

1 **The response of the Peruvian Upwelling Ecosystem to centennial-scale global change**
2 **during the last two millennia**

3 **R. Salvatteci^{1and2*}, D. Gutiérrez^{2and 3}, D. Field⁴, A. Sifeddine¹, L. Ortlieb¹, I. Bouloubassi¹,**
4 **M. Boussafir⁵, H. Boucher¹, F. Cetin¹**

5
6 [1] LOCEAN, UMR 7159 (IRD, CNRS, UPMC, MNHN), Institut Pierre Simon Laplace,
7 Laboratoire d’Océanographie et du Climat: Expérimentations et Analyses Numériques. Centre
8 IRD France Nord, 32 avenue Henri Varagnat, 93143 Bondy cedex, France

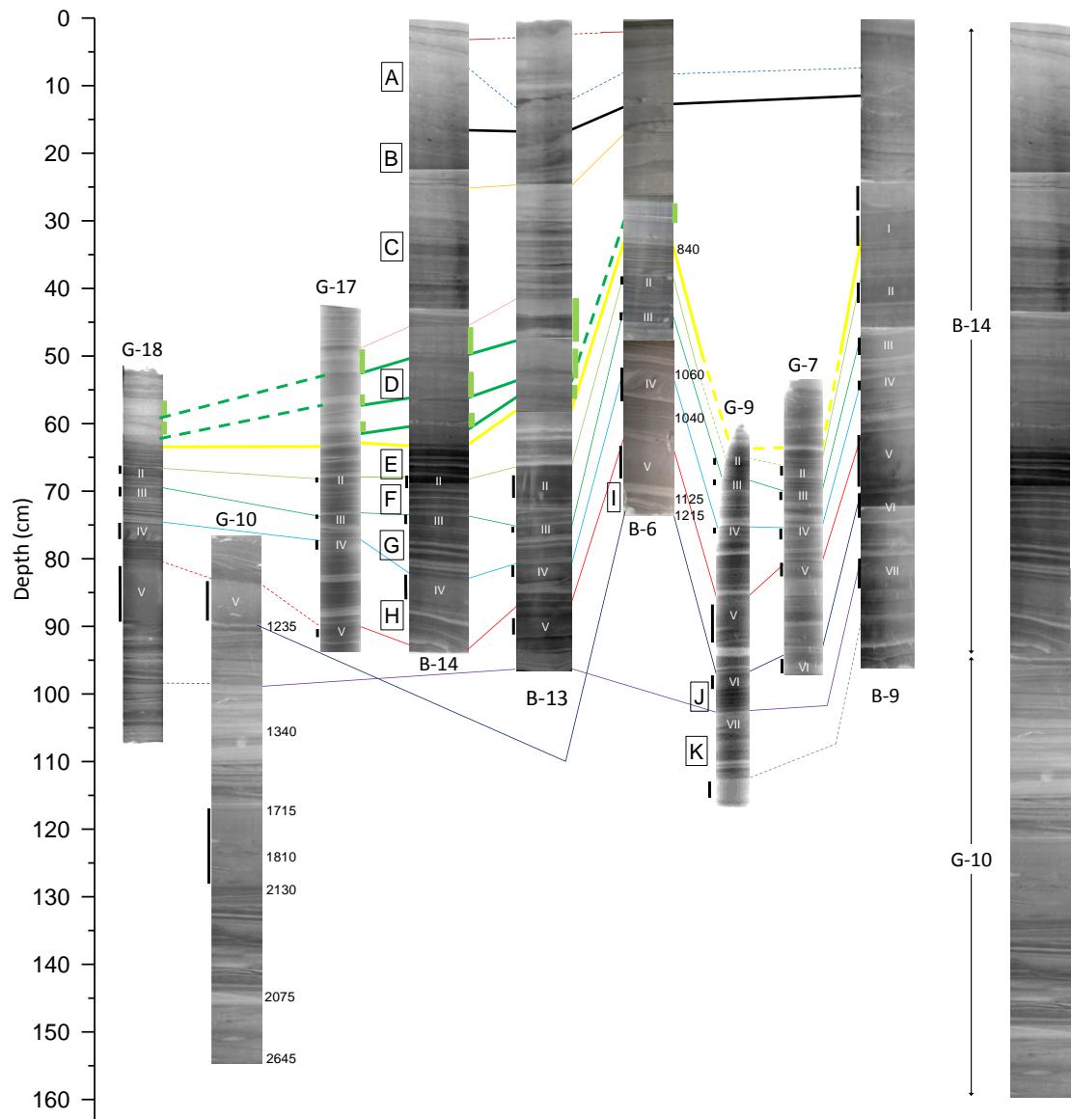
9 [2] Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle s/n, Callao, 22000
10 Perú

11 [3] Universidad Peruana Cayetano Heredia, Lima, Perú

12 [4] Hawaii Pacific University, College of Natural Sciences, 45-045 Kamehameha Highway,
13 Kaneohe, Hawaii, 96744-5297

14 [5] Institut des Sciences de la Terre (ISTO), Université d’Orléans, 45067 Orléans, France

15


16 Correspondence to: R. Salvatteci (renatosalvatteci@gmail.com)

17 *Present address: Institute of Geoscience, Department of Geology, Kiel University, Ludewig-
18 Meyn-Str. 10 D-24118 Kiel, Germany

19

20 **1 SM1 (Figure):**

21

22 **SM 1.** Cross correlation of laminated sequences among gravity cores (G) and box-cores (B). All
 23 the cores were retrieved off Pisco, Peru. The yellow lines indicate the position of the
 24 sedimentological shift (Gutierrez et al., 2009), the upper black bold lines indicate the start of
 25 241Am activities and the green thick lines indicate the correlations of the diatom-rich layers.
 26 The stratigraphic markers are represented by the continuous (dashed) colored thin lines that
 27 indicate possible (less obvious) correlations and represent the base of the sediment sequences
 28 (from A to K) except for the sections A and D where the base is defined by the limit of detection
 29 of 241Am and the sedimentary shift respectively. The capital letters from A to K indicate the
 30 position of contemporaneous sediment sequences. Black bars at the left side of the cores indicate
 31 homogeneous deposits, while green bars at the right side indicate the extent of the diatom layers.
 32 Given that the box-cores recovered surface sediments they are aligned at 0 cm; in contrast the

34 gravity cores are aligned to the position of the shift in core B-14. In all the X-ray and SCOPIX
35 images the colors were inverted, thus the darker (lighter) laminae represent dense (less dense)
36 sediments. The numbers at the right side of the X-rays represent the uncalibrated 14C ages. The
37 composite record shown at the right side is the one used for the present study. Figure modified
38 from Salvaticci et al. (*in revision*).

