Articles | Volume 10, issue 2
https://doi.org/10.5194/cp-10-783-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-10-783-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Geochronological reconsideration of the eastern European key loess section at Stayky in Ukraine
A. Kadereit
Heidelberger Lumineszenzlabor, Geographisches Institut, Universität Heidelberg, Im Neuenheimer Feld 348, 69120 Heidelberg, Germany
G. A. Wagner
Heidelberger Lumineszenzlabor, Geographisches Institut, Universität Heidelberg, Im Neuenheimer Feld 348, 69120 Heidelberg, Germany
Related subject area
Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Pleistocene
Climate changes during the Late Glacial in southern Europe: new insights based on pollen and brGDGTs of Lake Matese in Italy
The climate and vegetation of Europe, North Africa and the Middle East during the Last Glacial Maximum (21,000 years BP) based on pollen data
Late Pleistocene glacial chronologies and paleoclimate in the northern Rocky Mountains
Cryogenic cave carbonates in the Dolomites (northern Italy): insights into Younger Dryas cooling and seasonal precipitation
Younger Dryas ice margin retreat in Greenland: new evidence from southwestern Greenland
Pleistocene glacial history of the New Zealand subantarctic islands
Palaeoclimate characteristics in interior Siberia of MIS 6–2: first insights from the Batagay permafrost mega-thaw slump in the Yana Highlands
Hydroclimate of the Last Glacial Maximum and deglaciation in southern Australia's arid margin interpreted from speleothem records (23–15 ka)
High-amplitude lake-level changes in tectonically active Lake Issyk-Kul (Kyrgyzstan) revealed by high-resolution seismic reflection data
Constant wind regimes during the Last Glacial Maximum and early Holocene: evidence from Little Llangothlin Lagoon, New England Tablelands, eastern Australia
Late Pleistocene–Holocene ground surface heat flux changes reconstructed from borehole temperature data (the Urals, Russia)
Sediment sequence and site formation processes at the Arbreda Cave, NE Iberian Peninsula, and implications on human occupation and climate change during the Last Glacial
Past freeze and thaw cycling in the margin of the El'gygytgyn crater deduced from a 141 m long permafrost record
Pre-LGM Northern Hemisphere ice sheet topography
Heinrich event 4 characterized by terrestrial proxies in southwestern Europe
Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans
Past climate changes and permafrost depth at the Lake El'gygytgyn site: implications from data and thermal modeling
Depositional dynamics in the El'gygytgyn Crater margin: implications for the 3.6 Ma old sediment archive
Coarsely crystalline cryogenic cave carbonate – a new archive to estimate the Last Glacial minimum permafrost depth in Central Europe
Hydrological variability in the Northern Levant: a 250 ka multi-proxy record from the Yammoûneh (Lebanon) sedimentary sequence
Mary Robles, Odile Peyron, Guillemette Ménot, Elisabetta Brugiapaglia, Sabine Wulf, Oona Appelt, Marion Blache, Boris Vannière, Lucas Dugerdil, Bruno Paura, Salomé Ansanay-Alex, Amy Cromartie, Laurent Charlet, Stephane Guédron, Jacques-Louis de Beaulieu, and Sébastien Joannin
Clim. Past, 19, 493–515, https://doi.org/10.5194/cp-19-493-2023, https://doi.org/10.5194/cp-19-493-2023, 2023
Short summary
Short summary
Quantitative climate reconstructions based on pollen and brGDGTs reveal, for the Late Glacial, a warm Bølling–Allerød and a marked cold Younger Dryas in Italy, showing no latitudinal differences in terms of temperatures across Italy. In terms of precipitation, no latitudinal differences are recorded during the Bølling–Allerød, whereas 40–42° N appears as a key junction point between wetter conditions in southern Italy and drier conditions in northern Italy during the Younger Dryas.
Basil Andrew Stansfield Davis, Marc Fasel, Jed O. Kaplan, Emmanuele Russo, and Ariane Burke
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-59, https://doi.org/10.5194/cp-2022-59, 2022
Revised manuscript accepted for CP
Short summary
Short summary
During the last Ice Age 21 k BP, Northern Europe was covered in ice and steppe, and forests were restricted to sheltered regions to the south. However, the composition and extent of forest and its associated climate remains unclear, with models indicating more forest north of the Alps than suggested by the data. A new compilation of pollen records with improved dating suggests greater agreement with model climate, but still suggests models over estimate forest cover especially in the west.
