Articles | Volume 10, issue 2
https://doi.org/10.5194/cp-10-715-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-10-715-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The response of the Peruvian Upwelling Ecosystem to centennial-scale global change during the last two millennia
R. Salvatteci
LOCEAN, UMR7159 (IRD, CNRS, UPMC, MNHN), Institut Pierre Simon Laplace, Laboratoire d'Océanographie et du Climat: Expérimentations et Analyses Numériques, Centre IRD France Nord, 32 avenue Henri Varagnat, 93143 Bondy CEDEX, France
Instituto del Mar del Perú (IMARPE), Dirección General de Investigaciones Oceanográficas y Cambio Climático, Esquina Gamarra y General Valle s/n, Callao, Perú
present address: Institute of Geoscience, Department of Geology, Kiel University, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany
D. Gutiérrez
Instituto del Mar del Perú (IMARPE), Dirección General de Investigaciones Oceanográficas y Cambio Climático, Esquina Gamarra y General Valle s/n, Callao, Perú
Universidad Peruana Cayetano Heredia, Programa de Maestría en Ciencias del Mar, Av. Honorio Delgado 430, Urb. Ingeniería, S.M.P., Lima, Perú
D. Field
Hawaii Pacific University, College of Natural Sciences, 45-045 Kamehameha Highway, Kaneohe, Hawaii, 96744-5297, USA
A. Sifeddine
LOCEAN, UMR7159 (IRD, CNRS, UPMC, MNHN), Institut Pierre Simon Laplace, Laboratoire d'Océanographie et du Climat: Expérimentations et Analyses Numériques, Centre IRD France Nord, 32 avenue Henri Varagnat, 93143 Bondy CEDEX, France
Departamento de Geoquimica, Universidade Federal Fluminense, Niteroi, Brasil
LMI PALEOTRACES – Institut de recherche pour le développement, France; Universidade Federal Fluminense, Niteroi, Brasil; Universidad de Antofagasta, Chile
L. Ortlieb
LOCEAN, UMR7159 (IRD, CNRS, UPMC, MNHN), Institut Pierre Simon Laplace, Laboratoire d'Océanographie et du Climat: Expérimentations et Analyses Numériques, Centre IRD France Nord, 32 avenue Henri Varagnat, 93143 Bondy CEDEX, France
Universidad Peruana Cayetano Heredia, Programa de Maestría en Ciencias del Mar, Av. Honorio Delgado 430, Urb. Ingeniería, S.M.P., Lima, Perú
LMI PALEOTRACES – Institut de recherche pour le développement, France; Universidade Federal Fluminense, Niteroi, Brasil; Universidad de Antofagasta, Chile
I. Bouloubassi
LOCEAN, UMR7159 (IRD, CNRS, UPMC, MNHN), Institut Pierre Simon Laplace, Laboratoire d'Océanographie et du Climat: Expérimentations et Analyses Numériques, Université P. et M. Curie, 4 place Jussieu, P.O. Box 100, 75252 Paris cedex 05, France
M. Boussafir
Institut des Sciences de la Terre d'Orléans, UMR7327 – INSU/CNRS/BRGM/Université d'Orléans, 1A rue de la férollerie, 45071 Orléans CEDEX-2, France
H. Boucher
LOCEAN, UMR7159 (IRD, CNRS, UPMC, MNHN), Institut Pierre Simon Laplace, Laboratoire d'Océanographie et du Climat: Expérimentations et Analyses Numériques, Centre IRD France Nord, 32 avenue Henri Varagnat, 93143 Bondy CEDEX, France
LMI PALEOTRACES – Institut de recherche pour le développement, France; Universidade Federal Fluminense, Niteroi, Brasil; Universidad de Antofagasta, Chile
F. Cetin
LOCEAN, UMR7159 (IRD, CNRS, UPMC, MNHN), Institut Pierre Simon Laplace, Laboratoire d'Océanographie et du Climat: Expérimentations et Analyses Numériques, Centre IRD France Nord, 32 avenue Henri Varagnat, 93143 Bondy CEDEX, France
LMI PALEOTRACES – Institut de recherche pour le développement, France; Universidade Federal Fluminense, Niteroi, Brasil; Universidad de Antofagasta, Chile
Related authors
Marco Yseki, Bruno Turcq, Sandrine Caquineau, Renato Salvatteci, José Solis, C. Gregory Skilbeck, Federico Velazco, and Dimitri Gutiérrez
Clim. Past, 18, 2255–2269, https://doi.org/10.5194/cp-18-2255-2022, https://doi.org/10.5194/cp-18-2255-2022, 2022
Short summary
Short summary
In the present work we reconstruct changes in river discharge and wind in Peru during the last deglaciation to understand the mechanisms that modulate changes in precipitation and winds during a period of global warming. We found that changes in river discharge and wind intensity in Peru were sensitive to high-latitude forcing (changes in the intensity of the Atlantic Meridional Overturning Circulation) and Walker circulation variations on a millennial timescale, respectively.