39

40 **2 SM2 (Text):**

41 **Core B-14:**

42 B-14 contained 3 homogeneous deposits identified as slumps (homogeneous deposits II, III and
43 IV in SM1). They have been removed from the record in the present work as they represent
44 instantaneous depositions from upslope. The subsampling in core B-14 was done in stratigraphic
45 intervals (see Salvatteci et al., 2012 for details), with a mean interval thickness of 0.46 cm.

46 The chronology for the most recent part of B-14 (last ~150 years) was obtained from downcore
47 profiles of ^{241}Am and excess ^{210}Pb . The older part of B-14, which corresponds to the period
48 below a sedimentary shift where large change in sediment density and several proxies of
49 oxygenation and productivity occurred (Gutierrez et al., 2009), was dated using the
50 sedimentation rates obtained from bulk organic sedimentary carbon of a nearby core B-6. A new
51 chronological model constructed, using the ^{14}C data of Gutierrez et al. (2009) and eliminating
52 the sedimentary sequences identified as slumps in B-6, yields a sedimentation rate of 0.07 cm.y^{-1}
53 (Salvatteci et al., *in revision*). The sedimentation rates of core B-6 below the sedimentary shift
54 can be used in core B-14 because both cores present similar laminae sequences and the laminae
55 thickness are almost identical (Salvatteci et al., *in revision*). A cumulative mass-depth profile
56 was used for the $^{210}\text{Pb}_{\text{ex}}$ and ^{14}C profiles due to important changes in sediment density that could
57 give erroneous age estimations. The Dry Bulk Density (DBD) of core B-14 was taken from
58 Salvatteci et al. (2012), but these values were corrected by sea salt content.

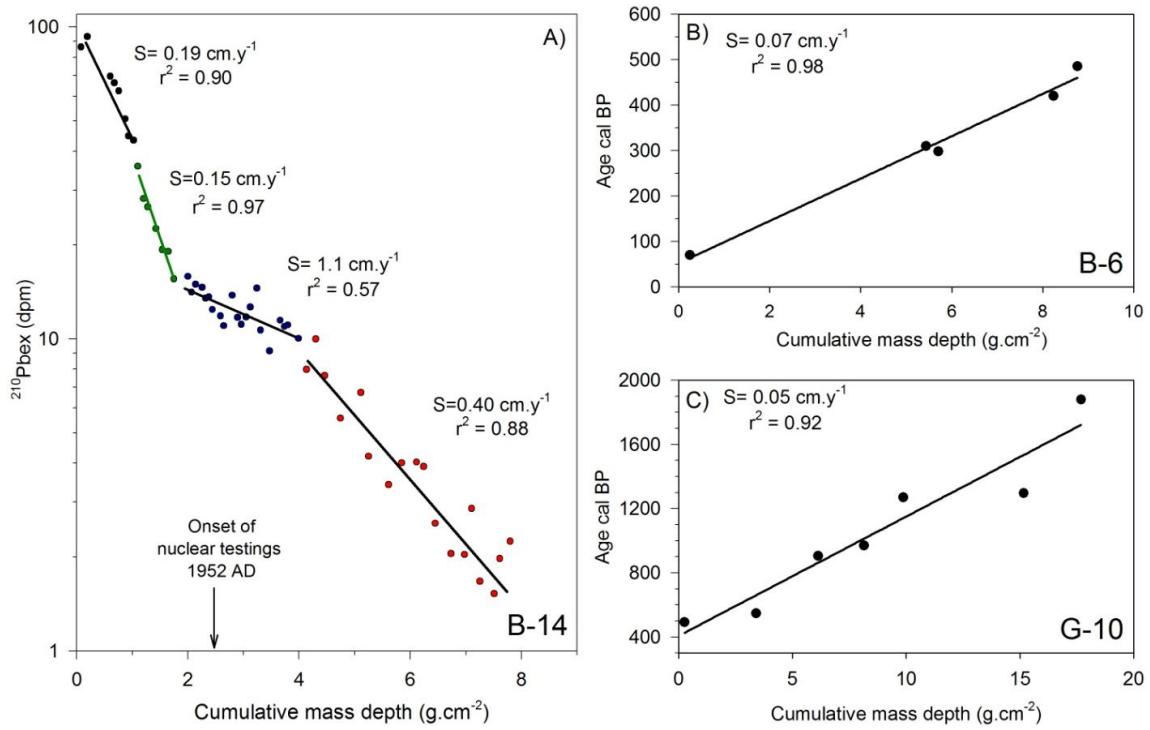
59 **Core G-10:**

60 The laminated section of core G-10 used in the present work is located between 18 and 82 cm
61 depth. Below this section there is a ~35 cm thick slump with laminae reworking (e.g. bands
62 perpendicular to the sedimentation plane). In order to date the core, 32 radiocarbon ages from
63 bulk de-carbonated organic sedimentary carbon were obtained in core G-10, and 7 samples that
64 were taken between 18 and 82 cm depth were used to construct an age model. The conventional
65 radiocarbon ages were calibrated taking into account global and local reservoir (ΔR) effects
66 using the program Calib 6.1 (Stuiver and Reimer, 1993). The ΔR to calibrate the ^{14}C ages was
67 estimated to be 367 ± 40 years and was calculated for the period between the base of the core B-
68 14 and the last ^{210}Pb -derived age (see also Gutierrez et al., 2009 and Salvatteci et al., *in
69 revision*). The age model was based on cumulative mass-depth due to important changes in
70 sediment density. The subsampling in core G-10 was done at regular intervals of 1-cm thickness.

71 **Assembled record and core chronologies:**

72 In order to establish the connection between G-10 with B-14 and develop a continuous and
73 reliable record, we performed a laminae cross-correlation between G-10 and the 8 cores
74 retrieved off Pisco that are well cross-correlated (SM1). The first diatom band of the laminated
75 sequence of G-10 (below the homogeneous deposit V) was cross-correlated with the base of the
76 sediment sequence “I” (SM1). Additional support for the fact that this diatom band is
77 contemporaneous in both cores came from similar conventional ^{14}C ages, in core G-10 the age
78 of this band is 1235 ± 30 yr BP while in core B-6 is 1215 ± 30 yr BP. Moreover there is a major
79 slump above the sequence “I” that can be observed in G-10 and several other cores in the area,
80 confirming the tie point of core G-10 with the other records. Consequently, the laminated
81 sequences at the base of core B-14 were deposited just after the first diatom band in core G-10
82 (~89 cm depth SM1), because the laminated sequences in the base of core B-14 were deposited
83 after the slump V.