Brendon J. Quirk, Elizabeth Huss, Benjamin J. C. Laabs, Eric Leonard, Joseph Licciardi, Mitchell A. Plummer, and Marc W. Caffee
Clim. Past, 18, 293–312, https://doi.org/10.5194/cp-18-293-2022, https://doi.org/10.5194/cp-18-293-2022, 2022
Short summary
Short summary
Glaciers in the northern Rocky Mountains began retreating 17 000 to 18 000 years ago, after the end of the most recent global ice volume maxima. Climate in the region during this time was likely 10 to 8.5° colder than modern with less than or equal to present amounts of precipitation. Glaciers across the Rockies began retreating at different times but eventually exhibited similar patterns of retreat, suggesting a common mechanism influencing deglaciation.
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Short summary
This paper utilises a novel palaeoclimate archive from caves, cryogenic cave carbonates, which allow for precisely constraining permafrost thawing events in the past. Our study provides new insights into the climate of the Younger Dryas (12 800 to 11 700 years BP) in mid-Europe from the perspective of a high-elevation cave sensitive to permafrost development. We quantify seasonal temperature and precipitation changes by using a heat conduction model.
Svend Funder, Anita H. L. Sørensen, Nicolaj K. Larsen, Anders A. Bjørk, Jason P. Briner, Jesper Olsen, Anders Schomacker, Laura B. Levy, and Kurt H. Kjær
Clim. Past, 17, 587–601, https://doi.org/10.5194/cp-17-587-2021, https://doi.org/10.5194/cp-17-587-2021, 2021
Short summary
Short summary
Cosmogenic 10Be exposure dates from outlying islets along 300 km of the SW Greenland coast indicate that, although affected by inherited 10Be, the ice margin here was retreating during the Younger Dryas. These results seem to be corroborated by recent studies elsewhere in Greenland. The apparent mismatch between temperatures and ice margin behaviour may be explained by the advection of warm water to the ice margin on the shelf and by increased seasonality, both caused by a weakened AMOC.
Eleanor Rainsley, Chris S. M. Turney, Nicholas R. Golledge, Janet M. Wilmshurst, Matt S. McGlone, Alan G. Hogg, Bo Li, Zoë A. Thomas, Richard Roberts, Richard T. Jones, Jonathan G. Palmer, Verity Flett, Gregory de Wet, David K. Hutchinson, Mathew J. Lipson, Pavla Fenwick, Ben R. Hines, Umberto Binetti, and Christopher J. Fogwill
Clim. Past, 15, 423–448, https://doi.org/10.5194/cp-15-423-2019, https://doi.org/10.5194/cp-15-423-2019, 2019
Short summary
Short summary
The New Zealand subantarctic islands, in the Pacific sector of the Southern Ocean, provide valuable records of past environmental change. We find that the Auckland Islands hosted a small ice cap around 384 000 years ago, but that there was little glaciation during the Last Glacial Maximum, around 21 000 years ago, in contrast to mainland New Zealand. This shows that the climate here is susceptible to changes in regional factors such as sea-ice expanse and the position of ocean fronts.
Kseniia Ashastina, Lutz Schirrmeister, Margret Fuchs, and Frank Kienast
Clim. Past, 13, 795–818, https://doi.org/10.5194/cp-13-795-2017, https://doi.org/10.5194/cp-13-795-2017, 2017
Short summary
Short summary
We present the first detailed description and sedimentological analyses of an 80 m permafrost sequence exposed in a mega-thaw slump near Batagay in the Yana Highlands, Russia, and attempt to deduce its genesis. First dating results (14C, OSL) show that the sequence represents a continental climate record spanning from the Middle Pleistocene to the Holocene. We suggest that the characteristics of the studied deposits are a result of various seasonally controlled climatically induced processes.
Pauline C. Treble, Andy Baker, Linda K. Ayliffe, Timothy J. Cohen, John C. Hellstrom, Michael K. Gagan, Silvia Frisia, Russell N. Drysdale, Alan D. Griffiths, and Andrea Borsato
Clim. Past, 13, 667–687, https://doi.org/10.5194/cp-13-667-2017, https://doi.org/10.5194/cp-13-667-2017, 2017
Short summary
Short summary
Little is known about the climate of southern Australia during the Last Glacial Maximum and deglaciation owing to sparse records for this region. We present the first high-resolution data, derived from speleothems that grew 23–5 ka. It appears that recharge to the Flinders Ranges was higher than today, particularly during 18.9–15.8 ka, argued to be due to the enhanced availability of tropical moisture. An abrupt shift to aridity is recorded at 15.8 ka, associated with restored westerly airflow.