Francisco Javier Briceño-Zuluaga, Abdelfettah Sifeddine, Sandrine Caquineau, Jorge Cardich, Renato Salvatteci, Dimitri Gutierrez, Luc Ortlieb, Federico Velazco, Hugues Boucher, and Carine Machado
Clim. Past, 12, 787–798, https://doi.org/10.5194/cp-12-787-2016, https://doi.org/10.5194/cp-12-787-2016, 2016
Short summary
Short summary
Comparison between records reveals a coherent match between the meridional displacement of the ITCZ-SPSH system and the regional fluvial and aeolian terrigenous input variability. The aeolian input intensity and the anoxic conditions recorded by marine sediments showed a close link that suggests a common mechanism associated with SPSH displacement. Changes in sediment discharge to the continental shelf are linked to the southward displacement of the ITCZ-SPSH and Walker circulation.
C. Ehlert, P. Grasse, D. Gutiérrez, R. Salvatteci, and M. Frank
Clim. Past, 11, 187–202, https://doi.org/10.5194/cp-11-187-2015, https://doi.org/10.5194/cp-11-187-2015, 2015
Marco Yseki, Bruno Turcq, Sandrine Caquineau, Renato Salvatteci, José Solis, C. Gregory Skilbeck, Federico Velazco, and Dimitri Gutiérrez
Clim. Past, 18, 2255–2269, https://doi.org/10.5194/cp-18-2255-2022, https://doi.org/10.5194/cp-18-2255-2022, 2022
Short summary
Short summary
In the present work we reconstruct changes in river discharge and wind in Peru during the last deglaciation to understand the mechanisms that modulate changes in precipitation and winds during a period of global warming. We found that changes in river discharge and wind intensity in Peru were sensitive to high-latitude forcing (changes in the intensity of the Atlantic Meridional Overturning Circulation) and Walker circulation variations on a millennial timescale, respectively.
David Noncent, Abdelfettah Sifeddine, Evens Emmanuel, Marie-Helene Cormier, Francisco J. Briceño-Zuluaga, Mercedes Mendez-Milan, Bruno Turcq, Sandrine Caquineau, Jorge Valdés, Juan Pablo Bernal, John W. King, Irina Djouraev, Fethiye Cetin, and Heather Sloan
EGUsphere, https://doi.org/10.5194/egusphere-2022-537, https://doi.org/10.5194/egusphere-2022-537, 2022
Preprint archived
Short summary
Short summary
The objective of this study is to reconstruct the climatic variability in Haiti during the last millennium using mineralogical and geochemical composition. We also seek to understand climate mechanisms and modes that could explain this variability. The results showed that Haiti has experienced long progressively drier periods over the past millennium. The rainy or dry periods in Haiti are linked to the average changes in the temperature of the oceans: Atlantic and Pacific, through oscillations.
Vincent Echevin, Manon Gévaudan, Dante Espinoza-Morriberón, Jorge Tam, Olivier Aumont, Dimitri Gutierrez, and François Colas
Biogeosciences, 17, 3317–3341, https://doi.org/10.5194/bg-17-3317-2020, https://doi.org/10.5194/bg-17-3317-2020, 2020
Short summary
Short summary
The coasts of Peru encompass the richest fisheries in the entire ocean. It is therefore very important for this country to understand how the nearshore marine ecosystem may evolve under climate change. Fine-scale numerical models are very useful because they can represent precisely the evolution of key parameters such as temperature, water oxygenation, and plankton biomass. Here we study the evolution of the Peruvian marine ecosystem in the 21st century under the worst-case climate scenario.
Heitor Evangelista, Ilana Wainer, Abdelfettah Sifeddine, Thierry Corrège, Renato C. Cordeiro, Saulo Lamounier, Daniely Godiva, Chuan-Chou Shen, Florence Le Cornec, Bruno Turcq, Claire E. Lazareth, and Ching-Yi Hu
Biogeosciences, 13, 2379–2386, https://doi.org/10.5194/bg-13-2379-2016, https://doi.org/10.5194/bg-13-2379-2016, 2016
Short summary
Short summary
Recent Southern Hemisphere (SH) atmospheric circulation, predominantly driven by stratospheric ozone depletion over Antarctica, has caused changes in climate across the extratropics. We present evidence that the Brazilian coast may have been impacted from both wind and sea surface temperature changes derived from this process. Skeleton analysis of massive coral species living in shallow waters off Brazil are very sensitive to air–sea interactions and seem to record this process.
