Articles | Volume 10, issue 1
https://doi.org/10.5194/cp-10-51-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-10-51-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reconstruction of Atlantic water variability during the Holocene in the western Barents Sea
D. E. Groot
Department of Geology, University of Tromsø, Tromsø, Norway
S. Aagaard-Sørensen
Department of Geology, University of Tromsø, Tromsø, Norway
Department of Geology, University of Tromsø, Tromsø, Norway
Related authors
No articles found.
Kevin Zoller, Jan Sverre Laberg, Tom Arne Rydningen, Katrine Husum, and Matthias Forwick
Clim. Past, 19, 1321–1343, https://doi.org/10.5194/cp-19-1321-2023, https://doi.org/10.5194/cp-19-1321-2023, 2023
Short summary
Short summary
Marine geologic data from NE Greenland provide new information about the behavior of the Greenland Ice Sheet from the last glacial period to present. Seafloor landforms suggest that a large, fast-flowing ice stream moved south through southern Dove Bugt. This region is believed to have been deglaciated from at least 11.4 ka cal BP. Ice in an adjacent fjord, Bessel Fjord, may have retreated to its modern position by 7.1 ka cal BP, and the ice halted or readvanced multiple times upon deglaciation.
Marta Santos-Garcia, Raja S. Ganeshram, Robyn E. Tuerena, Margot C. F. Debyser, Katrine Husum, Philipp Assmy, and Haakon Hop
Biogeosciences, 19, 5973–6002, https://doi.org/10.5194/bg-19-5973-2022, https://doi.org/10.5194/bg-19-5973-2022, 2022
Short summary
Short summary
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of Kongsfjorden and Rijpfjorden in Svalbard during the summer, and they sustain most of the fjord primary productivity. Ongoing tidewater glacier retreat is postulated to favour light limitation and less dynamic circulation in fjords. This is suggested to encourage the export of nutrients to the middle and outer part of the fjord system, which may enhance primary production within and in offshore areas.
Ingrid Leirvik Olsen, Tom Arne Rydningen, Matthias Forwick, Jan Sverre Laberg, and Katrine Husum
The Cryosphere, 14, 4475–4494, https://doi.org/10.5194/tc-14-4475-2020, https://doi.org/10.5194/tc-14-4475-2020, 2020
Short summary
Short summary
We present marine geoscientific data from Store Koldewey Trough, one of the largest glacial troughs offshore NE Greenland, to reconstruct the ice drainage pathways, ice sheet extent and ice stream dynamics of this sector during the last glacial and deglaciation. The complex landform assemblage in the trough reflects a dynamic retreat with several periods of stabilization and readvances, interrupting the deglaciation. Estimates indicate that the ice front locally retreated between 80–400 m/year.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
S. M. P. Berben, K. Husum, P. Cabedo-Sanz, and S. T. Belt
Clim. Past, 10, 181–198, https://doi.org/10.5194/cp-10-181-2014, https://doi.org/10.5194/cp-10-181-2014, 2014
C. V. Dylmer, J. Giraudeau, V. Hanquiez, and K. Husum
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-15077-2013, https://doi.org/10.5194/bgd-10-15077-2013, 2013
Revised manuscript has not been submitted
C. V. Dylmer, J. Giraudeau, F. Eynaud, K. Husum, and A. De Vernal
Clim. Past, 9, 1505–1518, https://doi.org/10.5194/cp-9-1505-2013, https://doi.org/10.5194/cp-9-1505-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Holocene
Response of biological productivity to North Atlantic marine front migration during the Holocene
Sea surface temperature in the Indian sector of the Southern Ocean over the Late Glacial and Holocene
Surface and subsurface Labrador Shelf water mass conditions during the last 6000 years
Reconstruction of Holocene oceanographic conditions in eastern Baffin Bay
Multiproxy evidence of the Neoglacial expansion of Atlantic Water to eastern Svalbard
Is there evidence for a 4.2 ka BP event in the northern North Atlantic region?