Andrea Catalina Gebhardt, Lieven Naudts, Lies De Mol, Jan Klerkx, Kanatbek Abdrakhmatov, Edward R. Sobel, and Marc De Batist
Clim. Past, 13, 73–92, https://doi.org/10.5194/cp-13-73-2017, https://doi.org/10.5194/cp-13-73-2017, 2017
Short summary
Short summary
Seismic profiles from the western and eastern deltas of Lake Issyk-Kul were used to identify lake-level changes of up to 400 m. Seven stratigraphic sequences were identified, each containing a series of delta lobes that were formed during former lake-level stillstands. Lake-level fluctuations point to significant changes in the strength and position of the Siberian High and the mid-latitude Westerlies. Their interplay is responsible for the amount of moisture that reaches this area.
James Shulmeister, Justine Kemp, Kathryn E. Fitzsimmons, and Allen Gontz
Clim. Past, 12, 1435–1444, https://doi.org/10.5194/cp-12-1435-2016, https://doi.org/10.5194/cp-12-1435-2016, 2016
Short summary
Short summary
This paper highlights that small dunes (lunettes) formed on the eastern side of a lake in the Australian sub-tropics at the height of the last ice age (about 21,000 years ago) and in the early part of the current interglacial (9–6,000 years ago). This means that it was fairly wet at these times and also that there were strong westerly winds to form the dunes. Today strong westerly winds occur in winter, and we infer that the same was also true at those times, suggesting no change in circulation.
D. Y. Demezhko and A. A. Gornostaeva
Clim. Past, 11, 647–652, https://doi.org/10.5194/cp-11-647-2015, https://doi.org/10.5194/cp-11-647-2015, 2015
M. Kehl, E. Eckmeier, S. O. Franz, F. Lehmkuhl, J. Soler, N. Soler, K. Reicherter, and G.-C. Weniger
Clim. Past, 10, 1673–1692, https://doi.org/10.5194/cp-10-1673-2014, https://doi.org/10.5194/cp-10-1673-2014, 2014
G. Schwamborn, H. Meyer, L. Schirrmeister, and G. Fedorov
Clim. Past, 10, 1109–1123, https://doi.org/10.5194/cp-10-1109-2014, https://doi.org/10.5194/cp-10-1109-2014, 2014
J. Kleman, J. Fastook, K. Ebert, J. Nilsson, and R. Caballero
Clim. Past, 9, 2365–2378, https://doi.org/10.5194/cp-9-2365-2013, https://doi.org/10.5194/cp-9-2365-2013, 2013
J. M. López-García, H.-A. Blain, M. Bennàsar, M. Sanz, and J. Daura
Clim. Past, 9, 1053–1064, https://doi.org/10.5194/cp-9-1053-2013, https://doi.org/10.5194/cp-9-1053-2013, 2013
M. Damaschke, R. Sulpizio, G. Zanchetta, B. Wagner, A. Böhm, N. Nowaczyk, J. Rethemeyer, and A. Hilgers
Clim. Past, 9, 267–287, https://doi.org/10.5194/cp-9-267-2013, https://doi.org/10.5194/cp-9-267-2013, 2013
D. Mottaghy, G. Schwamborn, and V. Rath
Clim. Past, 9, 119–133, https://doi.org/10.5194/cp-9-119-2013, https://doi.org/10.5194/cp-9-119-2013, 2013
G. Schwamborn, G. Fedorov, N. Ostanin, L. Schirrmeister, A. Andreev, and the El'gygytgyn Scientific Party
Clim. Past, 8, 1897–1911, https://doi.org/10.5194/cp-8-1897-2012, https://doi.org/10.5194/cp-8-1897-2012, 2012
K. Žák, D. K. Richter, M. Filippi, R. Živor, M. Deininger, A. Mangini, and D. Scholz
Clim. Past, 8, 1821–1837, https://doi.org/10.5194/cp-8-1821-2012, https://doi.org/10.5194/cp-8-1821-2012, 2012
F. Gasse, L. Vidal, A.-L. Develle, and E. Van Campo
Clim. Past, 7, 1261–1284, https://doi.org/10.5194/cp-7-1261-2011, https://doi.org/10.5194/cp-7-1261-2011, 2011
Cited articles
Alley, R. B., Meese, D. A., Shuman, C. A., Gow, A. J., Taylor, K. C., Grootes, P. M., White, J. W. C., Ram, M., Waddington, E. D., Mayewski, P. A., and Zielinski, G. A.: Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event, Nature, 362, 527–529, 1993.
