey line). The black

line is the difference in skill between the STATntrop (green line) and NSTATntrop (red line) experiments. Each row corresponds to different

calibration window lengths, titled on the y axis. Each column represents different reconstruction methods, titled at the top of the columns.

plotted in each panel of Fig. 4 as blue and orange lines,

can then be further simplified by focusing on the skill dif-

ference between experiments (Fig. 4, black line). The skill

difference shows clear calibration window length and recon-

struction method differences that will be discussed further

in Sect. 4.3, but on average, when tropical proxies are not

used in reconstructions, the proportion of skilful reconstruc-

tions decreases by 14 %. However, even without the tropi-

cal proxies, the RNDntrop_ts experiment still produced quite

high proportions of skilful reconstructions for larger network

sizes (> 20 proxies, 77 %). This implies that although there

is a reduction in skill with extra-tropical proxies, non-tropical

reconstructions still have a high likelihood of producing skil-

ful reconstructions.

4.2 Effect of non-stationarities

Here we examine the effect of non-stationarities on re-

constructions of ENSO in order to understand how they

may impact past reconstructions of ENSO variance. To

this end, we compare the results of two experiments:

(i) STATntrop_ts, which selects pseudoproxies from the same

region as RNDntrop_ts but only includes pseudoproxies that

are considered stationary (see definition in Sect. 3.2), and

(ii) NSTATntrop_ts, which selects from the same region but

only the non-stationary pseudoproxies. Thus, here we effec-

tively separate the pseudoproxies of the RNDntrop_ts experi-

ment into stationary and non-stationary subgroups and gen-

erate reconstructions from each.

Figure 5 has the same panel layout as Fig. 4, with the green

and pink representing stationary (STATntrop_ts) and non-

stationary (NSTATntrop_ts) experiments respectively. Shading

represents the percentile ranges of the reconstruction skill,

thick lines indicate the proportions of skilful reconstructions

and the thick black line is the difference between the sta-

tionary (STATntrop_ts) and non-stationary (NSTATntrop_ts) ex-

periments. For all calibration window lengths (rows) and re-

construction methods (columns), the stationary experiment

has greater skill than the non-stationary experiment, although

there is reasonable variation between reconstruction meth-
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ods and calibration window lengths (this will be discussed

in later sections). In some cases, non-stationarities can re-

duce the proportion of skilful reconstructions by up to 60 %

(panel b, black line, n > 60), but on average the proportion

of skilful reconstructions is reduced by 30 %. Thus, these ex-

periments suggest that extra-tropical non-stationarities act to

reduce reconstruction skill.

It is interesting to note that when tropical region non-

stationarities are included, they appear to improve recon-

struction skill (Supplement Fig. S3). The majority of the

pseudoproxies in the tropical region were found to be highly

correlated with ENSO, as expected, and to demonstrate very

little variation in their correlations to ENSO (not shown),

usually less than∼ 0.1 correlation. However, as seen in Fig. 2

many of these proxies are still classified as non-stationary,

which may be due to non-linearities or variations in flavour

of ENSO events. Thus, regardless of whether they are clas-

sified as non-stationary or not, the inclusion of these tropical

pseudoproxies acts to improve the skill of the ENSO recon-

structions.

The fact that we see a minimal effect of non-stationarities

in the randomly selected experiments (see Sect. 4.1) may be

because the likelihood of selecting non-stationarities is rel-

atively low. For instance, Fig. 6 shows the proportions of

non-stationary pseudoproxies in the reconstructions for the

RNDglb_ts experiment with a 31-year-long calibration win-

dow. It varies with different proxy network sizes, but as ex-

pected, the smaller groups have a greater chance of higher

proportions of non-stationary proxies. With networks greater

than 30, the most likely proportion is around 14 %, which

is much more consistent than the smaller groups. Even with

very small group sizes (n= 3), the chance that all stations

are non-stationary is only 0.3 % (red line from Fig. 6). When

only using extra-tropical locations (RNDntrop_ts), the most

likely proportion of non-stationary proxies is around 9 %,

with an even lower chance of all constituent proxies be-

ing non-stationary. There is also a tendency for more non-

stationarities to occur with the use of longer calibration win-

dows (see Fig. 2a); consequently, the proportions of non-

stationary proxies increase. For example, networks greater

than 30 proxies can be up to 25 % non-stationary when us-

ing 91-year calibration windows (not shown). Regardless of

the increases in non-stationarities with the use of longer cal-

ibration windows, these longer windows still produced more

skilful reconstructions in the random selection experiments

than those with shorter windows (RNDglb_ts and RNDntrop_ts;

Fig. 4). Thus, although non-stationarities have the potential

to influence the skill of ENSO reconstructions, this scenario

appears unlikely if proxies are selected similar to a globally

random manner.