Holocene hydrography evolution in the Alboran Sea: a multi-record and multi-proxy comparison
Influence of the North Atlantic subpolar gyre circulation on the 4.2 ka BP event
The 4.2 ka event, ENSO, and coral reef development
Indian winter and summer monsoon strength over the 4.2 ka BP event in foraminifer isotope records from the Indus River delta in the Arabian Sea
Neoglacial climate anomalies and the Harappan metamorphosis
Atlantic Water advection vs. glacier dynamics in northern Spitsbergen since early deglaciation
Holocene dynamics in the Bering Strait inflow to the Arctic and the Beaufort Gyre circulation based on sedimentary records from the Chukchi Sea
Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records
Southern Hemisphere anticyclonic circulation drives oceanic and climatic conditions in late Holocene southernmost Africa
Holocene evolution of the North Atlantic subsurface transport
Changes in Holocene meridional circulation and poleward Atlantic flow: the Bay of Biscay as a nodal point
Hydrological variations of the intermediate water masses of the western Mediterranean Sea during the past 20 ka inferred from neodymium isotopic composition in foraminifera and cold-water corals
Sea surface temperature variability in the central-western Mediterranean Sea during the last 2700 years: a multi-proxy and multi-record approach
Carbon isotope (δ13C) excursions suggest times of major methane release during the last 14 kyr in Fram Strait, the deep-water gateway to the Arctic
Late Weichselian and Holocene palaeoceanography of Storfjordrenna, southern Svalbard
Implication of methodological uncertainties for mid-Holocene sea surface temperature reconstructions
The role of the northward-directed (sub)surface limb of the Atlantic Meridional Overturning Circulation during the 8.2 ka event
Northward advection of Atlantic water in the eastern Nordic Seas over the last 3000 yr
Controls of Caribbean surface hydrology during the mid- to late Holocene: insights from monthly resolved coral records
Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea
David J. Harning, Anne E. Jennings, Denizcan Köseoğlu, Simon T. Belt, Áslaug Geirsdóttir, and Julio Sepúlveda
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, https://doi.org/10.5194/cp-17-379-2021, 2021
Short summary
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
Annalena A. Lochte, Ralph Schneider, Markus Kienast, Janne Repschläger, Thomas Blanz, Dieter Garbe-Schönberg, and Nils Andersen
Clim. Past, 16, 1127–1143, https://doi.org/10.5194/cp-16-1127-2020, https://doi.org/10.5194/cp-16-1127-2020, 2020
Short summary
Short summary
The Labrador Sea is important for the modern global thermohaline circulation system through the formation of Labrador Sea Water. However, the role of the southward flowing Labrador Current in Labrador Sea convection is still debated. In order to better assess its role in deep-water formation and climate variability, we present high-resolution mid- to late Holocene records of sea surface and bottom water temperatures, freshening, and sea ice cover on the Labrador Shelf during the last 6000 years.
Katrine Elnegaard Hansen, Jacques Giraudeau, Lukas Wacker, Christof Pearce, and Marit-Solveig Seidenkrantz
Clim. Past, 16, 1075–1095, https://doi.org/10.5194/cp-16-1075-2020, https://doi.org/10.5194/cp-16-1075-2020, 2020
Short summary
Short summary
In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting, which was trained to predict continuous precipitation intensities at a lead time of 5 min. RainNet significantly outperformed the benchmark models at all lead times up to 60 min. Yet an undesirable property of RainNet predictions is the level of spatial smoothing. Obviously, RainNet learned an optimal level of smoothing to produce a nowcast at 5 min lead time.
Joanna Pawłowska, Magdalena Łącka, Małgorzata Kucharska, Jan Pawlowski, and Marek Zajączkowski
Clim. Past, 16, 487–501, https://doi.org/10.5194/cp-16-487-2020, https://doi.org/10.5194/cp-16-487-2020, 2020
Short summary
Short summary
Paleoceanographic changes in Storfjorden during the Neoglacial (the last
4000 years) were reconstructed based on microfossil and ancient DNA records. Environmental changes were steered mainly by the interaction between the inflow of Atlantic Water (AW) and sea ice cover. Warming periods were associated with AW inflow and sea ice melting, stimulating primary production. The cold phases were characterized by densely packed sea ice, resulting in limited productivity.
Raymond S. Bradley and Jostein Bakke
Clim. Past, 15, 1665–1676, https://doi.org/10.5194/cp-15-1665-2019, https://doi.org/10.5194/cp-15-1665-2019, 2019
Short summary
Short summary
We review paleoceanographic and paleoclimatic records from the northern North Atlantic to assess the nature of climatic conditions at 4.2 ka BP. There was a general decline in temperatures after ~ 5 ka BP, which led to the onset of neoglaciation. Although a few records do show a distinct anomaly around 4.2 ka BP (associated with a glacial advance), this is not widespread and we interpret it as a local manifestation of the overall climatic deterioration that characterized the late Holocene.
Albert Català, Isabel Cacho, Jaime Frigola, Leopoldo D. Pena, and Fabrizio Lirer
Clim. Past, 15, 927–942, https://doi.org/10.5194/cp-15-927-2019, https://doi.org/10.5194/cp-15-927-2019, 2019
Short summary
Short summary
We present a new high-resolution sea surface temperature (SST) reconstruction for the Holocene (last 11 700 years) in the westernmost Mediterranean Sea. We identify three sub-periods: the Early Holocene with warmest SST; the Middle Holocene with a cooling trend ending at 4200 years, which is identified as a double peak cooling event that marks the transition between the Middle and Late Holocene; and the Late Holocene with very different behaviour in both long- and short-term SST variability.
