Articles | Volume 11, issue 10
https://doi.org/10.5194/cp-11-1325-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-1325-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
ENSO flavors in a tree-ring δ18O record of Tectona grandis from Indonesia
K. Schollaen
CORRESPONDING AUTHOR
GFZ – German Research Centre for Geosciences, Section 5.2 Climate Dynamics and Landscape Evolution, Potsdam, Germany
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
C. Karamperidou
Department of Atmospheric Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
P. Krusic
Navarino Environmental Obs. Messinia, Greece
Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden
E. Cook
Tree Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University, USA
GFZ – German Research Centre for Geosciences, Section 5.2 Climate Dynamics and Landscape Evolution, Potsdam, Germany
Related authors
K. Schollaen, H. Baschek, I. Heinrich, and G. Helle
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-11587-2015, https://doi.org/10.5194/bgd-12-11587-2015, 2015
Revised manuscript not accepted
Viorica Nagavciuc, Gerhard Helle, Maria Rădoane, Cătălin-Constantin Roibu, Mihai-Gabriel Cotos, and Monica Ionita
Biogeosciences, 22, 55–69, https://doi.org/10.5194/bg-22-55-2025, https://doi.org/10.5194/bg-22-55-2025, 2025
Short summary
Short summary
We reconstructed drought conditions for the past 200 years for central and eastern parts of Europe (Romania) using δ18O in oak tree ring cellulose from Romania, revealing periods of both extreme wetness (e.g., 1905–1915) and dryness (e.g., 1818–1835). The most severe droughts occurred in the 19th and 21st centuries, likely linked to large-scale atmospheric circulation. This research highlights the potential of tree rings to improve our understanding of long-term climate variability in Europe.
Viorica Nagavciuc, Simon L. L. Michel, Daniel F. Balting, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David N. Steger, Gerrit Lohmann, and Monica Ionita
Clim. Past, 20, 573–595, https://doi.org/10.5194/cp-20-573-2024, https://doi.org/10.5194/cp-20-573-2024, 2024
Short summary
Short summary
The main aim of this paper is to present the summer vapor pressure deficit (VPD) reconstruction dataset for the last 400 years over Europe based on δ18O records by using a random forest approach. We provide both a spatial and a temporal long-term perspective on the past summer VPD and new insights into the relationship between summer VPD and large-scale atmospheric circulation. This is the first gridded reconstruction of the European summer VPD over the past 400 years.
Achim Brauer, Ingo Heinrich, Markus J. Schwab, Birgit Plessen, Brian Brademann, Matthias Köppl, Sylvia Pinkerneil, Daniel Balanzategui, Gerhard Helle, and Theresa Blume
DEUQUA Spec. Pub., 4, 41–58, https://doi.org/10.5194/deuquasp-4-41-2022, https://doi.org/10.5194/deuquasp-4-41-2022, 2022
Daniel Balting, Simon Michel, Viorica Nagavciuc, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David Steger, Gerrit Lohmann, and Monica Ionita
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-47, https://doi.org/10.5194/essd-2022-47, 2022
Preprint withdrawn
Short summary
Short summary
Vapor pressure deficit is a key component of vegetation dynamics, soil science, meteorology, and soil science. In this study, we reconstruct the variability of the vapor pressure deficit in the past and examine the changes in future scenarios using climate models. In this way, past, present and future changes of the vapor pressure deficit can be detected locally, regionally, and continentally with higher statistical significance.
Rob Wilson, Kathy Allen, Patrick Baker, Gretel Boswijk, Brendan Buckley, Edward Cook, Rosanne D'Arrigo, Dan Druckenbrod, Anthony Fowler, Margaux Grandjean, Paul Krusic, and Jonathan Palmer
Biogeosciences, 18, 6393–6421, https://doi.org/10.5194/bg-18-6393-2021, https://doi.org/10.5194/bg-18-6393-2021, 2021
Short summary
Short summary
We explore blue intensity (BI) – a low-cost method for measuring ring density – to enhance palaeoclimatology in Australasia. Calibration experiments, using several conifer species from Tasmania and New Zealand, model 50–80 % of the summer temperature variance. The implications of these results have profound consequences for high-resolution paleoclimatology in Australasia, as the speed and cheapness of BI generation could lead to a step change in our understanding of past climate in the region.