However, if pseudoproxies are selected from regions that

demonstrate co-variability in the running correlation be-

tween TS and Niño 3.4 SST anomalies, reconstruction skill

is severely deteriorated. To this end, an EOF analysis was

used to “organise” this co-variability, of which it is expected
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Figure 6. This plot shows the percentage of TS-based reconstruc-

tions (y axis) with certain proportions of non-stationary proxies

(x axis) for the RNDglb_ts experiment. Each of the ten 31-year cal-

ibration windows has been included in these calculations, so that

the proportions of non-stationarities for 10 000 reconstructions are

shown (50 % being 5000 reconstructions). Different lines are for

different proxy network sizes (see inset legend), and this determines

what values of proportion can be taken; hence, larger groups have

a wider range of possible non-stationarity proportions than smaller

groups. The coloured circles of any proportions with 0 % of recon-

structions have not been shown.

that non-stationarities are a major part. This is seen in the

PNEOF1 experiment shown in Fig. 7. In this experiment the

EOF was carried out on the running correlations between TS

and Niño 3.4 SST anomalies at each grid point. Pseudoproxy

networks were then selected only from those grid points that

exhibited a strong relationship with the leading EOF (i.e.

the absolute value of the EOF weighting > 0.01). The spa-

tial map of this leading EOF is shown in panel e, for 31-

year window running correlations. The leading EOFs of the

longer windows have very similar spatial patterns, with spa-

tial correlations of 0.86 and 0.84 produced respectively, when

comparing the 61 and 91-year window length EOF1 spatial

patterns (not shown). The leading principal components for

each window length are also similar (panel f). The result-

ing PNEOF1 experiment reconstructions display a large loss

in skill when compared to the stationary pseudoproxies in

the reconstructions (STATntrop_ts, dashed lines), with the for-

mer having very little likelihood of producing a skilful recon-

struction (Fig. 7a–d). The proportion of non-stationary grid

points used in the PNEOF1 reconstructions was small, rang-

ing from 9 to 15 %. However, there was still a substantial

loss of skill in these reconstructions even though the major-

ity of grid points were classified as stationary by our statisti-

cal definition. This implies that a large and coherent change

to the teleconnection exists in that region even if it consid-

ered mostly statistically stationary, and that was enough to

degrade reconstruction skill. Thus, care should be taken to

avoid the scenario where all constituent pseudoproxies used

in a reconstruction lie in a region where there are large, co-
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herent variations in teleconnections, even if these variations

are considered stationary.

4.3 Pseudoproxy network size and length

As discussed previously, the ENSO reconstruction skill is

sensitive to the pseudoproxy network size and window

length. This is clearly seen in Fig. 8, which displays the

reconstruction skill of three different previously presented

experiments (RNDglb_ts, RNDntrop_ts, and NSTATntrop_ts) as

three different colours (see legend). Each panel shows the

proportions of skilful reconstructions (thick lines) for differ-

ent reconstruction methods (as titled), and different calibra-

tion window lengths (see inset legend). What is clear in all

panels is that the reconstruction skill generally improves with

increasing network size for all experiments, regardless of

reconstruction method and calibration window length. This

is also true when all pseudoproxies in a network are non-

stationary (NSTATntrop_ts experiment), although the recon-

struction skill generally improves at a slower rate (Fig. 8,

red lines). This implies that larger pseudoproxy networks

are less affected by non-stationarities, but this is also depen-

dent on the calibration window length (discussed below) and

the reconstruction method (discussed in Sect. 4.4). In fact,

when pseudoproxies are randomly selected (RNDglb_ts and

RNDntrop_ts), using a minimum of 20 proxies gives a rea-

sonable chance (77 % chance on average) that the resulting

reconstruction will be skilful (Fig. 8).