Francisco Javier Briceño-Zuluaga, Abdelfettah Sifeddine, Sandrine Caquineau, Jorge Cardich, Renato Salvatteci, Dimitri Gutierrez, Luc Ortlieb, Federico Velazco, Hugues Boucher, and Carine Machado
Clim. Past, 12, 787–798, https://doi.org/10.5194/cp-12-787-2016, https://doi.org/10.5194/cp-12-787-2016, 2016
Short summary
Short summary
Comparison between records reveals a coherent match between the meridional displacement of the ITCZ-SPSH system and the regional fluvial and aeolian terrigenous input variability. The aeolian input intensity and the anoxic conditions recorded by marine sediments showed a close link that suggests a common mechanism associated with SPSH displacement. Changes in sediment discharge to the continental shelf are linked to the southward displacement of the ITCZ-SPSH and Walker circulation.
C. Ehlert, P. Grasse, D. Gutiérrez, R. Salvatteci, and M. Frank
Clim. Past, 11, 187–202, https://doi.org/10.5194/cp-11-187-2015, https://doi.org/10.5194/cp-11-187-2015, 2015
J. Apaéstegui, F. W. Cruz, A. Sifeddine, M. Vuille, J. C. Espinoza, J. L. Guyot, M. Khodri, N. Strikis, R. V. Santos, H. Cheng, L. Edwards, E. Carvalho, and W. Santini
Clim. Past, 10, 1967–1981, https://doi.org/10.5194/cp-10-1967-2014, https://doi.org/10.5194/cp-10-1967-2014, 2014
Short summary
Short summary
In this paper we explore a speleothem δ18O record from Palestina cave, northwestern Peru, on the eastern side of the Andes cordillera, in the upper Amazon Basin. The δ18O record is interpreted as a proxy for South American Summer Monsoon (SASM) intensity and allows the reconstruction of its variability during the last 1600 years. Replicating regional climate signals from different sites and using different proxies is essential for a comprehensive understanding of past changes in SASM activity.
C. Di Biagio, H. Boucher, S. Caquineau, S. Chevaillier, J. Cuesta, and P. Formenti
Atmos. Chem. Phys., 14, 11093–11116, https://doi.org/10.5194/acp-14-11093-2014, https://doi.org/10.5194/acp-14-11093-2014, 2014
C. Parinos, A. Gogou, I. Bouloubassi, R. Pedrosa-Pàmies, I. Hatzianestis, A. Sanchez-Vidal, G. Rousakis, D. Velaoras, G. Krokos, and V. Lykousis
Biogeosciences, 10, 6069–6089, https://doi.org/10.5194/bg-10-6069-2013, https://doi.org/10.5194/bg-10-6069-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Centennial-Decadal
A reconstruction of warm-water inflow to Upernavik Isstrøm since 1925 CE and its relation to glacier retreat
The climate of the Common Era off the Iberian Peninsula
Freshening of the Labrador Sea as a trigger for Little Ice Age development
Variability in terrigenous sediment supply offshore of the Río de la Plata (Uruguay) recording the continental climatic history over the past 1200 years
Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation
The Impact of the Little Ice Age on Coccolithophores in the Central Mediterranea Sea
Flor Vermassen, Nanna Andreasen, David J. Wangner, Nicolas Thibault, Marit-Solveig Seidenkrantz, Rebecca Jackson, Sabine Schmidt, Kurt H. Kjær, and Camilla S. Andresen
Clim. Past, 15, 1171–1186, https://doi.org/10.5194/cp-15-1171-2019, https://doi.org/10.5194/cp-15-1171-2019, 2019
Short summary
Short summary
By studying microfossils from sediments in Upernavik Fjord we investigate the role of ocean warming on the retreat of Upernavik Isstrøm during the past ~90 years. The reconstruction of Atlantic-derived waters shows a pattern similar to that of the Atlantic Multidecadal Oscillation, corroborating previous studies. The response of Upernavik Isstrøm to ocean forcing has been variable in the past, but the current retreat may be temporarily tempered by cooling bottom waters in the coming decade.