Franziska Slotta, Lukas Wacker, Frank Riedel, Karl-Uwe Heußner, Kai Hartmann, and Gerhard Helle
Biogeosciences, 18, 3539–3564, https://doi.org/10.5194/bg-18-3539-2021, https://doi.org/10.5194/bg-18-3539-2021, 2021
Short summary
Short summary
The African baobab is a challenging climate and environmental archive for its semi-arid habitat due to dating uncertainties and parenchyma-rich wood anatomy. Annually resolved F14C data of tree-ring cellulose (1941–2005) from a tree in Oman show the annual character of the baobab’s growth rings but were up to 8.8 % lower than expected for 1964–1967. Subseasonal δ13C and δ18O patterns reveal years with low average monsoon rain as well as heavy rainfall events from pre-monsoonal cyclones.
Daniel F. Balting, Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann
Clim. Past, 17, 1005–1023, https://doi.org/10.5194/cp-17-1005-2021, https://doi.org/10.5194/cp-17-1005-2021, 2021
Short summary
Short summary
To extend climate information back in time, we investigate the climate sensitivity of a δ18O network from tree rings, consisting of 26 European sites and covering the last 400 years. Our results suggest that the δ18O variability is associated with large-scale anomaly patterns that resemble those observed for the El Niño–Southern Oscillation. We conclude that the investigation of large-scale climate signals far beyond instrumental records can be done with a δ18O network derived from tree rings.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Jennifer R. Marlon, Neil Pederson, Connor Nolan, Simon Goring, Bryan Shuman, Ann Robertson, Robert Booth, Patrick J. Bartlein, Melissa A. Berke, Michael Clifford, Edward Cook, Ann Dieffenbacher-Krall, Michael C. Dietze, Amy Hessl, J. Bradford Hubeny, Stephen T. Jackson, Jeremiah Marsicek, Jason McLachlan, Cary J. Mock, David J. P. Moore, Jonathan Nichols, Dorothy Peteet, Kevin Schaefer, Valerie Trouet, Charles Umbanhowar, John W. Williams, and Zicheng Yu
Clim. Past, 13, 1355–1379, https://doi.org/10.5194/cp-13-1355-2017, https://doi.org/10.5194/cp-13-1355-2017, 2017
Short summary
Short summary
To improve our understanding of paleoclimate in the northeastern (NE) US, we compiled data from pollen, tree rings, lake levels, testate amoeba from bogs, and other proxies from the last 3000 years. The paleoclimate synthesis supports long-term cooling until the 1800s and reveals an abrupt transition from wet to dry conditions around 550–750 CE. Evidence suggests the region is now becoming warmer and wetter, but more calibrated data are needed, especially to capture multidecadal variability.
K. Schollaen, H. Baschek, I. Heinrich, and G. Helle
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-11587-2015, https://doi.org/10.5194/bgd-12-11587-2015, 2015
Revised manuscript not accepted
Related subject area
Subject: Teleconnections | Archive: Terrestrial Archives | Timescale: Centennial-Decadal
A series of climate oscillations around 8.2 ka revealed through multi-proxy speleothem records from North China
Western Mediterranean hydro-climatic consequences of Holocene ice-rafted debris (Bond) events
Reconciling reconstructed and simulated features of the winter Pacific/North American pattern in the early 19th century
On the low-frequency component of the ENSO–Indian monsoon relationship: a paired proxy perspective
Pengzhen Duan, Hanying Li, Zhibang Ma, Jingyao Zhao, Xiyu Dong, Ashish Sinha, Peng Hu, Haiwei Zhang, Youfeng Ning, Guangyou Zhu, and Hai Cheng
Clim. Past, 20, 1401–1414, https://doi.org/10.5194/cp-20-1401-2024, https://doi.org/10.5194/cp-20-1401-2024, 2024
Short summary
Short summary
We use multi-proxy speleothem records to reveal a two droughts–one pluvial pattern during 8.5–8.0 ka. The different rebounded rainfall quantity after two droughts causes different behavior of δ13C, suggesting the dominant role of rainfall threshold on the ecosystem. A comparison of different records suggests the prolonged 8.2 ka event is a globally common phenomenon rather than a regional signal. The variability of the AMOC strength is mainly responsible for these climate changes.