84 The assembled record shows that the sediment structures corresponding to the periods of interest
85 (RWP, DACP, MCA, LIA and CWP) are mainly composed by undisturbed laminated sediments
86 (SM1). The assembled sediment record starts with a homogeneous sediment sequence (SM1).
87 Above this homogeneous deposit an interval containing laminated sequences, which corresponds
88 to the DACP, can be observed up to ~125 cm depth, where another homogeneous deposit is
89 located until ~112 cm depth (SM1). This last homogeneous deposit contains part of the MCA
90 period. The remaining part of the MCA (from ~112 to ~94 cm depth) shows millimeter-scale
91 laminae. The sediment sequences associated with the LIA period show the finest laminated
92 sequences in the entire record. The transition between the LIA and the CWP shows thick diatom
93 bands interspersed with laminated sequences. The CWP shows laminated sediments from ~40
94 cm to ~23 cm and then from ~4 to the top. The homogeneous section from ~23 to 4 cm depth
95 (SM1) was probably caused by bioturbation or by rapid sedimentation event since the $^{210}\text{Pb}_{\text{ex}}$
96 profile is relatively constant in this part of the record (Salvatteci et al., *in revision*). An angular
97 unconformity can be observed in core B-14 at ~4 cm depth (SM1). Finally, there is a major
98 change in density at ~62.5 cm depth (SM1) which coincides with a change in sediment density
99 previously reported in a nearby core (Sifeddine et al., 2008; Gutierrez et al., 2009). Based on the
100 sedimentological description and given that we couldn't identify the origin of the two
101 homogeneous deposits (bioturbation or slump) in core G-10 we didn't develop any proxy in
102 these sequences to avoid uncertainty in the data set.


103 The $^{210}\text{Pb}_{\text{ex}}$ cumulative mass depth profile shows four distinct sections with different
104 sedimentation rates (SM3A). The first section ranges from the top to the angular unconformity
105 located at ~ 4.3 cm with a sedimentation rate of 0.18 cm.y^{-1} ; the second ranges from 4.3 to 8.5
106 cm with a sedimentation rate of 0.15 cm.y^{-1} ; the third extends from 8.5 to 23.2 cm with a high
107 sedimentation rate of 1.1 cm.y^{-1} and the last section ranges from 23.2 to 46.6 cm and has a
108 sedimentation rate of 0.40 cm.y^{-1} . The chronological model was adjusted using the ^{241}Am profile
109 by assigning the date 1952AD to 15.6 cm depth. The sedimentation rate for the fourth section
110 (0.402 cm.y^{-1}) was extrapolated up to 62.5 cm where the sedimentary shift is located. The
111 angular unconformity at ~ 4 cm in core B-14 was identified as a hiatus of ~ 4 years that occurred
112 approximately at ~ 1982 AD.

113 The sedimentation rates during the RWP, DACP, MCA and LIA estimated using ^{14}C ages are
114 considerably lower in comparison with the sedimentation rates of the last 150 years. SM3B
115 shows the cumulative mass depth vs. age cal BP in core B-6, showing the sedimentation rate
116 used to determine the B-14 ages prior to the sedimentary shift (yellow lines in SM1). The
117 sedimentation rate for the pre-shift period in core B-6 was estimated to be 0.07 cm.y^{-1} (Fig.
118 SM3B). In core G-10 the cumulative mass depth vs. age cal BP yields a sedimentation rate of
119 0.05 cm.y^{-1} (SM3C). The differences in the sedimentation rates (between periods) and the
120 different subsampling thickness (between cores) indicate that the average time span of each
121 sampled interval during the RWP, DACP, MCA, LIA and CWP is 21.9, 21.9, 7.5 and 1.1 years
122 respectively. Consequently, the proxies obtained in the samples corresponding to the LIA and
123 CWP periods were lumped in intervals of approximately 20 years, and then the results are
124 presented as standardized values (value-average/sd).

125

126 **3 SM3 (Figure):**

127

128

129

130 **SM3:** Cumulative mass-depth age models showing the sedimentation rates used in the present
 131 work. A) Core B-14, showing 4 distinct sedimentation rates. B) Core B-6, ^{14}C data taken from
 132 Gutierrez et al. (2009) and sedimentation rate obtained from Salvatteci et al. (*in revision*). C)
 133 Sedimentation rates in core G-10. The local reservoir (ΔR) used to calibrate the ^{14}C ages in cores
 134 B-6 and G-10 was 367 ± 40 years, see Gutierrez et al. (2009) and Salvatteci et al. (*in revision*).
 135

136 **4 SM4 (Text):**

137 **Analytical procedures of elements serving as proxies**

138 Major elements (Al and Ti) and trace elements (Mo, V, Re, Cd, Ni and Cu) concentrations were
139 analyzed by ICP-MS (Ultramass Varian) after hot-plate acid digestion in Polytetrafluoroethylene
140 (PTFE) vessels. The acids employed (HF, HNO₃ and HClO₄) eliminated OM and removed
141 silicates (Jarvis et al., 1992). The methodology for the sample preparation is based on Jarvis et
142 al. (1992) and briefly summarized here. First, 25 mg of powdered sample were weighed in a
143 high-precision microbalance and placed into the PTFE vessels. Then, 2 ml of HNO₃ (65%) and 2
144 ml of HF (40%) were added to the samples. The vessels were closed and immersed in an
145 ultrasonic bath for 10 minutes to facilitate the oxidation of OM. After 2 days, the closed vessels
146 were placed on a hot plate (150°C) for three hours, and then the samples were removed from the
147 hot plate to cool down. As soon as they were cool enough, the open samples were placed again
148 on a hot plate (150°C) to let all the acid evaporate (duration ~5 hours). Then, 2 ml of HF (40%)
149 and 1 ml of HClO₄ (70-72%) were added to the sample and the tubes were placed on a hot plate
150 (150°C) for 10 hours in order to let all the acid evaporate. When the evaporation was completed,
151 2 ml HNO₃ (65%) were added to the samples and the tubes were placed again on the hot plate to
152 evaporate the remaining acid (2-3 hours). This last procedure was repeated twice. Finally, the
153 samples were placed into larger plastic tubes with the aid of a funnel and HNO₃ (2%). The
154 samples were then analyzed in an ICP-MS and the accuracy of the trace elements concentration
155 measurements was determined through comparison with international standards. The
156 measurement precision was determined by performing duplicate analyses. The average values of
157 replicate digestions were well within the recommended ranges with relative standard deviations
158 (RSD) being <1% for Al, Ti, Mo, V, Ni and Cu, and <2.5% for Re (n = 229).