Fátima Abrantes, Teresa Rodrigues, Marta Rufino, Emília Salgueiro, Dulce Oliveira, Sandra Gomes, Paulo Oliveira, Ana Costa, Mário Mil-Homens, Teresa Drago, and Filipa Naughton
Clim. Past, 13, 1901–1918, https://doi.org/10.5194/cp-13-1901-2017, https://doi.org/10.5194/cp-13-1901-2017, 2017
Short summary
Short summary
Reconstructions of the last 2000-year climatic conditions along the Iberian Margin, a vulnerable region regarding current global warming, reveal a long-term cooling in sea surface temperature (SST) ending with the 19th century and centennial-scale variability that exposes warm SSTs throughout the first 1300 years followed by the colder Little Ice Age. The Industrial Era starts by 1800 CE, with an SST rise and a second increase in SST at ca. 1970 CE, particularly marked in the southern region.
Montserrat Alonso-Garcia, Helga (Kikki) F. Kleiven, Jerry F. McManus, Paola Moffa-Sanchez, Wallace S. Broecker, and Benjamin P. Flower
Clim. Past, 13, 317–331, https://doi.org/10.5194/cp-13-317-2017, https://doi.org/10.5194/cp-13-317-2017, 2017
Short summary
Short summary
This study focuses on understanding climatic and oceanographic variations that took place during the last 1000 years. We studied sediment samples from the Labrador Sea, looking for evidence of events of freshwater and iceberg discharges to this region. The importance of this study is to evaluate when these events happened and their consequences. The freshening of the Labrador Sea region may have played a major role in promoting cooling during the 15th to 19th centuries.
Laura Perez, Felipe García-Rodríguez, and Till J. J. Hanebuth
Clim. Past, 12, 623–634, https://doi.org/10.5194/cp-12-623-2016, https://doi.org/10.5194/cp-12-623-2016, 2016
Short summary
Short summary
The observed changes in the presented proxy records indicate variations in both the continental runoff and the marine influence, related to regional climatic variability. Therefore, we put forward the suggestion that global atmospheric changes (related to changes in SAMS and SACZ intensity) have made an impact on the hydrodynamics and, consequently, on the local sedimentation regime and the inner Uruguayan continental shelf over the past 1200 cal yr BP (AD 750–2000).
H. Kuehn, L. Lembke-Jene, R. Gersonde, O. Esper, F. Lamy, H. Arz, G. Kuhn, and R. Tiedemann
Clim. Past, 10, 2215–2236, https://doi.org/10.5194/cp-10-2215-2014, https://doi.org/10.5194/cp-10-2215-2014, 2014
Short summary
Short summary
Annually laminated sediments from the NE Bering Sea reveal a decadal-scale correlation to Greenland ice core records during termination I, suggesting an atmospheric teleconnection. Lamination occurrence is tightly coupled to Bølling-Allerød and Preboreal warm phases. Increases in export production, closely coupled to SST and sea ice changes, are hypothesized to be a main cause of deglacial anoxia, rather than changes in overturning/ventilation rates of mid-depth waters entering the Bering Sea.
A. Incarbona, P. Ziveri, E. Di Stefano, F. Lirer, G. Mortyn, B. Patti, N. Pelosi, M. Sprovieri, G. Tranchida, M. Vallefuoco, S. Albertazzi, L. G. Bellucci, A. Bonanno, S. Bonomo, P. Censi, L. Ferraro, S. Giuliani, S. Mazzola, and R. Sprovieri
Clim. Past, 6, 795–805, https://doi.org/10.5194/cp-6-795-2010, https://doi.org/10.5194/cp-6-795-2010, 2010
Cited articles
Aceituno, P., Fuenzalida, R., and Rosenblüth, B.: Climate along the extratropical west coast of South America, in: Earth system responses to global change, edited by: Mooney, H. A., Fuentes, E. R., and Kronberg, B. I., Academic Press, San Diego, 61–69, 1993.
Agnihotri, R., Altabet, M. A., Herbert, T., and Tierney, J. E.: Subdecadally resolved paleoceanography of the Peru margin during the last two millennia, Geochem. Geophy. Geosy., 9, 1–15, 2008.
Altabet, M. A. and Francois, R.: Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization, Global Biogeochem. Cy., 8, 103–116, 1994.
Altabet, M. A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., and Francois, R.: The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific, Deep-Sea Res. Pt. I, 46, 655–679, 1999.
Appleby, P. G.: Chronostratigraphic techniques in recent sediments, in: Tracking Environmental Change Using Lake Sediments, Volume 1: Basin Analysis, Coring, and Chronological Techniques, edited by: Last, W. M. and Smol, J. P., Kluwer Academic Publishers, Dordrecht, the Netherlands, 2001.
Bakun, A.: Global climate change and intensification of coastal upwelling, Science, 247, 198–201, 1990.