Christoph Zielhofer, Anne Köhler, Steffen Mischke, Abdelfattah Benkaddour, Abdeslam Mikdad, and William J. Fletcher
Clim. Past, 15, 463–475, https://doi.org/10.5194/cp-15-463-2019, https://doi.org/10.5194/cp-15-463-2019, 2019
Short summary
Short summary
Based on a Holocene oxygen stable isotope record from Lake Sidi Ali (Morocco) we correlate Western Mediterranean precipitation anomalies with North Atlantic ice-rafted debris (Bond) events to identify a probable teleconnection between Western Mediterranean winter rains and subpolar North Atlantic cooling phases. Our data show a noticeable similarity between Western Mediterranean winter rain minima and Bond events during the Early Holocene and an opposite pattern during the Late Holocene.
D. Zanchettin, O. Bothe, F. Lehner, P. Ortega, C. C. Raible, and D. Swingedouw
Clim. Past, 11, 939–958, https://doi.org/10.5194/cp-11-939-2015, https://doi.org/10.5194/cp-11-939-2015, 2015
Short summary
Short summary
A discrepancy exists between reconstructed and simulated Pacific North American pattern (PNA) features during the early 19th century. Pseudo-reconstructions demonstrate that the available PNA reconstruction is potentially skillful but also potentially affected by a number of sources of uncertainty and deficiencies especially at multidecadal and centennial timescales. Simulations and reconstructions can be reconciled by attributing the reconstructed PNA features to internal variability.
M. Berkelhammer, A. Sinha, M. Mudelsee, H. Cheng, K. Yoshimura, and J. Biswas
Clim. Past, 10, 733–744, https://doi.org/10.5194/cp-10-733-2014, https://doi.org/10.5194/cp-10-733-2014, 2014
Cited articles
Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S., and Mudelsee, M.: Recent intensification of tropical climate variability in the Indian Ocean, Nature Geosci., 1, 849–853, 2008.
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, 2003.
Aldrian, E. and Susanto, R. D.: Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature, Int. J. Climatol., 23, 1435–1452, 2003.
Aldrian, E., Dümenil Gates, L., and Widodo, F. H.: Seasonal variability of Indonesian rainfall in ECHAM4 simulations and in the reanalyses: The role of ENSO, Theor. Appl. Climatol., 87, 41–59, 2007.
Allan, J. R.: ENSO and Climatic Variability in the Past 150 Years, in: El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts, edited by: Diaz, H. F. and Markgraf, V., Cambridge University Press, 3–56, 2000.
Araguás-Araguás, L., Froehlich, K., and Rozanski, K.: Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture, Hydrol. Proc., 14, 1341–1355, 2000.
Ashok, K. and Yamagata, T.: Climate change: The El Niño with a difference, Nature, 461, 481–484, 2009.
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T.: El Niño Modoki and its possible teleconnection, J. Geophys. Res.-Oc., 112, C11007, https://doi.org/10.1038/461481a, 2007.
Barbour, M. M.: Stable oxygen isotope composition of plant tissue: a review, Funct. Plant Biol., 34, 83–94, 2007.
Braganza, K., Gergis, J. L., Power, S. B., Risbey, J. S., and Fowler, A. M.: A multiproxy index of the El Niño–Southern Oscillation, A.D. 1525–1982, J. Geophys. Res.-Atmos., 114, D05106, https://doi.org/10.1029/2008JD010896, 2009.
Brienen, R. J. W., Helle, G., Pons, T. L., Guyot, J. L., and Gloor, M.: Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Niño-Southern Oscillation variability, Proc. Natl. Acad. Sci., 109, 16957–16962, 2012.
Chang, C. P., Wang, Z., Ju, J., and Li, T.: On the Relationship between Western Maritime Continent Monsoon Rainfall and ENSO during Northern Winter, J. Climate, 17, 665–672, 2004.
Charles, C. D., Cobb, K., Moore, M. D., and Fairbanks, R. G.: Monsoon–tropical ocean interaction in a network of coral records spanning the 20th century, Mar. Geol., 201, 207–222, 2003.