Andersen, K. K., Svensson, A., Johnsen, S. J., Rasmussen, S. O., Biglera, M., Röthlisberger, R., Ruth, U., Siggaard-Andersen, M.-L., Steffensen, J. P., Dahl-Jensen, D., Vinther, B. M., and Clausen, H. B.: The Greenland Ice Core Chronology 2005, 15–42 ka, Part 1: constructing the time scale, Quaternary Sci. Rev., 25, 3246–3257, 2006.
Antoine, P., Rousseau, D.-D., Zöller, L., Lang, A., Munaut, A. V., Hatté, C., and Fontugne, M.: High-resolution record of the Last Interglacial–Glacial cycle in the loess palaeosol sequences of Nussloch (Rhine Valley – Germany), Quatern. Int., 76/77, 211–229, 2001.
Antoine, P., Rousseau, D.-D., Moine, O., Kunesch, S., Hatté, C., Lang, A., Tissoux, H., and Zöller, L.: Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany, Quaternary Sci. Rev., 28, 2955–2973, 2009.
Antoine, P., Rousseau, D.-D., Degeai, J.-P., Moine, O., Lagroix, F., Kreutzer, S., Fuchs, M., Hatté, C., Gauthier, C., Svoboda, J., and Lisá, L.: High-resolution record of the environmental response to climatic variations during the Last InterglacialeGlacial cycle in Central Europe: the loess-palaeosol sequence of Dolní Vestonice (Czech Republic), Quaternary Sci. Rev., 67, 17–38, 2013.
Barron, E. and Pollard, D.: High-resolution climate simulations of oxygen isotope stage 3 in Europe, Quaternary Res., 58, 296–309, 2002.
Berger, G.: Thermoluminescence dating of the Pleistocene Old Crow tephra and adjacent loess near Fairbanks, Alaska, Can. J. Earth Sci., 24, 1975–1984, 1987.
Björck, S., Walker, M. J., Cwynar, L. C., Johnsen, S., Knudsen, K.-L., Lowe, J. J., Wohlfahrt, B., and INTIMATE Members: An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group, J. Quaternary Sci., 13, 283–292, 1998.
Bory, A. J.-M., Biscaye, P. E., Svensson, A., and Grousset, F. E.: Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP, Greenland, Earth Planet. Sc. Lett., 196, 123–134, 2002.
Briant, R. M. and Bateman, M. D.: Luminescence dating indicates radiocarbon age underestimation in late Pleistocene fluvial deposits from eastern England, J. Quaternary Sci., 24, 916–927, 2009.
Bronk Ramsey, C.: OxCal Program v4.1, https://c14.arch.ox.ac.uk/oxcal/OxCal.html, last access: 1 July 2012.
Buggle, B., Hambach, U., Glaser, B., Gerasimenko, N., Markovic, S., Glaser, I., and Zöller, L.: Stratigraphy, and spatial and temporal paleoclimatic trends in Southeastern/Eastern European loess-palaeosol sequences, Quatern. Int., 196, 86–106, 2009.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, 1993.
Fairbanks, R. G., Mortlock, R. A., Chiu, T.-C., Cao, L., Kaplan, A., Guilderson, T. P., Fairbanks, T. W., and Bloom, A. L.: Marine radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C Dates on pristine corals, Quaternary Sci. Rev., 24, 1781–1796, 2005.
Fuchs, M., Rousseau, D.-D., Antoine, P., Hatté, C., Gauthier, C., Markovic, S., and Zöller, L.: Chronology of the Last Climatic Cycle (Upper Pleistocene) of the Surduk loess sequence, Vojvodina, Serbia, Boreas, 37, 66–73, 2008.
Fuchs, M., Kreutzer, S., Rousseau, D.-D., Antoine, P., Hatté, C., Lagroix, F., Moine, O., Gauthier, C., Svoboda, J., and Lisá, L.: The loess sequence of Dolní Vestonice, Czech Republic: A new OSL-based chronology of the Last Climatic Cycle, Boreas, 42, 664–677, https://doi.org/10.1111/j.1502-3885.2012.00299.x, 2013.
GRIP Members – Greenland Ice-Core Project Members: Climate instability during the last Glacial period recorded in the GRIP ice core, Nature, 364, 203–208, 1993.