159 The total metal concentrations measured contain a detrital background and an authigenic metal
160 concentration (i.e. the part in excess of the detrital background; Böning et al., 2004; Tribouillard
161 et al., 2006; Scholz et al., 2011). Given that the trace elements may present in some cases a
162 strong detrital fraction, we focus on the authigenic trace element content. The chemical
163 composition of andesite is an appropriate representation of the detrital background of the
164 sediments on the Peruvian margin as proposed by Böning et al. (2004). Thus, we used the
165 element contents of andesite to obtain the authigenic concentration of each trace element. These
166 contents were obtained from the GEOROC database (Sarbas and Nohl, 2009) taking into
167 account the elements concentrations in andesite from whole rocks from the central Andean
168 volcanic zone in Peru (SM5). The detrital metal fraction was calculated following Tribouillard et

169 al. (2006): $X_{\text{detrital}} = (X/\text{Al})_{\text{andesite}} * \text{Al}_{\text{sample}}$. Consequently the authigenic fraction of element X in
170 a sample was calculated as $X_{\text{total}} - X_{\text{detrital}}$. The authigenic (or non-lithogenic) fraction is mainly
171 enriched by post-depositional redox reactions (especially in suboxic environments) and each
172 element exhibits different sensitivities to redox conditions along an oxic to sulfidic gradient.
173 However not all the authigenic fraction is produced only by post-depositional reactions because
174 some metal fraction present above the background lithogenic concentrations is also due to the
175 flux of metals associated with settling biological material (Nameroff et al., 2004; Tribouillard et
176 al., 2006). We calculated the enrichment factor of the elements to determine if they are depleted
177 or enriched relative to andesite. The enrichment factors were calculated using the following
178 formula according to Tribouillard et al. (2006): $\text{EF}_{\text{element } x} = (X/\text{Al})_{\text{sample}} / (X/\text{Al})_{\text{andesite}}$. If EF_x is
179 greater (lower) than 1, then the element X is enriched (depleted) relative to average shales.

180 The biogenic silica was quantified by Fourier transformed infrared spectrometry (FTIR)
181 analyses (Bertaux et al. 1998). The sample preparation for FTIR analysis is described by
182 Bertaux et al. (1998) and is briefly summarized here. Given that a particle size of less than $2 \mu\text{m}$
183 is required to avoid excessive scattering of infrared (IR) radiation, approximately 15 mg of dry
184 pre-powdered sample were mechanically ground with small agate balls in an agate vial under
185 acetone and in a cooling chamber for 90 minutes. Then, the solution containing the powdered
186 sample and the acetone was poured onto a watch glass to let the acetone evaporate. After that,
187 2.5 mg of dry pre-powdered sample were weighed in a high-precision microbalance and 997.5
188 mg of KBr was added to the sample. Then, the powder containing the sample and KBr was
189 mixed by hand in an agate mortar for 10 minutes and 300 mg of this powder was used to prepare
190 a 13 mm diameter disc by pressing the mixture in a vacuum die with up to 8 tons.cm^{-2} of
191 compression. Finally, in order to acquire the IR spectra, the discs were placed into a Perkin-
192 Elmer FT 16 PC spectrometer in the $4000\text{--}250 \text{ cm}^{-1}$ energy range with a 2 cm^{-1} resolution. In
193 order to quantify the % of biogenic silica from the IR spectra the spectral-energy range between
194 1315 and 315 cm^{-1} was chosen for calculation because this region yields many absorption
195 features that are relevant for distinguishing the biogenic silica in the mixture. The % of
196 amorphous silica obtained from the FTIR analysis also incorporates other types of amorphous
197 silica (e.g., volcanic ashes) but their concentrations are too low in comparison with the vast
198 abundance of diatoms valves off Peru, thus we consider that the % of amorphous silica obtained
199 through the FTIR analysis reflects principally the % of biogenic silica.

200 The quantification of organic matter was done using Rock-Eval 6 that permits evaluation of the
201 evolution of organic compounds during programmed pyrolysis (Lafargue et al., 1998). During
202 the programmed pyrolysis several parameters are used in order to quantify and characterize the

203 organic matter: S1, S2 and S3. S1 (mg HC/g rock) corresponds to the quantity of hydrocarbons
204 (HC) released during the isothermal temperature step at 300°C and represents the thermo-
205 vaporized free hydrocarbons contained in the rock (Behar et al., 2001). S2 (mg HC/g rock)
206 corresponds to the quantity of HC released between 300 and 650°C and represents the HC
207 resulting from the cracking of sedimentary organic matter (Behar et al., 2001). Finally, S3 (mg
208 CO₂/g rock) represents milligrams of carbon dioxide generated from a gram of sample during
209 temperature programming up to 390°C (Lafargue et al., 1998; Behar et al., 2001; Peters et al.,
210 2005). Total Organic Carbon (TOC) is determined by summing the pyrolysable organic carbon
211 (obtained from the S1, S2 and S3) and the residual organic carbon (Behar et al., 2001). TOC
212 reflects the quantity of OM present in the sediment and can be used to infer past export
213 production.