Clement, A. C., Seager, R., and Murtugudde, R.: Why Are There Tropical Warm Pools?, J. Climate, 18, 5294–5311, 2005.
Cobb, K. M., Westphal, N., Sayani, H. R., Watson, J. T., Di Lorenzo, E., Cheng, H., Edwards, R. L., and Charles, C. D.: Highly Variable El Niño–Southern Oscillation Throughout the Holocene, Science, 339, 67–70, 2013.
Collins, M., An, S.-I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F.-F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G., and Wittenberg, A.: The impact of global warming on the tropical Pacific Ocean and El Niño, Nature Geosci., 3, 391–397, 2010.
Cook, E. R., D'Arrigo, R. D., and Mann, M. E.: A Well-Verified, Multiproxy Reconstruction of the Winter North Atlantic Oscillation Index since A.D. 1400*, J. Climate, 15, 1754–1764, 2002.
Cook, E. R., Palmer, J. G., Ahmed, M., Woodhouse, C. A., Fenwick, P., Zafar, M. U., Wahab, M., and Khan, N.: Five centuries of Upper Indus River flow from tree rings, J. Hydrol., 486, 365–375, 2013.
Coster, C.: Zur Anatomie und Physiologie der Zuwachszonen- und Jahresringbildung in den Tropen, Ann. Jard. Bot. Buitenzong, 37, 49–160, 1927.
Coster, C.: Zur Anatomie und Physiologie der Zuwachszonen- und Jahresringbildung in den Tropen, Ann. Jard. Bot. Buitenzong, 38, 1–114, 1928.
D'Arrigo, R., Cook, E. R., Wilson, R. J., Allan, R., and Mann, M. E.: On the variability of ENSO over the past six centuries, Geophys. Res. Lett., 32, L03711, https://doi.org/10.1029/2004gl022055, 2005.
D'Arrigo, R., Wilson, R., Palmer, J., Krusic, P., Curtis, A., Sakulich, J., Bijaksana, S., Zulaikah, S., Ngkoimani, L. O., and Tudhope, A.: The reconstructed Indonesian warm pool sea surface temperatures from tree rings and corals: Linkages to Asian monsoon drought and El Niño–Southern Oscillation, Paleoceanography, 21, PA3005, https://doi.org/10.1029/2005pa001256, 2006.
Emile-Geay, J., Cobb, K. M., Mann, M. E., and Wittenberg, A. T.: Estimating Central Equatorial Pacific SST Variability over the Past Millennium. Part II: Reconstructions and Implications, J. Climate, 26, 2329–2352, 2013.
Evans, M. N., Kaplan, A., and Cane, M. A.: Pacific sea surface temperature field reconstruction from coral d18O data using reduced space objective analysis, Paleoceanography, 17, 7-1–7-13, 2002.
Fowler, A. M., Boswijk, G., Lorrey, A. M., Gergis, J., Pirie, M., McCloskey, S. P. J., Palmer, J. G., and Wunder, J.: Multi-centennial tree-ring record of ENSO-related activity in New Zealand, Nature Clim. Change, 2, 172–176, 2012.
Geiger, F.: Anatomische Untersuchungen über die Jahresringbildung von Tectona grandis, in: Jahrbücher für wissenschaftliche Botanik, edited by: Pfeffer, W., 1–658, 1915.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Haylock, M. and McBride, J.: Spatial Coherence and Predictability of Indonesian Wet Season Rainfall, J. Climate, 14, 3882–3887, 2001.
Hendon, H. H.: Indonesian Rainfall Variability: Impacts of ENSO and Local Air-Sea Interaction, J. Climate, 16, 1775–1790, 2003.
Jourdain, N., Gupta, A., Taschetto, A., Ummenhofer, C., Moise, A., and Ashok, K.: The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations, Clim. Dynam., 41, 3073–3102, 2013.
Kao, H.-Y. and Yu, J.-Y.: Contrasting Eastern-Pacific and Central-Pacific Types of ENSO, J. Climate, 22, 615–632, 2009.
Kaplan, A., Cane, M., Kushnir, Y., Clement, A., Blumenthal, M., and Rajagopalan, B.: Analyses of global sea surface temperature 1856–1991, J. Geophys. Res.-Oc., 103, 18567–18589, 1998.