Guiter, F., Andrieu-Ponel, V., de Beaulieu, J.-L., Cheddadi, R., Calvez, M., Ponel, P., Reille, M., Keller, T., and Goeury, C.: The last climatic cycles in Western Europe: a comparison between long continuous lacustrine sequences from France and other terrestrial records, Quatern. Int., 111, 59–74, 2003.
Haase, D., Fink, J., Haase, G., Ruske, R., Pécsi, M., Richter, H., Altermann, M., and Jäger, K.-D.: Loess in Europe – its spatial distribution based on a European Loess Map, scale 1:2,500,000, Quaternary Sci. Rev., 26, 1301–1312, 2007.
Haesaerts, P., Borziac, I., Chekha, V. P., Chirica, V., Drozdov, N. I., Koulakovska, L., Orlova, L. A., van der Plicht, J., and Damblon, F.: Charcoal and wood remains for radiocarbon dating Upper Pleistocene loess sequences in Eastern Europe and Central Siberia, Palaeogeogr. Palaeocl., 291, 106–127, 2010.
Hatté, C., Pessenda, L. C., Lang, A., and Paterne, M.: Development of accurate and reliable 14C chronologies for loess deposits: application to the loess sequence of Nußloch (Rhine Valley, Germany), Radiocarbon, 43, 611–618, 2001.
Hemming, S.: Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint, Rev. Geophys., 42, RG1005, https://doi.org/10.1029/2003RG000128, 2004.
Higham, T.: European Middle and Upper Palaeolithic radiocarbon dates are often older than they look: problems with previous dates and some remedies, Antiquity, 85, 235–249, 2011.
Hoek, W. Z., Yu, Z. C., and Lowe, J. J.: INTegration of Ice-core, Marine, and Terrestrial records (INTIMATE): refining the record of the Last Glacial-Interglacial Transition, Quaternary Sci. Rev., 27, 1–5, 2008.
Huijzer, B. and Vandenberghe, J.: Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe, J. Quaternary Sci., 13/5, 391–417, 1998.
IUSS Working Group: World Reference Base for Soil Resources, WRB, revised edition, World Soil Resources Reports 103, Rome, 1–128, 2007.
Johnsen, S. J., Dahl-Jensen, D., Dansgaard, W., and Gundestrup, N.: Greenland palaeotemperatures derived from GRIP bore hole temperature and ice isotope profiles, Tellus, 47, 624–629, 1995.
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Gundestrup, N., Hammer, C. U., Andersen, U., Andersen, K. K., Hvidberg, C. S., Dahl-Jensen, D., Steffensen, J. P., Shoji, H., Sveinbjornsdottir, A. E., White, J., Jouzel, J., and Fisher, D.: The δ18O record along the Greenland Ice Core Project deep ice core and possible Eemian climate instability, J. Geophys. Res., 102, 26397–26410, 1997.
Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J. P., Clausen, H. B., Miller, H., Masson-Delmotte, V., Sveinbjornsdottir, A. E., and White, J.: Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP, J. Quaternary Sci., 16, 299–307, 2001.
Kadereit, A., Kühn, P., and Wagner, G. A.: Holocene relief and soil changes in loess-covered areas of south-western Germany: the pedosedimentary archives of Bretten-Bauerbach (Kraichgau), Quatern. Int., 222, 99–119, 2010.
Kadereit, A., Kind, C.-J., and Wagner, G. A.: The chronological position of the Lohne Soil in the Nussloch loess section – re-evaluation for a European loess-marker horizon, Quaternary Sci. Rev., 59, 67–86, https://doi.org/10.1016/j.quascirev.2012.10.026, 2013.
Krbetschek, M. R., Rieser, U., and Stolz, W.: Optical dating: Some luminescence properties of natural feldspars, Radiat. Protect. Dosimet., 66, 407–412, 1996.
Kreutzer, S., Fuchs, M., Meszner, S., and Faust, D.: OSL chronostratigraphy of a loess-palaeosol sequence in Saxony/Germany using quartz of different grain sizes, Quatern. Geochronol., 10, 102–109, 2012.
Lang, A.: Die Infrarot-Stimulierte-Lumineszenz als Datierungsmethode für holozäne Lössderivate, Ein Beitrag zur Chronometrie kolluvialer, alluvialer und limnischer Sedimente in Südwestdeutschland, Heidelberger Geographische Arbeiten, 103, 1–137, 1996.