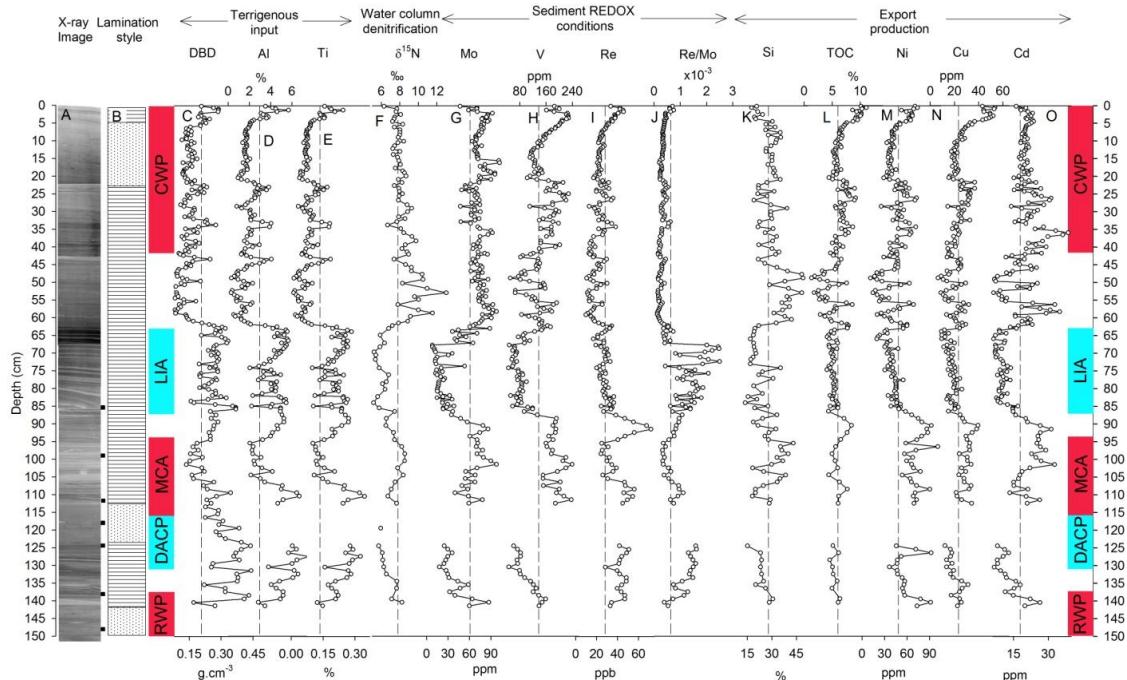
214 The water column denitrification was inferred through $\delta^{15}\text{N}$ in sedimentary organic matter and
215 the analyses were performed in two different laboratories. $\delta^{15}\text{N}$ analyses for core B-14 were
216 done in the ALYSEES at Bondy, France and were measured on a continuous-flow gas-ratio
217 mass spectrometer. Standardization was based on a laboratory standard Tyrosine and Urea. $\delta^{15}\text{N}$
218 analyses for core G-10 were done in the department of Geosciences of the University of Arizona
219 and were measured on a continuous-flow gas-ratio mass spectrometer (Finnigan Delta PlusXL)
220 coupled to an elemental analyzer (Costech). Standardization was based on laboratory standard
221 acetanilide and the precision was better than ± 0.2 (1s).

222

223 **5 SM5 (Table):**

224 Average (\pm sd) concentration and Metal/Al for Andesite in whole rocks from the central Andean
 225 volcanic zone in Peru taken from the GEOROC database (Sarbas and Nohl, 2009) and in marine
 226 sediments from the present study. Re concentration and Re/Al from andesite taken from Alves et
 227 al. (2002).

228


Metal	Element/Al			
	Andesite		Present study	
	average	sd	average	sd
V/Al ($\times 10^{-3}$)	1.4	\pm 0.6	7.7	\pm 3.8
Cu/Al ($\times 10^{-4}$)	4.4	\pm 3.3	14.7	\pm 5.4
Ni/Al ($\times 10^{-4}$)	2.6	\pm 2.8	22.6	\pm 8.6
Mo/Al ($\times 10^{-5}$)	2.5	\pm 1.9	337.9	\pm 340.8
Cd/Al ($\times 10^{-6}$)	2.6	\pm 2.4	861.2	\pm 560.3
Re/Al ($\times 10^{-9}$)	1.9		1121.2	\pm 459.0

229

230

231

232 **6 SM 6 (Figure):**

233

234 **SM6.** X-ray images, lamination style, time periods of interest, and proxies evaluated in the
 235 present study. A) Positive X-ray image of cores B-14 and G-10 (from 87 cm to the bottom); the
 236 small boxes at the right side of the X-ray image indicate the position of the samples that were
 237 dated by ^{14}C in core G-10. B). Simplified lithology, the areas with horizontal lines represent
 238 finely laminated sediments and the dotted areas represent mixed sediments or more
 239 homogeneous material. C) Dry Bulk Density (DBD), data of core B-14 taken from Salvatteci et
 240 al. (2012) corrected by sea salt content. D) Al (%), proxy for terrigenous input. E) Ti (%) proxy
 241 for terrigenous input. F) $\delta^{15}\text{N}$ (‰) proxy for water column denitrification. G), H) and I)
 242 Authigenic molybdenum (Mo, ppm), authigenic vanadium (V, ppm) and authigenic rhenium
 243 (Re, ppb) proxies for sediment redox conditions. J) $\text{Re/Mo} \times 10^{-3}$, proxy to differentiate euxinic
 244 ($[\text{O}_2]=0$; presence of H_2S) versus sub-oxic conditions, the dashed line indicates the seawater
 245 value of $\text{Re/Mo} = 0.4 \times 10^{-3}$ reported by Crusius et al. (1996).. K) Biogenic Silica (Si%), proxy
 246 of diatom production. L), M), N) and O) Total organic carbon (TOC, %), authigenic nickel (Ni,
 247 ppm), authigenic copper (Cu, ppm) and authigenic cadmium (Cd, ppm), export production
 248 proxies. The horizontal dashed lines indicate the average of each proxy, except in J) where it
 249 represents the ratio between Re and Mo in the seawater. The colored boxes at the right and left
 250 side of the figure indicate the Roman Warm Period (RWP), the Dark Ages Cold Period (DACP),
 251 the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the Current Warm Period
 252 (CWP) according to the age model presented in SM3. Note that in this figure, Cd is presented as

253 an export production proxy while in Figures 2 this trace metal is used to reconstruct sediment
254 redox conditions, see text in the manuscript for more information.
255

256 **7 SM7 (Table):**

257 Correlation matrix based on the Pearson correlation coefficients (r values) for Al and Ti (n=229),
 258 authigenic metal concentrations (n=229); biogenic silica (n=127); total organic carbon (TOC,
 259 n=203) and $\delta^{15}\text{N}$ (n=105) in cores B-14 and G-10. Data from SM6. Underlined values indicate
 260 significance after correcting for multiple comparisons ($p < 0.004$). Cadmium is considered as an
 261 export production proxy in this Table, but given its high relationship with the other sediment
 262 redox conditions proxies, is used from hereon as a proxy for oxygen availability in the sediments
 263 rather than productivity. The probability level was corrected for multiple comparisons by
 264 dividing the probability level α ($p < 0.05$) by the number of test (12) performed (Glantz 2002). The
 265 values in parentheses indicate that were derived from two categories that share the same data
 266 (Mo, Re and Re/Mo).