The calibration window length also has an impact on

reconstruction skill and sensitivity to non-stationarities

(Fig. 9). For example, using small calibration windows (31

to 91 years) compared to the total number of model years

available (499 years) leads to a relative decrease in skill, as

indicated by the black 499-year reconstruction being higher

in skill than the reconstructions using smaller windows. This

decrease in skill is potentially due to some information loss

in the relative data sets, and not necessarily due to non-

stationarities. However, this reduction in skill at the me-

dian (thick line) is quite small (∼ 0.1 correlation) even at

the smallest networks sizes and in the worst-performing re-

construction method. Thus, although there is a reduction in

skill due to loss of information with smaller calibration win-

dow lengths, this is relatively small compared to the possi-

ble impacts of non-stationarities (see previous section). Fig-

ure 8 also shows that larger windows tend to improve skill,

with the larger window lengths consistently having higher

proportions of skilful reconstructions in the random selec-

tion experiments (RNDglb_ts and RNDntrop_ts). Larger win-

dows also appear to generally improve reconstructions in

the NSTATntrop_ts experiment. This increase in skill is not

as great as removing non-stationarities from the reconstruc-

tions (Fig. 5) or changing the reconstruction method (follow-

ing section).

4.4 Reconstruction method comparison

All reconstruction methods create skilful reconstructions

given sufficiently large calibration windows and proxy net-

work sizes in the random selection experiments RNDglb_ts

and RNDntrop_ts (see Figs. 8 and 9). The CPS_RV method

performs almost as well as the MRV, although mainly with

longer calibration windows and for the random selection

experiments (RNDglb_ts and RNDntrop_ts, Fig. 8). However,

there is a clear distinction in the skill from the MRV method

reconstructions compared to the other methods tested when

considering the impact of non-stationarities and neglecting

tropical pseudoproxies. For instance, when tropical pseudo-

proxies are not used in experiments, the MRV reconstruc-

tions are only marginally affected (Fig. 4c, g and k) imply-

ing that the method is not as dependent as other methods

on the highly correlated tropical region. This is expected, as

the EPC_RV and CPS_RV involve weighting regimes that

would favour the highly correlated tropical pseudoproxies

(see Sect. 3.3, and references therein). The MRV method

has the highest proportion of skilful reconstructions at the

lowest network sizes in all other experiments (Fig. 8c), with

the clearest differences seen in the NSTATntrop_ts experi-

ment (Figs. 5 and 8), while the percentile range of the MRV

method also tends to be the smallest. Both of these indi-

cate that the MRV method has the lowest sensitivity to non-

stationarities. Further to this, in spite of the MRV method be-

ing negatively affected in the PNEOF1 experiment (Fig. 7,

thick lines), and displaying some sensitivity to calibration

window length (91-year windows perform better than shorter

windows), it produces the highest proportion of skilful re-

constructions and is thus still the most robust against non-

stationarities.

It is worth noting that although the MRV method shows the

most consistently high correlations to ENSO and appears to

be the least sensitive to calibration window position (small-

est percentile ranges, Supplement Fig. S5), it has the highest

RMSE. It is well known that all reconstruction methods re-

sult in a loss in ENSO variance, and this is clearly shown

in Fig. 10. In Fig. 10a–d, we can see that all reconstructions

underestimate the model Niño 3.4 running variance (black

line). However, this figure also shows that this variance loss

is exaggerated with the MRV method (panels c, g), and this

is also seen in Supplement Fig. S6, particularly at the larger

network sizes. It is this variance loss that leads to the high

RMSE of the MRV method. Other methods do not suffer as

much from this variance loss as they are normalised after the

reconstruction but prior to the calculation of the running vari-

ance (see Sect. 3.3). As the MRV utilises running variances

from the beginning, it is unable to be normalised. Thus, while

the MRV reproduces ENSO variance with the highest cor-

relation skill, the MRV method requires rescaling to better

match the magnitude of the variance changes.