Lang, A.: Optical dating of Late Glacial and Holocene sediments: test cases of water born sediments from central Europe, oral presentation, 4th International Conference on Geomorphology, 28 August–3 September 1997, Supplementi di Geografia Fisica e Dinamica Quaternaria, Supplemento III-1997, Bologna, Italy, p. 241, 1997.
Lang, A.,and Wagner, G. A.: Infrared stimulated luminescence dating of archaeosediments, Archaeometry, 38, 129–141, 1996.
Lang, A., Lindauer, S., Kuhn, R., and Wagner, G. A.: Procedures used for optically and infrared stimulated luminescence dating of sediments in Heidelberg, Ancient TL, 14, 7–11, 1996.
Lang, A., Hatté, C., Rousseau, D.-D., Antoine, P., Fontugne, M., Zöller, L., and Hambach, U., High-resolution chronologies for loess: comparing AMS 14C and optical dating results, Quaternary Sci. Rev., 22/10-13, 953–959, 2003.
Lomax, J., Fuchs, M., Preusser, F., and Fiebig, M.: Luminescence based loess chronostratigraphy of the Upper Palaeolithic site Krems-Wachtberg, Austria, Quatern. Int., https://doi.org/10.1016/j.quaint.2012.10.037, in press, 2012.
Lüthgens, C.: The age of Weichselian main ice marginal positions in north-eastern Germany inferred from Optically Stimulated Luminescence (OSL) dating, PhD-thesis, http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000022882, Freie Universität Berlin, Berlin, 2011.
Machalett, B., Oches, E., Haam, E., Lai, Z. P., and Endlicher, W.: Late Pleistocene Aeolian Dust Dynamics in Central Asia and their Teleconnection with Short-term Climate Oscillations and Abrupt Climate Events in the Northern Hemisphere, XVIII INQUA Bern, Quaternary Sciences – the view from the mountains, 21–27 July 2011, Abstract 3073, Bern, 2011.
Machalett, B., Oches, E., Haam, E., Lai, Z. P., and Endlicher, W.: Long Term Seasonality Changes and Short Term Climate Variability Recorded in Eurasian Loess: Examples from Serbia, Romania, Kazakhstan, and China, Geophys. Res. Abstr., 14, EGU2012-13305, 2012.
Markovic, S. B., Hambach, U., Catto, N., Jovanovica, M., Buggle, B., Machalett, B., Zöller, L., Glaser, B., and Frechen, M.: Middle and Late Pleistocene loess sequences at Batajnica, Vojvodina, Serbia, Quatern. Int., 198, 255–266, 2009.
Mauz, B., Bode, T., Mainz, E., Blanchard, H., Hilger, W., Dikau, R., and Zöller, L.: The luminescence dating laboratory at the University of Bonn: equipment and procedures, Ancient TL, 20/2, 53–61, 2002.
Meese, D. A., Gow, A. J., Grootes, P. M., Mayewski, P. A., Ram, M., Stuiver, M., Taylor, K. C., Waddington, E. D., and Zielinski, G. A.: The accumulation record from the GISP2 core as an indicator of climate change throughout the Holocene, Science, 266, 1680–1682, 1994.
Molodkov, A. and Bolikhovskaya, N.: Climate change dynamics in Northern Eurasia over the last 200 ka: Evidence from mollusc-based ESR-chronostratigraphy and vegetation successions of the loess–palaeosol records, Quatern. Int., 201, 67–76, 2009.
Necea, D., Fielitz, W., Kadereit, A., Andriessen, P. A. M., and Dinu, C.: Middle Pleistocene to Holocene fluvial terrace development and uplift-driven valley incision in the SE Carpathians, Romania, Tectonophysics, 602, 332–354, 2013.
Pirson, S., Flas, D., Abrams, G., Bonjean, D., Court-Picon, M., Di Modica, K., Draily, C., Damblon, F., Haesaerts, P., Miller, R., Rougier, H., Toussaint, M., and Semal, P.: Chronostratigraphic context of the Middle to Upper Palaeolithic transition: Recent data from Belgium, Quatern. Int., 259, 78–94, 2012.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M.-L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.-E., and Ruth, U.: A new Greenland ice core chronology for the last glacial termination, J. Geophys. Res., 111, D06102, https://doi.org/10.1029/2005JD006079, 2006.