267

		DBD (g.cm ⁻³)	Al (%)	Ti (%)	Mo (ppm)	V (ppm)	Re (ppb)	Re/Mo	$\delta^{15}\text{N}$ (‰)	Biogenic silica (%)	TOC (%)	Ni (ppm)	Cu (ppm)	Cd (ppm)
Terrigenous input	DBD (g.cm ⁻³)	1												
	Al (%)	<u>0.82</u>	1											
	Ti (%)	<u>0.80</u>	<u>0.99</u>	1										
	Mo (ppm)	<u>-0.64</u>	<u>-0.67</u>	<u>-0.69</u>	1									
Sediment REDOX conditions	V (ppm)	<u>-0.25</u>	-0.14	-0.16	<u>0.61</u>	1								
	Re (ppb)	<u>0.62</u>	<u>0.72</u>	<u>0.71</u>	<u>-0.23</u>	<u>0.28</u>	1							
	Re/Mo	<u>0.63</u>	<u>0.71</u>	<u>0.73</u>	<u>(-0.88)</u>	<u>-0.49</u>	<u>(-0.41)</u>	1						
	$\delta^{15}\text{N}$ (‰)	<u>-0.69</u>	<u>-0.75</u>	<u>-0.75</u>	<u>0.68</u>	0.22	<u>-0.55</u>	<u>-0.72</u>	1					
OMZ intensity	Biogenic silica (%)	<u>-0.58</u>	<u>-0.73</u>	<u>-0.71</u>	<u>0.50</u>	0.01	<u>-0.48</u>	<u>-0.58</u>	<u>0.75</u>	1				
	TOC (%)	0.13	<u>0.21</u>	0.16	<u>0.24</u>	<u>0.75</u>	<u>0.57</u>	-0.09	-0.28	<u>-0.46</u>	1			
	Ni (ppm)	<u>0.28</u>	<u>0.39</u>	<u>0.38</u>	0.08	<u>0.60</u>	<u>0.75</u>	0.08	<u>-0.28</u>	-0.25	<u>0.74</u>	1		
	Cu (ppm)	-0.01	0.04	0.01	<u>0.35</u>	<u>0.75</u>	<u>0.47</u>	<u>-0.19</u>	-0.05	-0.13	<u>0.87</u>	<u>0.67</u>	1	
	Cd (ppm)	<u>-0.40</u>	<u>-0.37</u>	<u>-0.39</u>	<u>0.70</u>	<u>0.76</u>	0.08	<u>-0.54</u>	<u>0.37</u>	0.19	<u>0.57</u>	<u>0.52</u>	<u>0.56</u>	1
268														

269

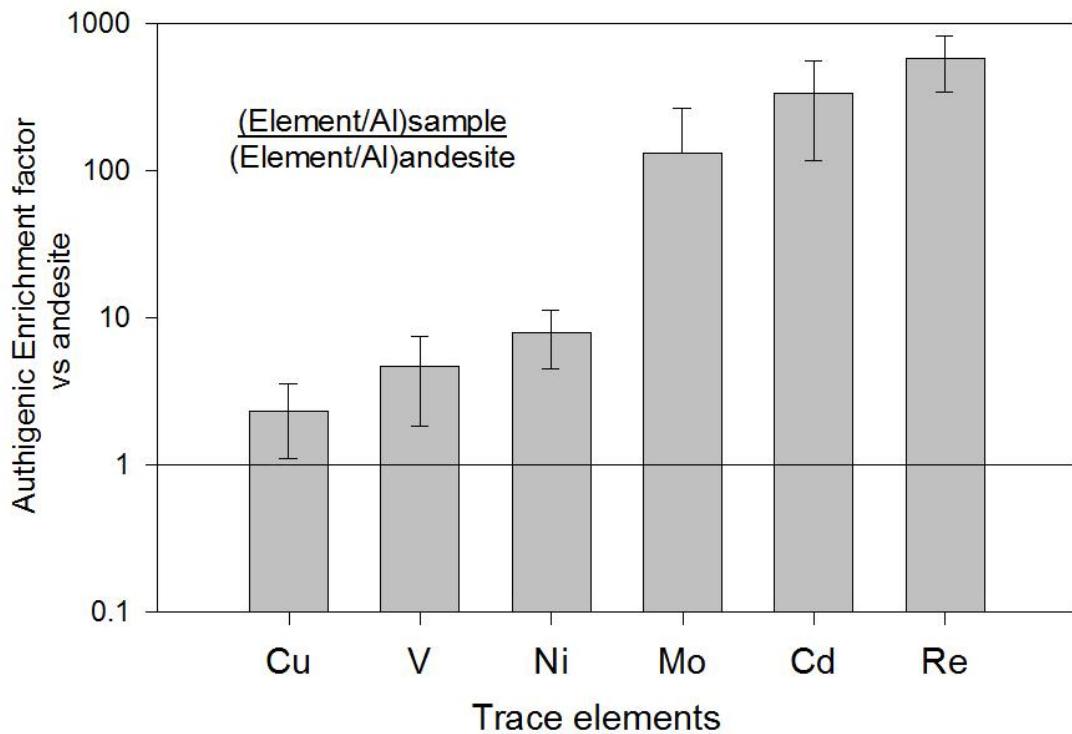
270

271 **8 SM 8 (Table):**

272 Correlation matrix based on the Pearson correlation coefficients (r values) for metal/Al ratios
 273 (n=229); biogenic silica (n=127); total organic carbon (TOC, n=203) and $\delta^{15}\text{N}$ (n=105) in cores
 274 B-14 and G-10. Underlined values indicate significance after correcting for multiple
 275 comparisons ($p < 0.056$). Cadmium is considered as an export production proxy in this Table,
 276 but given its high relationship with the other sediment redox conditions proxies, is used hereafter
 277 as a proxy for oxygenation rather than productivity. The probability level was corrected for
 278 multiple comparisons by dividing the probability level α ($p < 0.05$) by the number of test (9)
 279 performed (Glantz, 2002).

280

	Mo/Al	V/Al	Re/Al	Re/Mo	$\delta^{15}\text{N}$ (‰)	Biogenic silica (%)	TOC (%)	Ni/Al	Cu/Al	Cd/Al
Sediment REDOX conditions	Mo/Al	1								
	V/Al	<u>0.87</u>	1							
	Re/Al	<u>0.89</u>	<u>0.84</u>	1						
	Re/Mo	<u>-0.56</u>	<u>-0.73</u>	<u>-0.54</u>	1					
OMZ intensity	$\delta^{15}\text{N}$ (‰)	<u>0.79</u>	<u>0.84</u>	<u>0.65</u>	<u>-0.72</u>	1				
Export production	Biogenic silica (%)	<u>0.69</u>	<u>0.73</u>	<u>0.66</u>	<u>-0.58</u>	<u>0.75</u>	1			
	TOC (%)	<u>-0.43</u>	-0.16	-0.22	-0.09	<u>-0.28</u>	<u>-0.46</u>	1		
	Ni/Al	<u>0.76</u>	<u>0.88</u>	<u>0.80</u>	<u>-0.67</u>	<u>0.74</u>	<u>0.74</u>	-0.06	1	
	Cu/Al	<u>0.81</u>	<u>0.92</u>	<u>0.84</u>	<u>-0.69</u>	<u>0.76</u>	<u>0.70</u>	-0.02	<u>0.87</u>	1
	Cd/Al	<u>0.78</u>	<u>0.90</u>	<u>0.73</u>	<u>-0.70</u>	<u>0.80</u>	<u>0.70</u>	-0.16	<u>0.88</u>	<u>0.88</u>