In order to compensate for the variance loss of each recon-

struction (Fig. 10a–d), we rescale each method’s resulting
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Figure 7. (a–d) The reconstructions from the PNEOF1 (solid) and STATntrop_ts (dashed) experiments using different reconstruction methods.

The proportion of skilful reconstructions (out of the 10 000) is shown for calibration windows of 31- (blue), 61- (green) and 91-year length

(red), plotted against proxy network size (x axis). Skilful is defined as the reconstruction explaining greater than 50 % of the variance of

the model ENSO reconstruction. (e) The spatial map of the leading empirical orthogonal function (EOF) of running correlations calculated

between TS at each grid point and ENSO (with a window length of 31 years). The spatial structure of this EOF is quantitatively similar to

the first EOF with running correlation window lengths of 61 (spatial r = 0.86), and 91 (spatial r = 0.84) years. (f) The leading principal

components of the leading EOF with running correlation window lengths of 31 (blue), 61 (green) and 91 (red) years. The year values

correspond to the centre of the windows. (g) The variance explained by the first 10 EOFs, for the three different window sizes (see inset

legend).

running variance time series (Fig. 10e–h). Rescaling of the

running variance time series was carried out using the av-

erage (calculated over 1000 reconstructions) regression be-

tween the reconstructions and the modelled Niño 3.4 run-

ning variance within the calibration window. When the MRV

(Fig. 10c) is scaled (Fig. 10g), there is a jump in reconstruc-

tion variance (grey shading), such that the modelled Niño

3.4 index running variance is now encompassed by the grey

shading. Using this simple scaling technique, we see a large

reduction in the RMSE (see Supplement Fig. S7) – up to a

0.1 reduction in the median (Supplement Fig. S7, cyan lines)

and no changes in the correlation (not shown). In fact, it is

noteworthy that on average the scaled MRV has the smallest

RMSE (significant to the 99 % level via a two-sample t test)

of all reconstruction methods.

4.5 Precipitation pseudoproxies

Although not the focus of this paper, precipitation was also

examined for all experiments. Precipitation-based recon-

structions showed more variation in skill than TS and re-

quired larger network sizes for the same skill (see Supple-

ment Fig. S2), but otherwise they had similar tendencies to

temperature outlined above. However, there was one key dif-
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Figure 8. Reconstruction skill for different experiments (as indi-

cated by colour) and reconstruction methods (each panel) using dif-

ferent calibration window lengths (see inset legend). The lines show

the proportion of skilful reconstructions, with skilful being defined

as explaining greater than 50 % of the explained variance of the

Niño 3.4 running variance.

ference in precipitation – NSTATglb_pr (red lines) produced

less skilful reconstructions than RNDglb_pr (grey lines) as we

would expect. This is likely due to the absence of a large

spatially coherent region of correlations in the tropical Pa-

cific Ocean (compare tropical areas in Supplement Fig. S1b

and e). The CPS_RV method also generally outperforms

the other methods, except for the non-stationary experiment

NSTATglb_pr, where the MRV appears to be superior to all

methods. The RVM method appears to perform slightly bet-

ter with precipitation than temperature (Supplement Fig. S2,

mainly at longer calibration windows), which is consistent

with the findings of McGregor et al. (2013a).

5 Discussion

Non-stationary relationships between the modelled Niño 3.4

index and regional temperature and precipitation were de-

tected in the GFDL CM2.1 model. Our results demonstrate

that non-stationarities between ENSO and regional climates

can occur in many regions around the globe, which ex-

tends previous work of Gallant et al. (2013), who found

significant non-stationary areas in the Australasian region

in both modelling and observations. Like in Gallant et al.

(2013), our work shows non-stationarities exist in climate

models globally on timescales longer than approximately

30 years, demonstrating their occurrence at low frequencies.

Figure 9. A comparison of all the RNDglb_ts reconstructions using

499 years of data (black) and when using limited calibration win-

dows of 31 (blue), 61 (green), and 91 years (red). The 5th (dashed),

50th (solid line) and 95th (dot-dashed) percentiles of correlation co-

efficients are shown for each of the window lengths and for recon-

structions using the 499 years of data. Correlation coefficients are

calculated between the reconstructed running variance and ENSO

running variance (y axis), plotted against the proxy network size

(x axis). Panels (a–d) show the comparison for the four reconstruc-

tion methods discussed in Sect. 3.3.