Rasmussen, S. O., Seierstad, I. K., Andersen, K. K., Bigler, M., Dahl-Jensen, D., and Johnsen, S. J.: Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and palaeoclimatic implications, Quaternary Sci. Rev., 27, 18–28, 2008.
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeyer, C. E.: Intcal09 and Marine09 Radiocarbon age calibration curves, 0–50,000 years cal BP, Radiocarbon, 51, 1111–1150, 2009.
Rieser, U. and Wang, N.: Dating polymineral finegrains: Experiences with the Single Aliquot Regenerative technique, poster presentation, 13th International Conference on Luminescence and Electron Spin Resonance Dating, 10–14 July 2011, Torun, Poland and Book of Abstracts, p. 169, 2011.
Rousseau, D. D., Gerasimenko, N. P., Matviischina, Z., and Kukla, G. J.: Late Pleistocene environments of the Central Ukraine, Quaternary Res., 56, 349–356, 2001.
Rousseau, D.-D., Antoine, P., Hatté, C., Lang, A., Zöller, L., Fontugne, M., Ben Othman, D., Luck, J. M., Moine, O., Labonne, M., Bentaleb, I., and Jolly, D.: Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the Last Glaciation, Rapid Communication, Quaternary Sci. Rev., 21/14–15, 1577–1582, 2002.
Rousseau, D.-D., Kukla, G., and McManus, J.: What is what in the ice and the ocean?, Quaternary Sci. Rev., 25, 2025–2030, 2006.
Rousseau, D.-D., Antoine, P., Gerasimenko, N., Sima, A., Fuchs, M., Hatté, C., Moine, O., and Zoeller, L.: North Atlantic abrupt climatic events of the last glacial period recorded in Ukrainian loess deposits, Clim. Past, 7, 221–234, https://doi.org/10.5194/cp-7-221-2011, 2011.
Ruth, U.: Mineral dust records from Greenland ice cores, PAGES Newsletter, 13/3, 17–18, 2005.
Ruth, U., Wagenbach, D., Bigler, M., Steffensen, J. P., Röthlisberger, R., and Miller, H.: High-resolution microparticle profiles at NorthGRIP, Greenland: case studies of the calcium-dust relationship, Ann. Glaciol., 35, 237–242, 2002.
Ruth, U., Wagenbach, D., Steffensen, J. P., and Bigler, M.: Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period, J. Geophys. Res., 108, 1-1–1-12, 2003.
Schirmer, W.: Rhine loess at Schwalbenberg II – MIS 4 and 3, Eiszeitalter Gegenwart, 61/1, 32–47, https://doi.org/10.3285/eg.61.1.03, 2012.
Schönhals, E., Rohdenburg, H., and Semmel, A.: Ergebnisse neuerer Untersuchungen zur Würmlößgliederung in Hessen, Eiszeitalter Gegenwart, 15, 199–206, 1964.
Schulz, M.: On the 1470-year pacing of Dansgaard-Oeschger warm events, Paeleoceanography, 17, 4-1–4-9, https://doi.org/10.1029/2000PA000571, 2002.
Semmel, A.: Ein Lößprofil bei Lisieux (Normandie) und seine stratigraphische Parallelisierung mit Würmlössen in Hessen, Eiszeitalter Gegenwart, 45, 59–61, 1995.
Shackleton, N. J., Hall, M. A., and Vincent, E.: Phase relationships between millennial-scale events 64,000–24,000 years ago, Paleoceanography, 15, 565–569, 2000.
Shackleton, N. J., Fairbanks, R. G., Chiu, T., and Parrenin, F.: Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ14C, Quaternary Sci. Rev., 23, 1513–1522, 2004.
Skinner, L. C.: Revisiting the absolute calibration of the Greenland ice-core age-scales, Clim. Past, 4, 295–302, https://doi.org/10.5194/cp-4-295-2008, 2008.
Sommer, R. and Zachos, F. E.: Fossil evidence and phylogeography of temperate species: 'glacial refugia' and post-glacial recolonization, J. Biogeogr., 36, 2013–2020, 2009.
Sowers, T., Bender, M., Labeyrie, L., Martinson, D., Jouzel, J., Raynaud, D., Pichon, J. J., and Korotkevich, Y. S.: A 135,000 year Vostok-SPECMAP common temporal framework, Paleooceanography, 8, 737–766, 1993.
Spoetl, C., Reimer, P. J., Starnberger, R., and Reimer, R. W.: A new radiocarbon chronology of Baumkirchen, stratotype for the onset of the Upper Würmian in the Alps, J. Quaternary Sci., 28, 552–558, 2013.