281

282

283

284 **9 SM9 (Figure):**

285

286

287 **SM9.** Enrichment factors for several trace elements vs. average andesitic composition and
288 standard deviation (sd). The element/Al from andesite were obtained from the GEOROC
289 database (Sarbas and Nohl, 2009) taking into account the element concentrations in andesite
290 from whole rocks from the central Andean volcanic zone in Peru. Andesite Re/Al ratio was
291 taken from Alves et al. (2002). All data available from cores B-14 and G-10 were used to
292 calculate the averages. The Mo -sd is off scale. Re, Cd and Mo exhibited the highest
293 enrichments factors (average \pm sd): 578 ± 236 ; 334 ± 218 and 131 ± 134 ; Ni and V show a
294 moderate enrichment of 7.9 ± 3.4 and 4.7 ± 2.8 respectively. Finally, Cu showed the lowest
295 enrichment factor: 2.3 ± 1.2 .

296

297 **10 SM10 (Text):**

298 **Correlation among proxies and data presentation**

299 The downcore profiles of all proxies evaluated in this study are plotted in SM6, showing that the
300 proxies that represent the same process are highly correlated with exception of Cd that seems to
301 represent sediment redox conditions instead of export production (SM6 and SM7). The
302 terrestrial runoff proxies (Al and Ti) show similar downcore variability and are highly correlated
303 (SM6, SM7). Al and Ti% follow the same downcore changes observed in the DBD values
304 (SM6C, D and E) and also show a strong correlation with the DBD values (SM7). Additionally,
305 there is a strong negative correlation of the biogenic silica contents with DBD, Al and Ti (SM7;
306 -0.63, -0.75 and -0.72, n = 119, p < 0.001). These results are expected because Al and Ti%
307 represent the detrital fraction, which is denser than the other components of the sedimentary
308 matrix (i.e. OM, biogenic silica and calcium carbonate).

309 The relationships among the proxies for sediment redox conditions (Mo, V, Re and Re/Mo), and
310 their relationships with the water column denitrification ($\delta^{15}\text{N}$) also show an expected pattern.
311 The three sediment redox conditions proxies (Mo, V and Re) show an expected relationship
312 based on their sensitivity to oxygen levels in the sediments. Mo and V show the strongest
313 correlation (SM7; 0.61), because both of them accumulate under anoxic conditions with H_2S
314 presence (Scholz et al. 2011). However, their relationship is not so high probably due to the high
315 frequency variability in the V profile during the LIA-CWP transition not observed in the Mo
316 profile. Mo and Re show a negative relationship (SM7; -0.23) as expected due to their different
317 sensitivity to H_2S availability. The $\delta^{15}\text{N}$ profile shows a coherent pattern with Mo and Re/Mo
318 (SM6), exhibiting high and significant correlations with Mo and with Re/Mo (SM7; 0.68 and -
319 0.72 respectively).

320 The proxies for export production show some similarities and differences that can be used to
321 interpret changes in productivity during the last 2 millennia. Biogenic silica contents show
322 negative correlations with the other export production proxies indicating that the overall export
323 production (i.e. from higher trophic levels) is not a simply function of siliceous productivity.
324 The biogenic silica shows negative relationships with TOC, Ni and Cu (SM7; -0.46, -0.25 and -
325 0.13). Higher biogenic silica contents are associated with visible diatoms bands in the X-ray
326 images, which are present during the LIA-CWP transition and during some periods within the
327 MCA and CWP (SM6). There are some differences among the overall export production proxies
328 that suggest that TOC, Ni and Cu are better indicators than Cd. First, Ni and Cu show higher
329 correlation (SM7; 0.67) than Ni with Cd (Table 2, 0.52) or Cu with Cd (SM7; r = 0.56). Second,

330 the correlations of Cd with the proxies for sediment redox conditions (Mo and V; SM7; 0.70 and
331 0.76 respectively) are higher than those for export production. Third, the correlations between
332 Ni and Cu with TOC (SM7; 0.74 and 0.87) are higher than that of Cd and TOC (SM7; 0.57).
333 Finally, the increment in TOC in the last ~50 years is replicated by the Ni and Cu profiles but
334 not by the Cd profile (SM6 L, M, N and O). The similarity between the Ni, Cu and TOC profiles
335 is likely due to the fact that both metals are exported to the sediments in association with
336 organometallic complexes, while the differences with the Cd profile may probably arise from
337 post-depositional processes (Tribouillard et al., 2006). These results suggest that Ni and Cu are
338 better proxies to OM flux than Cd because the export production signal of Cd may be obscured
339 by metal enrichment in the water-sediment interface during anoxic conditions. Therefore, Cd is
340 used from here onwards as a proxy for redox conditions and not for export production.

341 Normalization of trace elements concentrations through division by Al as well as the calculation
342 of fluxes (Metal concentration x sedimentation rates x DBD) through the use of the
343 sedimentation rates obtained from age models, are common practices. However, in the present
344 dataset, the normalization procedure increased, decreased, or even changed the sign of the
345 correlations between unmodified variables. Authigenic trace element concentrations in the Pisco
346 cores that were not correlated, like Ni with Mo (SM7, 0.08) or Re with Cd (SM7, 0.08) show a
347 strong shared variability when the data are normalized by Al (SM8, Ni/Al with Mo/Al: 0.78 and
348 Re/Al with Cd/Al: 0.73). Additionally, the strong correlations of the authigenic
349 paleoproduction proxies with TOC disappeared when the trace elements were normalized
350 (SM7 and SM8). For example the correlations of authigenic Ni and Cu contents with TOC were
351 0.74 and 0.87 respectively, while the correlations of normalized Ni and Cu with TOC were -0.06
352 and -0.02 (SM7). The normalization problems may arise when the coefficient of variation
353 (standard deviation divided by the mean) of Al concentrations is large compared to the
354 coefficients of variation of the other trace elements. In the present work the coefficient of
355 variation of Al (0.53) was relatively high in comparison with Ni (0.33), Cu (0.37), Cd (0.38),
356 Mo (0.39), V (0.35), and Re (0.37). Thus, the changes observed in the normalized variables are
357 likely due to the relatively high coefficient of variation of Al. These observations indicate that
358 the normalization by Al should be avoided in the data set present on this study. Nonetheless, the
359 average enrichment factor of each element in all the record was calculated to determine which
360 elements exhibit the highest enrichments relative to andesite (SM9). Re, Cd and Mo exhibited
361 the highest enrichments factors (average \pm sd): 578 \pm 236; 334 \pm 218 and 131 \pm 134; Ni and V
362 show a moderate enrichment of 7.9 \pm 3.4 and 4.7 \pm 2.8 respectively. Finally, Cu showed the

363 lowest enrichment factor: 2.3 ± 1.2 . The high and moderate enrichment factors of Re, Cd, Mo,
364 Ni, and V support their use as paleoredox or paleoproductivity proxies.