This is in contrast to van Oldenborgh and Burgers (2005)

and Sterl et al. (2007), who examined non-stationarities at

higher frequencies and found no detectable evidence for

them in the observations using running correlation windows

of around 20 years. The fact that these non-stationarities are

found in a pre-industrial control simulation shows that this

low-frequency variability can arise from unforced, internal

climate variability, adding further evidence that this low-

frequency variability is an inherent part of the climate sys-

tem.

Identifying what causes the occurrence of non-

stationarities in ENSO teleconnections is not within

the scope of this study. However, Wittenberg (2009) showed

substantial changes to the behaviour of ENSO on similar

timescales to those identified here in a 2000-year simulation

using the GFDL CM2.1. Wittenberg (2009) discussed that

such changes to ENSO behaviour could conceivably alter

the teleconnections between ENSO and local climate and

that these changes may not be represented in the historical

record. Gallant et al. (2013) identified non-stationarities

in three different GCMs. It is noted that while numerous

models display non-stationarities, their regional existence

may vary depending on the model used (Coats et al.,

2013). We do not expect our evaluation of various different

www.clim-past.net/11/1733/2015/ Clim. Past, 11, 1733–1749, 2015
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Figure 10. The reconstructed Niño 3.4 running variance range of various methods (grey shading) plotted with the model Niño 3.4 running

variance. The first row of panels shows the unscaled reconstruction methods, while the second row has been scaled with a linear regression.

Reconstruction methods are indicated in the title above the panel, and the scaled variants are named beginning with an “S”. The year

of the reconstruction is shown on the x axis of these panels. Running variances are calculated using 30-year moving windows. Some

example reconstructions (red, yellow and blue lines) are shown, with the colours corresponding to a specific network of pseudoproxies.

These reconstructions are from the RNDglb_ts experiment, with a 91-year calibration window.

reconstruction methods performance in the presence of

non-stationarities to be affected by model configuration;

however, we intend to examine this in future research.

In this study, the pseudoproxy approach in the reality of

the GFDL CM2.1 pre-industrial control simulations avoids

the problems of non-climate-related noise that is inherent to

real-world palaeoclimate proxies, allowing us to focus on

the sensitivity of reconstructions to the occurrence of non-

stationarities alone. However, in reality non-climate-related

sources of noise in palaeoclimate proxies will confound, and

likely degrade, reconstruction skill to a greater extent than

examined here. Thus, our finding that a network size of> 20

will minimise the effects non-stationarities on reconstruction

skill is likely an underestimate of minimum network size

for a real-world reconstruction. The compounding effects of

noise and non-stationarities on the reconstruction method,

and hence a reconstruction, should be the focus of future re-

search efforts in this area.

All reconstruction methods examined generate skilful re-

constructions when utilising globally random source proxy

selection, given sufficiently large calibration windows and

proxy network sizes. Therefore, the results presented here

highlight a case for considering the influence of non-

stationarities on real-world reconstructions and their underly-

ing methods, which generally employ small proxy networks.

The influence of the choice of method on the reconstruc-

tion and its sensitivity to non-stationarities was stark. The

non-stationarities and reconstruction method usually had a

greater influence on reconstruction skill than the calibration

window length. In the best-case scenario (i.e. long calibra-

tion window and large proxy network), the CPS_RV method

had the greatest skill. In less-than-ideal conditions (e.g. small

calibration windows or proxy networks), the MRV method

clearly excelled, even managing to produce a high propor-

tion of skilful reconstructions given only pseudoproxies con-

sidered non-stationary (Fig. 5). However, the unscaled MRV

method showed poor RMSE performance, meaning that it

can only be used to provide useful information on the rela-

tive changes in ENSO variance. We also note that the large

difference between the MRV and RVM experiments (Figs. 3

and 9) is contradictory to the results in Fig. 4 of McGregor

et al. (2013a). However, these differences were due to the 10-

year low-pass filter used in McGregor et al. (2013a), whereas

in this study the data were unfiltered. Consequently, the RVM

was found to be sensitive to the low-pass filtering, while the

MRV was insensitive (results not shown).