Stevens, T., Markovic, S., Zech, M., Hambach, U., and Sümegi, P.: Dust deposition and climate in the Carpathian basin over an independently dated last glacial-interglacial cycle, Quaternary Sci. Rev., 30, 662–681, 2011.
Stevens, T., Bird, A., Carter, A., Vermeesch, P., Watson, T., Lu, H., Andò, S., Garzanti, E., Cottam, M., Sevastjanova, I., and Rittner, M.: Rivers of dust – loess deposition and major rivers, Oral presentation and section in written form in book of abstracts, 36. Hauptversammlung, 16–20 September 2012, DEUQUA, Bayreuth, 2012.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Rasmussen, S. O., Röthlisberger, R., Steffensen, J. P., and Vinther, B. M.: The Greenland Ice Core Chronology 2005, 15-42 ka, Part 2: Comparison to other records, Quaternary Sci. Rev., 25, 3258–3267, 2006.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., R"othlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008.
Talamo, S., Hughen, K. A., Kromer, B., and Reimer, P.: Debates over Palaeolithic chronology – the reliability of 14C is confirmed, J. Archaeol. Sci., 39, 2464–2467, 2012.
Terhorst, B., Appel, E., and Werner, A.: Palaeopedology and magnetic susceptibility of a loess-palaeosol sequence in southwest Germany, Quatern. Int., 76/77, 231–240, 2001.
Terhorst, B., Thiel, C., Peticzka, R., Sprafke, T., Frechen, M., Fladerer, F. A., Roetzel, R., and Neugebauer-Maresch, C.: Casting new light on the chronology of the loess/paleosol sequences in Lower Austria, Eiszeitalter Gegenwart, 60, 270–277, 2011.
Timar, A., Vandenberghe, D., Panaiotu, C. E., Panaiotu, C. G., Necula, C., Cosma, C., and van den Haute, P.: Optical dating of Romanian loess using fine-grained quartz, Quatern. Geochronol., 5, 143–148, 2010.
Törnqvist, T. E., Wallinga, J., Murray, A. S., de Wolf, H., Clevering, P., and de Gans, W.: Response of the Rhine–Meuse system (west-central Netherlands) to the last Quaternary glacio-eustatic cycles: a first assessment, Global Planet. Change, 27, 89–111, 2000.
van Huissteden, J. and Kasse, C.: Detection of rapid climate change in Last Glacial fluvial successions in The Netherlands, Global Planet. Change, 28, 319–339, 2001.
Vasiliniuc, S., Vandenberghe, D. A. G., Timar-Gabor, A., Cosma, C., and van den Haute, P.: Combined IRSL and post-IR OSL dating of Romanian loess using single aliquots of polymineral fine grains, Quatern. Int., 293, 15–21, 2013.
Wagner, B.: Spatial analysis of loess and loess-like sediments in the Weser-Aller catchment (Lower Saxony and Northern Hesse, NW Germany), Eiszeitalter Gegenwart, 60/1, 27–46, https://doi.org/10.3285/eg.60.1.02, 2011.
Wallinga, J., Murray, A., and Duller, G.: Underestimation of equivalent dose in single-aliquot optical dating of feldspars caused by preheating, Radiat. Meas., 32, 691–695, 2000.
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C.-C., and Dorale, J. A.: A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China, Science, 294, 2345–2348, 2001.
Weninger, B. and Jöris, O.: 14C age calibration curve for the last 60 ka: the Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia, J. Human Evol., 55, 772–781, 2008.
Weninger, B., Jöris, O., and Danzeglocke, U.: CalPal-2007, Cologne Radiocarbon Calibration & Palaeoclimate Research Package, http://www.calpal.de/, last access: 15 May 2012.
Wiesenberg, G. L. B.: Lateral and depth variation of loess organic matter overprint related to rhizoliths – Revealed by lipid molecular proxies and X-ray tomography, Catena, 112, 72–85, https://doi.org/10.1016/j.catena.2012.11.011, 2014.
Wunsch, C., Abrupt climate change: An alternative view, Quaternary Res., 65, 191–203, 2006.
Zech, R.: Loess is the accumulation of dust, not evidence for aridity, Geophys. Res. Abstr., 15, EGU2013-11263, 2013.
Zöller, L. and Semmel, A.: 175 years of loess research in Germany – long records and "unconformities", Earth-Sci. Rev., 45, 19–28, 2001.