365 Another possibility to present the data set is as fluxes (Metal concentration x sedimentation rates
366 x DBD) through the use of the sedimentation rates obtained from the age models (SM3). This
367 approach should also be taken with caution since the fluxes are highly sensitive to the
368 sedimentation rates, even though if a careful age model was constructed as in the present work
369 (Van der Weijden 2002). As also observed in the case of the Al normalization, the large
370 variations in the sedimentation rates (SM3) produce distorted correlations between elements
371 (data not shown). Consequently, we present the authigenic concentrations of the trace elements
372 instead of the Al normalization or metal accumulation rates. In the following sections, the
373 proxies shown in Supplementary Material 6 are plotted versus a time scale, and the samples
374 corresponding to the LIA and CWP are lumped into coarser samples in order to obtain the same
375 temporal resolution in all the record.

376

377 **REFERENCE LIST (SUPPLEMENTARY MATERIAL):**

378

379 Alves, S., Schiano, P., Capmas, F., and Allègre, C. J.: Osmium isotope binary mixing arrays in
380 arc volcanism, *Earth Planet. Sc. Lett.*, 198(3-4), 355-369, 2002.

381 Behar, F., Beaumont, V., and Penteado. H. L. D. B.: Rock-Eval 6 technology: performances and
382 developments, *Oil Gas Sci. Technol.*, *Rev. IFP*, 56(2), 111-134, 2001.

383 Bertaux, J., Frohlich, F., and Ildefonse, P.: Multicomponent analysis of FTIR spectra:
384 Quantification of amorphous and crystallized mineral phases in synthetic and natural
385 sediments, *J. Sediment. Res.*, 68, 440-447, 1998.

386 Böning, P., Brumsack, H. J., Bottcher, E., Schnetger, B., Kriete, C., Kallmeyer, J., and Borchers,
387 S. L.: Geochemistry of Peruvian near-surface sediments, *Geochim. Cosmochim. Ac.*,
388 68(21), 4429-4451, 2004.

389 Crusius, J., Calvert, S., Pedersen, T., and Sage, D.: Rhenium and molybdenum enrichments in
390 sediments as indicators of oxic, suboxic and sulfidic conditions of deposition, *Earth Planet.*
391 *Sc. Lett.*, 145(1-4), 65-78, 1996.

392 Glantz, S. A.: *Primer of Biostatistics*. McGraw-Hill, 2002.

393 Gutierrez, D., Sifeddine, A., Field, D. B., Ortlieb, L., Vargas, G., Chavez, F., Velazco, F.,
394 Ferreira, V., Tapia, P., Salvatteci, R., Boucher, H., Morales, M. C., Valdes, J., Reyss, J. L.,
395 Campusano, A., Boussafir, M., Mandeng-Yogo, M., Garcia, M., and Baumgartner, T.:
396 Rapid reorganization in ocean biogeochemistry off Peru towards the end of the Little Ice
397 Age, *Biogeosciences*, 6, 835-848, 2009.

398 Jarvis, K. E., Gray, A. L., and Houk, R. S.: *Handbook of inductively coupled plasma mass*
399 *spectrometry*, Blackie Academic & Professional, an imprint of Champan & Hall, 1992.

400 Lafargue, E., Espitalié, J., Marquis, F., and Pillot, D.: Rock-Eval 6 applications in hydrocarbon
401 exploration, production and in soil contaminations studies *Oil Gas Sci. Technol.*, *Rev. IFP*,
402 53(4), 421-437, 1998.

403 Nameroff, T. J., Calvert, S. E., and Murray, J. W.: Glacial-interglacial variability in the eastern
404 tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals,
405 *Paleoceanography*, 19, PA1010, 2004.

406 Peters, K. E., Walters, C. C., and Moldowan, J. M.: *The Biomarker Guide*, Cambridge
407 University Press, 2005.

408 Sarbas, B. and Nohl, U.: The GEOROC database - a decade of "online geochemistry", *Geochim.*
409 *Cosmochim. Ac.*, 73(A1158), 2009.

410 Salvatteci, R., Field, D. B., Baumgartner, T., Ferreira, V., and Gutierrez, D.: Evaluating fish
411 scale preservation in sediment records from the oxygen minimum zone off Peru,
412 *Paleobiology*, 38(1), 766-792, 2012.

413 Salvatteci, R., Field, D., Sifeddine, A., Ortlieb, L., Ferreira, V., Baumgartner, T., Caquineau, S.,
414 Velazco, F., Reyss, J. L., Sanchez-Cabeza, J. A., and Gutierrez, D.: Cross-stratigraphies
415 from a seismically active mud lens off Peru indicate horizontal extensions of laminae,
416 missing sequences, and a need for multiple cores for high resolution records, *Marine*
417 *Geology*, in revision.

418 Sifeddine, A., Gutierrez, D., Ortlieb, L., Boucher, H., Velazco, F., Field, D., Vargas, G.,
419 Boussafir, M., Salvatteci, R., Ferreira, V., García, M., Valdes, J., Caquineau, S., Mandeng-
420 Yogo, M., Cetin, F., Solis, J., Soler, P., and Baumgartner, T.: Laminated sediments from the
421 central Peruvian continental slope: A 500 year record of upwelling system productivity,
422 terrestrial runoff and redox conditions, *Prog. Oceanogr.*, 79, 190-197, 2008.

423 Scholz, F., Hensen, C., Noffke, A., Rohde, A., Liebetrau, V., and Wallmann, K.: Early
424 diagenesis of redox-sensitive trace metals in the Peru upwelling area – response to ENSO-
425 related oxygen fluctuations in the water column, *Geochim. Cosmochim. Ac.*, 75, 7257-
426 7276, 2011.

427 Stuiver, M. and Reimer, P. J.: Extended ^{14}C database and revised CALIB radiocarbon
428 calibration program, *Radiocarbon*, 35, 215-230, 1993.

429 Tribouillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals as paleoredox and
430 paleoproductivity proxies: An update, *Chem. Geol.*, 232, 12-32, 2006.

431 Van der Weijden, C. H.: Pitfalls of normalization of marine geochemical data using a common
432 divisor, *Mar. Geol.*, 184, 167-187, 2002.