For reconstructions of large-scale phenomena like ENSO,

larger, more globally diverse networks will produce more in-

formative reconstructions compared to those derived from

smaller regions or single sites (Mann, 2002; Lee et al., 2008;

von Storch et al., 2009; McGregor et al., 2013a). The ex-

periments conducted here support this hypothesis, as the

proportions of skilful reconstructions increase as the num-

ber of source proxies increases for almost all reconstruc-
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tion methods and calibration window lengths (Figs. 8 and

5). Our work further shows that large networks also re-

duce errors relating to non-stationarity of teleconnections,

which further supports their employment (Fig. 5). How-

ever, this skill improvement is affected by the degree of

non-stationarity and teleconnection co-variability present

in the reconstructions, with non-stationary proxy networks

(NSTATntrop_ts, Fig. 8, red lines) and “organised” telecon-

nection co-variability (PNEOF1, Fig. 7a–d) reducing the de-

gree of improvement in skill with increasing network size.

Thus, where increasing network size would usually improve

the reconstruction, non-stationarities and spatial coherence in

variations in teleconnection strength can substantially temper

this improvement. In extreme cases, where proxies are se-

lected from co-varying areas (PNEOF1, Fig. 7), reconstruc-

tion skill may show no improvement with larger proxy net-

works. This further stresses the importance of ensuring that

all constituent proxies utilised in a reconstruction are not

affected by co-varying teleconnections. This is more likely

achieved in spatially diverse, large multi-proxy networks.

The results of this study further emphasise the need for

more palaeoclimate proxies to be available for multi-proxy

climate reconstructions. Given the skilful reconstructions in

ENSO variance that can be produced by neglecting pseudo-

proxies from the centre of action as shown here, the utilisa-

tion of data solely from the eastern equatorial Pacific appears

unnecessary. In fact, these results utilising globally random

proxy selection support the development of palaeoclimate

proxies from a wide range of global locations. Furthermore,

developing an understanding of the teleconnections and their

underlying mechanisms around the globe will assist with se-

lection of palaeoclimate proxy locations that are unlikely to

be affected by teleconnection co-variability.

6 Conclusions

We have demonstrated that non-stationarities in ENSO tele-

connected proxies can significantly reduce reconstruction

skill, and that this is dependent on proxy location, multi-

proxy network size, and reconstruction method. These re-

sults make the implicit assumption that the modelled co-

variability in the non-stationarities and relative proportions

of non-stationary areas to stationary areas is realistic, which

has not been explicitly tested here. Ultimately, our results

show that non-stationarities are unlikely to significantly af-

fect reconstruction skill for larger, globally selected, multi-

proxy networks (> 20 proxies). Non-stationarities will de-

teriorate reconstructions if the entire network exhibits non-

stationarities, but this is highly unlikely (< 0.3 %) for large

networks (> 20 proxies), which can be considered globally

distributed. However, the results suggest caution when de-

veloping reconstructions using single site proxies or multi-

ple proxies from the same teleconnected region, as there is

a reasonable chance this would lead to an unskilful recon-

struction if there are no other sources of information. Thus,

using multiple teleconnected regions minimises any effects

of non-stationarities for all methods tested.

Reconstruction methods that operate on the raw time se-

ries data (weighting the proxy time series directly) are most

sensitive to non-stationarities (RVM, EPC_RV and CPS_RV

methods), while the method utilising the running variance

time series (MRV method) is the most robust against non-

stationarities. However, these were the only methods tested,

and there are many reconstruction methods in the literature

(Jones et al., 2009; Wilson et al., 2010) that should be tested

in future research. Neglecting proxies from ENSO’s centre of

action still allows for skilful reconstructions to be made, but

their inclusion reduces the chance of producing particularly

poor reconstructions even if non-stationarities are present.

Further research would involve examining the organisation

of non-stationarities and co-varying teleconnections in more

detail, exploring the use of running variance on proxy time

series as preprocessing, or evaluating how robust other recon-

struction methods are against non-stationary teleconnections.

The Supplement related to this article is available online

at doi:10.5194/cp-11-1733-2015-supplement.
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