Karamperidou, C., Di Nezio, P. N., Timmermann, A., Jin, F.-F., and Cobb, K. M.: The response of ENSO flavors to mid-Holocene climate: Implications for proxy interpretation, Paleoceanography, 30, 527–547, 2015.
Kug, J.-S. and Ham, Y.-G.: Are there two types of La Nina?, Geophys. Res. Lett., 38, L16704, https://doi.org/10.1029/2011GL048237, 2011.
Kug, J.-S., Jin, F.-F., and An, S.-I.: Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño, J. Climate, 22, 1499–1515, 2009.
Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., and Cane, M.: Unraveling the Mystery of Indian Monsoon Failure During El Niño, Science, 314, 115–119, 2006.
Larkin, N. K. and Harrison, D. E.: On the definition of El Niño and associated seasonal average U.S. weather anomalies, Geophys. Res. Lett., 32, L13705, https://doi.org/10.1029/2005GL022738, 2005.
Lau, N.-C. and Nath, M. J.: Impact of ENSO on the Variability of the Asian–Australian Monsoons as Simulated in GCM Experiments, J. Climate, 13, 4287–4309, 2000.
Lee, T. and McPhaden, M. J.: Increasing intensity of El Niño in the central-equatorial Pacific, Geophys. Res. Lett., 37, L14603, https://doi.org/10.1029/2010gl044007, 2010.
Linsley, B. K., Wellington, G. M., Schrag, D. P., Ren, L., Salinger, M. J., and Tudhope, A. W.: Geochemical evidence from corals for changes in the amplitude and spatial pattern of South Pacific interdecadal climate variability over the last 300 years, Clim. Dynam., 22, 1–11, 2004.
Mann, M. E., Gille, E., Overpeck, J., Gross, W., Bradley, R. S., Keimig, F. T., and Hughes, M. K.: Global Temperature Patterns in Past Centuries: An Interactive Presentation, Earth Interact., 4, 1–29, 2000.
McCarroll, D. and Loader, N. J.: Stable isotopes in tree rings, Quaternary Sci. Rev., 23, 771–801, 2004.
McPhaden, M. J., Lee, T., and McClurg, D.: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean, Geophys. Res. Lett., 38, L15709, https://doi.org/10.1029/2011GL048275, 2011.
Newman, M., Shin, S.-I., and Alexander, M. A.: Natural variation in ENSO flavors, Geophys. Res. Lett., 38, L14705, https://doi.org/10.1029/2011GL047658, 2011.
O'Kane, T. J., Matear, R. J., Chamberlain, M. A., and Oke, P. R.: ENSO regimes and the late 1970's climate shift: The role of synoptic weather and South Pacific ocean spiciness, J. Comput. Phys., 271, 19–38, 2014.
Pfeiffer, M., Dullo, W.-C., Zinke, J., and Garbe-Schönberg, D.: Three monthly coral Sr / Ca records from the Chagos Archipelago covering the period of 1950–1995 A.D.: reproducibility and implications for quantitative reconstructions of sea surface temperature variations, Int. J. Earth Sci., 98, 53–66, 2009.
Pierrehumbert, R. T.: Thermostats, Radiator Fins, and the Local Runaway Greenhouse, J. Atmos. Sci., 52, 1784–1806, 1995.
Quinn, T. M., Taylor, F. W., and Crowley, T. J.: Coral-based climate variability in the Western Pacific Warm Pool since 1867, J. Geophys. Res.-Oc., 111, C11006, https://doi.org/10.1029/2005JC003243, 2006.
Ren, H.-L. and Jin, F.-F.: Niño indices for two types of ENSO, Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031, 2011.
Sano, M., Xu, C., and Nakatsuka, T.: A 300-year Vietnam hydroclimate and ENSO variability record reconstructed from tree ring d18O, J. Geophys. Res., 117, D12115, https://doi.org/10.1029/2012jd017749, 2012.
Sarachik, E. S. and Cane, M. A.: The El Niño-Southern Oscillation Phenomenon, Cambridge University Press, London, 2010.