Bertaux, J., Fröhlich, F. and IIdefonse, P.: Multicomponent analysis of FTIR spectra: Quantification of amorphous and crystallized mineral phases in synthetic and natural sediments, J. Sediment. Res., 68, 440–447, 1998.
Bird, B. W., Abbott, M. B., Vuille, M., Rodbell, D. T., Stansell, N. D., and Rosenmeier, M. F.: A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes, P. Natl. Acad. Sci., 108, 8583–8588, 2011.
Bjerknes, J. H.: Atmospheric teleconnections from the equatorial Pacific, Mon. Weather Rev., 97, 163–172, 1969.
Böning, P., Brumsack, H. J., Bottcher, E., Schnetger, B., Kriete, C., Kallmeyer, J., and Borchers, S. L.: Geochemistry of Peruvian near-surface sediments, Geochim. Cosmochim. Acta, 68, 4429–4451, 2004.
Bradley, R.: 1000 years of climate change, Science, 288, 1353–1355, 2000.
Bradley, R. S., Hughes, M. K., and Diaz, H. F.: Climate in medieval times, Science, 302, 404–405, 2003.
Bratcher, A. J. and Giese, B. S.: Tropical Pacific decadal variability and global warming, Geophys. Res. Lett., 29, 1918, https://doi.org/10.1029/2002GL015191, 2002.
Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to Northern Hemisphere cooling, Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546, 2006.
Chavez, F. P. and Messié, M.: A comparison of Eastern Boundary Upwelling Ecosystems, Prog. Oceanogr., 83, 80–96, 2009.
Chavez, F. P., Messié, M., and Pennington, J. T.: Marine primary production in relation to climate variability and change, Annu. Rev. Mar. Sci., 3, 227–260, 2011.
Clement, A. C., Seager, R., Cane, M. A., and Zebiak, S. E.: An Ocean dynamical thermostat, J. Climate, 9, 2190–2196, 1996.
Cobb, K. M., Charles, C. D., Cheng, H., and Edwards, R. L.: El Niño/Southern Oscillation and tropical Pacific climate during the last millennium, Nature, 424, 271–276, 2003.
Colodner, D., Sachs, J., Ravizza, G., Turekian, K., Edmond, J., and Boyle, E.: The geochemical cycle of rhenium: a reconnaissance, Earth Planet. Sc. Lett., 117, 205–221, 1993.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D. and Worley, S. J.: The Twentieth Century Reanalysis Project. Q. J. Roy. Meteorol. Soc. Pt. A, 137, 1–28, 2011.
Conroy, J. L., Restrepo, A., Overpeck, J. T., Steinitz-Kannan, M., Cole, J. E., Bush, M. B., and Colinvaux, P. A.: Unprecedent recent warming of surface temperatures in the eastern tropical Pacific Ocean, Nat. Geosci., 2, 46–50, 2009.
Conroy, J. L., Overpeck, J. T., and Cole, J. E.: El Niño/Southern Oscillation and changes in the zonal gradient of tropical Pacific sea surface temperature over the last 1.2 ka, PAGES News, 18, 32–34, 2010.
Crusius, J., Calvert, S., Pedersen, T., and Sage, D.: Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition, Earth Planet. Sc. Lett., 145, 65–78, 1996.
Dean, W. E., Zheng, Y., Ortiz, J. D., and van Geen, A.: Sediment Cd and Mo accumulation in the oxygen-minimum zone off western Baja California linked to global climate over the past 52 kyr, Paleoceanography, 21, PA4209, https://doi.org/10.1029/2005PA001239, 2006.
DeMaster, D. J.: The supply and accumulation of silica in the marine environment, Geochim. Cosmochim. Acta, 45, 1715–1732, 1981.
De Pol-Holz, R., Ulloa, O., Dezileau, L., Kaiser, J., Lamy, F., and Hebbeln, D.: Melting of the Patagonian Ice Sheet and deglacial perturbations of the nitrogen cycle in the eastern South Pacific, Geophys. Res. Lett., 33, L04704, https://doi.org/10.1029/2005GL024477, 2006.
Echevin, V., Aumont, O., Ledesma, J., and Flores, G.: The seasonal cycle of surface chlorophyll in the Peruvian upwelling system: A modelling study, Prog. Oceanogr., 79, 167–176, 2008.
Falvey, M. and Garreaud, R. D.: Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006), J. Geophys. Res., 114, D04102, https://doi.org/10.1029/2008JD010519, 2009.
Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.: Present-day South American climate, Palaeogeogr. Palaeocl., 281, 180–195, 2009.
Glantz, S. A.: Primer of Biostatistics, McGraw-Hill,New York, 2002.
Graham, N. E., Ammann, C. M., Fleitmann, D., Cobb, K. M., and Luterbacher, J.: Support for global climate reorganization during the "Medieval Climate Anomaly", Clim. Dynam., 37, 1217–1245, 2011.
Gutiérrez, D., Sifeddine, A., Reyss, J. L., Vargas, G., Velazco, F., Salvatteci, R., Ferreira, V., Ortlieb, L., Field, D., Baumgartner, T., Boussafir, M., Boucher, H., Valdés, J., Marinovic, L., Soler, P., and Tapia, P.: Anoxic sediments off Central Peru record interannual to multidecadal changes of climate and upwelling ecosystem during the last two centuries, Adv. Geosci., 6, 119–125, https://doi.org/10.5194/adgeo-6-119-2006, 2006.
Gutiérrez, D., Sifeddine, A., Field, D. B., Ortlieb, L., Vargas, G., Chávez, F. P., Velazco, F., Ferreira, V., Tapia, P., Salvatteci, R., Boucher, H., Morales, M. C., Valdés, J., Reyss, J.-L., Campusano, A., Boussafir, M., Mandeng-Yogo, M., García, M., and Baumgartner, T.: Rapid reorganization in ocean biogeochemistry off Peru towards the end of the Little Ice Age, Biogeosciences, 6, 835–848, https://doi.org/10.5194/bg-6-835-2009, 2009.
Gutiérrez, D., Bouloubassi, I., Sifeddine, A., Purca, S., Goubanova, K., Graco, M., Field, D., Méjanelle, L., Velazco, F., Lorre, A., Salvatteci, R., Quispe, D., Vargas, G., Dewitte, B., and Ortlieb, L.: Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century, Geophys. Res. Lett., 38, L07603, https://doi.org/10.1029/2010GL046324, 2011.
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Rohl, U.: Southward migration of the Intertropical Convergence Zone through the Holocene, Science, 293, 1304–1308, 2001.
Helly, J. and Levin, L.: Global distribution of naturally occurring marine hypoxia on continental margin, Deep-Sea Res. Pt. I, 51, 1159–1168, 2004.
Karstensen, J. and Ulloa, O.: Peru-Chile current system, in: Ocean currents, edited by: Steele, J. H., Thorpe, S. A., and Turekian, K. K., Academic Press, London, 2009.
Kienast, M., Kienast, S. S., Calvert S. E., Eglinton, T. I., Mollenhauer, G., François, R., and Mix, A. C.: Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation, Nature, 443, 846–849, 2006.
Koffman, B. G., Kreutz, K. J., Breton, D. J., Kane, E. J., Winski, D. A., Birkel, S. D., Kurbatov, A. V., and Handley, M. J.: Centennial-scale shifts in the position of the Southern Hemisphere westerly wind belt over the past millennium, Clim. Past Discuss., 9, 3125–3174, https://doi.org/10.5194/cpd-9-3125-2013, 2013.
Koutavas, A. and Lynch-Stieglitz, J.: Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years, in: The Hadley circulation: present, past and future, edited by: Diaz, E. F. and Bradley, R. S., Springer Academic Publishers, Dordrecht, the Netherlands, 2005.
Koutavas, A., Lynch-Stieglitz, J., Marchitto, T. M., and Sachs, J. P.: El Niño-like pattern in ice age tropical Pacific sea surface temperature, Science, 297, 226–230, 2002.
Lafargue, E., Espitalié, J., Marquis, F., and Pillot, D.: Rock-Eval 6 applications in hydrocarbon exploration, production and in soil contaminations studies, Oil Gas Sci. Technol., 53, 421–437, 1998.
Lamb, H. H.: Climate, History and the Modern World, 2nd Edn., Routledge, New York, 1995.
Lamy, F., Hebbeln, D., Röhl, U., and Wefer, G.: Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies, Earth Planet. Sc. Lett., 185, 369–382, 2001.
Lavado Casimiro, W. S., Ronchail, J., Labat, D., Espinoza, J. C., and Guyot, J. L.: Basin-scale analysis of rainfall and runoff in Peru (1969–2004): Pacific, Titicaca and Amazonas drainages, Hydrolog. Sci. J., 57, 1–18, 2012.
Lee, S. and Feldstein, S. B.: Detecting ozone- and greenhouse gas-driven wind trends with observational data, Science, 339, 563–567, 2013.
Luo, J.-J., Sasaki, W., and Masumoto, Y.: Indian Ocean warming modulates Pacific climate change, P. Natl. Acad. Sci., 109, 18701–18706, 2012.