Schollaen, K., Heinrich, I., Neuwirth, B., Krusic, P. J., D'Arrigo, R. D., Karyanto, O., and Helle, G.: Multiple tree-ring chronologies (ring width, δ13C and δ18O) reveal dry and rainy season signals of rainfall in Indonesia, Quaternary Sci. Rev., 73, 170–181, 2013.
Schollaen, K., Heinrich, I., and Helle, G.: UV-laser-based microscopic dissection of tree rings – a novel sampling tool for δ13C and δ18O studies, New Phytol., 201, 1045–1055, 2014.
Schulman, E.: Dendroclimatic Change in Semiarid America, University of Arizona Press, Tuscon, Arizona, 1956.
Schulz, M. and Mudelsee, M.: REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series, Comput. Geosci., 28, 421–426, 2002.
Stahle, D. W., Cleaveland, M. K., Therrell, M. D., Gay, D. A., D'Arrigo, R. D., Krusic, P. J., Cook, E. R., Allan, R. J., Cole, J. E., Dunbar, R. B., Moore, M. D., Stokes, M. A., Burns, B. T., Villanueva-Diaz, J., and Thompson, L. G.: Experimental Dendroclimatic Reconstruction of the Southern Oscillation, Bull. Am. Meteorol. Soc., 79, 2137–2152, 1998.
Takahashi, K., Montecinos, A., Goubanova, K., and Dewitte, B.: ENSO regimes: Reinterpreting the canonical and Modoki El Niño, Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364, 2011.
Taschetto, A. S. and England, M. H.: El Niño Modoki impacts on Australian rainfall, J. Climate, 22, 3167–3174, 2009.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, Bull. Am. Meteorol. Soc., 79, 61–78, 1998.
Tudhope, A. W., Chilcott, C. P., McCulloch, M. T., Cook, E. R., Chappell, J., Ellam, R. M., Lea, D. W., Lough, J. M., and Shimmield, G. B.: Variability in the El Niño – Southern oscillation through a glacial-interglacial cycle, Science, 291, 1511–1517, 2001.
Visser, H. and Molenaar, J.: Kalman Filter Analysis in Dendroclimatology, Biometrics, 44, 929–940, 1988.
Wheeler, M. C. and McBride, J. L.: Australian-Indonesian monsoon. In: Intraseasonal Variability in the Atmosphere-Ocean Climate System, Springer Praxis Books, Springer Berlin Heidelberg, 2005.
Wilson, R., Cook, E., D'Arrigo, R., Riedwyl, N., Evans, M. N., Tudhope, A., and Allan, R.: Reconstructing ENSO: the influence of method, proxy data, climate forcing and teleconnections, J. Quat. Sci., 25, 62–78, 2010.
Wilson, R., Miles, D., Loader, N., Melvin, T., Cunningham, L., Cooper, R., and Briffa, K.: A millennial long March–July precipitation reconstruction for southern-central England, Clim. Dynam., 40, 997–1017, 2013.
Wilson, R., Tudhope, A., Brohan, P., Briffa, K., Osborn, T., and Tett, S.: Two-hundred-fifty years of reconstructed and modeled tropical temperatures, J. Geophys. Res.-Oc., 111, C10007, https://doi.org/10.1029/2005JC003188, 2006.
Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B. P., and Jin, F.-F.: El Niño in a changing climate, Nature, 461, 511–514, 2009.
Zhu, M., Stott, L., Buckley, B., Yoshimura, K., and Ra, K.: Indo-Pacific Warm Pool convection and ENSO since 1867 derived from Cambodian pine tree cellulose oxygen isotopes, J. Geophys. Res., 117, D11307, https://doi.org/10.1029/2011jd017198, 2012.
Short summary
Indonesia’s climate has been linked to El Niño-Southern Oscillation (ENSO) events that often result in extensive droughts and floods over Indonesia. In this study we investigate ENSO-related signals in a tree-ring δ18O record of Javanese teak. Our results reveal a clear influence of Warm Pool El Niño events on Javanese tree-ring δ18O. These results illustrate the importance of considering ENSO flavors when interpreting palaeoclimate proxy records in the tropics.
Indonesia’s climate has been linked to El Niño-Southern Oscillation (ENSO) events that often...