Makou, M. C., Eglinton, T. I., Oppo, D. W., and Hughen, K. A.: Postglacial changes in El Niño and La Niña behavior, Geology, 38, 43–46, 2010.
Mann, M. E., Cane, M. A., Zebiak, S. E., and Clement, A.: Volcanic and solar forcing of the Tropical Pacific over the past 1000 years, J. Climate, 18, 447–456, 2005.
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., and Ni, F.: Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly, Science, 326, 1256–1260, 2009.
Martinez, P. and Robinson, R. S.: Increase in water column denitrification during the last deglaciation: the influence of oxygen demand in the eastern equatorial Pacific, Biogeosciences, 7, 1–9, https://doi.org/10.5194/bg-7-1-2010, 2010.
McManus, J., Berelson, W. M., Severmann, S., Poulson, R. L., Hammond, D. E., Klinkhammer, G. P., and Holm, C.: Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential, Geochim. Cosmochim. Acta, 70, 4643–4662, 2006.
Michaels, A. F. and Silver, M. W.: Primary production, sinking fluxes and the microbial food web, Deep-Sea Res. Pt. I, 35, 473–490, 1988.
Mohtadi, M., Romero, O., Kaiser, J., and Hebbeln, D.: Cooling of the southern high latitudes during the Medieval Period and its effect on ENSO, Quaternary Sci. Rev., 26, 1055–1066, 2007.
Mollier-Vogel, E., Ryabenko, E., Martinez, P., Wallace, D., Altabet, M. A., and Schneider, R.: Nitrogen isotope gradients off Peru and Ecuador related to upwelling, productivity, nutrient uptake and oxygen deficiency, Deep-Sea Res. Pt. I, 70, 14–25, 2012.
Montes, I., Colas, F., Capet, X., and Schneider, W.: On the pathways of the equatorial subsurface currents in the eastern equatorial Pacific and their contributions to the Peru-Chile Undercurrent, J. Geophys. Res., 115, C09003, https://doi.org/10.1029/2009JC005710, 2010.
Moy, C. M., Moreno, P. I., Dunbar, R. B., Kaplan, M. R., Francois, J.-P., Villalba, R., and Haberzettl, T.: Climate change in southern South America during the last two millennia, in: Past climate variability in South America and surrounding regions, edited by: Vimeaux, F., Sylvestre, F., and Khodri, M., Springer, Dordrecht, the Netherlands, 2009.
Nameroff, T. J., Calvert, S. E., and Murray, J. W.: Glacial-interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals, Paleoceanography, 19, PA1010, https://doi.org/10.1029/2003PA000912, 2004.
Newton, A., Thunell, R., and Stott, L.: Climate and hydrographic variability in the Indo-Pacific Warm Pool during the last millennium, Geophys. Res. Lett., 33, 1–5, 2006.
Oppo, D. W., Rosenthal, Y., and Linsley, B. K.: 2,000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool, Nature, 460, 1113–1116, 2009.
PAGES 2K Network: Continental-scale temperature variability during the past two millennia, Nat. Geosci., 6, 339–346, 2013.
Partin, J. W., Cobb, K. M., Adkins, J. F., Clark, B., and Fernandez, D. P.: Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum, Nature, 449, 452–455, 2007
Pennington, J. T., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes, R., and Chavez, F. P.: Primary production in the eastern tropical Pacific: A review, Prog. Oceanogr., 69, 285–317, 2006.
Philander, S. G.: El Niño, La Niña, and the Southern Oscillation, Academic Press, San Diego, California, 1990.
Pierrehumbert, R. T.: Climate change and the tropical Pacific: The sleeping dragon wakes, P. Natl. Acad. Sci., 97, 1355–1358, 2000.
Rein, B., Lückge, A., and Sirocko, F.: A major Holocene ENSO anomaly during the Medieval period, Geophys. Res. Lett., 31, L17211, https://doi.org/10.1029/2004GL020161, 2004.
Rein, B., Lückge, A., Reinhardt, L., Sirocko, F., Wolfe, A., and Dullo, W.-C.: El Niño variability off Peru during the last 20,000 years, Paleoceanography, 20, PA4003, https://doi.org/10.1029/2004PA001099, 2005.
Rein, B., Sirocko, F., Lückge, A., Reinhardt, L., Wolf, A., and Dullo, W.-C.: Abrupt Change of El Niño Activity off Peru during Stage MIS 5e–d, in: The Climate of Past Interglacials, edited by: Sirocko, F., Claussen, M., Sánchez Goñi, M., and Litt, T., Elsevier, Amsterdam, the Netherlands, 305–321, 2007.
Reinhardt, L., Kudrasss, H.-R., Lückge, A., Wiedicke, M., Wunderlich, J., and Wendt, G.: High-resolution sediment echosounding off Peru: Late Quaternary depositional sequences and sedimentary structures of a current-dominated shelf, Mar. Geophys. Res., 23, 335–351, 2002.
Reuter, J., Stott, L., Khider, D., Sinha, A., Cheng, H., and Edwards, R. L.: A new perspective on the hydroclimate variability in northern South America during the Little Ice Age, Geophys. Res. Lett., 36, L21706, https://doi.org/10.1029/2009GL041051, 2009.
Reyss, J. L., Schmidt, S., Legeleux, F., and Bonté, P.: Large, low background well-type detectors for measurements of environmental radioactivity, Nucl. Instrum. Meth. A, 357, 391–397, 1995.
Robinson, R., Kienast, M., Albuquerque, A. S., Altabet, M. A., Contreras, S., De Pol-Holz, R., Dubois, N., Francois, R., Galbraith, E. D., Hsu, T.-C., Ivanochko, T. S., Jaccard, S. L., Kao, S.-J., Kiefer, T., Kienast, S., Lehmann, M., Martinez, P., McCarthy, M., Möbius, J. H., Pedersen, T. F., Quan, T. M., Ryabenko, E., Schmittner, A., Schneider, R., Schneider-Mor, A., Shigemitsu, M., Sinclair, D., Somes, C. J., Studer, A. S., Thunell, R., and Yang, J.-Y. T.: A review of nitrogen isotopic alteration in marine sediments, Paleoceanography, 27, PA4203, https://doi.org/10.1029/2012PA002321, 2012.
Rodier, M. and Le Borgne, R.: Export flux of particles at the equator in the western and central Pacific ocean, Deep-Sea Res. Pt. II, 44, 2085–2113, 1997.
Sachs, J. P., Sachse, D., Smittenberg, R. H., Zhang, Z., Battisti, D. S., and Golubic, S.: Southward movement of the Pacific Intertropical Convergence Zone AD 1400–1850, Nat. Geosci., 2, 519–525, 2009.
Salvatteci, R., Field, D., Sifeddine, A., Ortlieb, L., Ferreira, V., Baumgartner, T., Caquineau, S., Velazco, F., Reyss, J. L., Sanchez-Cabeza, J. A., and Gutierrez, D.: Cross-stratigraphies from a seismically active mud lens off Peru indicate horizontal extensions of laminae, missing sequences, and a need for multiple cores for high resolution records, Mar. Geol., in revision, 2014.
Scheidegger, K. F. and Krissek, L. A.: Dispersal and deposition of eolian and fluvial sediments off Peru and northern Chile, Geol. Soc. Am. Bull., 93, 150–162, 1982.
Scholz, F., Hensen, C., Noffke, A., Rohde, A., Liebetrau, V., and Wallmann, K.: Early diagenesis of redox-sensitive trace metals in the Peru upwelling area – response to ENSO-related oxygen fluctuations in the water column, Geochim. Cosmochim. Acta, 75, 7257–7276, 2011.
Sifeddine, A., Gutierrez, D., Ortlieb, L., Boucher, H., Velazco, F., Field, D., Vargas, G., Boussafir, M., Salvatteci, R., Ferreira, V., García, M., Valdes, J., Caquineau, S., Mandeng-Yogo, M., Cetin, F., Solis, J., Soler, P., and Baumgartner, T.: Laminated sediments from the central Peruvian continental slope: A 500 year record of upwelling system productivity, terrestrial runoff and redox conditions, Prog. Oceanogr., 79, 190–197, 2008.
StatSoft: Inc. STATISTICA (data analysis software system), Version 7.1., www.statsoft.com (last access: February 2014), 2005.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding Oxygen-Minimum Zones in the Tropical Oceans, Science, 320, 655–658, 2008.
Strub, P. T., Mesias, J. M., Montecino, V., Rutllant, J., and Salinas, S.: Coastal ocean circulation off western South America, in: The Sea, Vol. 11, edited by: Robinson, A. and Brink, K., John Wiley & Sons, New York, USA, 273–313, 1998.
Suess, E.: Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization, Nature, 288, 260–263, 1980.
Toggweiler, J. R.: Shifting Westerlies, Science, 323, 1434–1435, 2009.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals as paleoredox and paleoproductivity proxies: An update, Chem. Geol., 232, 12–32, 2006.
Vecchi, G. A., Soden, B., Wittenberg, A. T., Held, I. M., Leetmaa, A., and Harrison, M. J.: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing, Nature, 44, 73–76, 2006.