Bassem Jalali, Marie-Alexandrine Sicre, Julien Azuara, Violaine Pellichero, and Nathalie Combourieu-Nebout
Clim. Past, 15, 701–711, https://doi.org/10.5194/cp-15-701-2019, https://doi.org/10.5194/cp-15-701-2019, 2019
Lauren T. Toth and Richard B. Aronson
Clim. Past, 15, 105–119, https://doi.org/10.5194/cp-15-105-2019, https://doi.org/10.5194/cp-15-105-2019, 2019
Short summary
Short summary
We explore the hypothesis that a shift in global climate 4200 years ago (the 4.2 ka event) was related to the El Niño–Southern Oscillation (ENSO). We summarize records of coral reef development in the tropical eastern Pacific, where intensification of ENSO stalled reef growth for 2500 years starting around 4.2 ka. Because corals are highly sensitive to climatic changes, like ENSO, we suggest that records from coral reefs may provide important clues about the role of ENSO in the 4.2 ka event.
Alena Giesche, Michael Staubwasser, Cameron A. Petrie, and David A. Hodell
Clim. Past, 15, 73–90, https://doi.org/10.5194/cp-15-73-2019, https://doi.org/10.5194/cp-15-73-2019, 2019
Short summary
Short summary
A foraminifer oxygen isotope record from the northeastern Arabian Sea was used to reconstruct winter and summer monsoon strength from 5.4 to 3.0 ka. We found a 200-year period of strengthened winter monsoon (4.5–4.3 ka) that coincides with the earliest phase of the Mature Harappan period of the Indus Civilization, followed by weakened winter and summer monsoons by 4.1 ka. Aridity spanning both rainfall seasons at 4.1 ka may help to explain some of the observed archaeological shifts.
Liviu Giosan, William D. Orsi, Marco Coolen, Cornelia Wuchter, Ann G. Dunlea, Kaustubh Thirumalai, Samuel E. Munoz, Peter D. Clift, Jeffrey P. Donnelly, Valier Galy, and Dorian Q. Fuller
Clim. Past, 14, 1669–1686, https://doi.org/10.5194/cp-14-1669-2018, https://doi.org/10.5194/cp-14-1669-2018, 2018
Short summary
Short summary
Climate reorganization during the early neoglacial anomaly (ENA) may explain the Harappan civilization metamorphosis from an urban, expansive culture to a rural, geographically-confined one. Landcover change is a candidate for causing this climate instability. During ENA agriculture along the flood-deficient floodplains of the Indus became too risky, which pushed people out. In the same time the Himalayan piedmont received augmented winter rain and steady summer precipitation, pulling people in.
Martin Bartels, Jürgen Titschack, Kirsten Fahl, Rüdiger Stein, Marit-Solveig Seidenkrantz, Claude Hillaire-Marcel, and Dierk Hebbeln
Clim. Past, 13, 1717–1749, https://doi.org/10.5194/cp-13-1717-2017, https://doi.org/10.5194/cp-13-1717-2017, 2017
Short summary
Short summary
Multi-proxy analyses (i.a., benthic foraminiferal assemblages and sedimentary properties) of a marine record from Woodfjorden at the northern Svalbard margin (Norwegian Arctic) illustrate a significant contribution of relatively warm Atlantic water to the destabilization of tidewater glaciers, especially during the deglaciation and early Holocene (until ~ 7800 years ago), whereas its influence on glacier activity has been fading during the last 2 millennia, enabling glacier readvances.
Masanobu Yamamoto, Seung-Il Nam, Leonid Polyak, Daisuke Kobayashi, Kenta Suzuki, Tomohisa Irino, and Koji Shimada
Clim. Past, 13, 1111–1127, https://doi.org/10.5194/cp-13-1111-2017, https://doi.org/10.5194/cp-13-1111-2017, 2017
Short summary
Short summary
Based on mineral records from the northern Chukchi Sea, we report a long-term decline in the Beaufort Gyre (BG) strength during the Holocene, consistent with a decrease in summer insolation. Multi-centennial variability in BG circulation is consistent with fluctuations in solar irradiance. The Bering Strait inflow shows intensification during the middle Holocene, associated with sea-ice retreat and an increase in marine production in the Chukchi Sea, which is attributed to a weaker Aleutian Low.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Annette Hahn, Enno Schefuß, Sergio Andò, Hayley C. Cawthra, Peter Frenzel, Martin Kugel, Stephanie Meschner, Gesine Mollenhauer, and Matthias Zabel
Clim. Past, 13, 649–665, https://doi.org/10.5194/cp-13-649-2017, https://doi.org/10.5194/cp-13-649-2017, 2017
Short summary
Short summary
Our study demonstrates that a source to sink analysis in the Gouritz catchment can be used to obtain valuable paleoclimatic information form the year-round rainfall zone. In combination with SST reconstructions these data are a valuable contribution to the discussion of Southern Hemisphere palaeoenvironments and climate variability (in particular atmosphere–ocean circulation and hydroclimate change) in the South African Holocene.
Janne Repschläger, Dieter Garbe-Schönberg, Mara Weinelt, and Ralph Schneider
Clim. Past, 13, 333–344, https://doi.org/10.5194/cp-13-333-2017, https://doi.org/10.5194/cp-13-333-2017, 2017
Short summary
Short summary
We reconstruct changes in the warm water transport from the subtropical to the subpolar North Atlantic over the last 10 000 years. We use stable isotope and Mg / Ca ratios measured on surface and subsurface dwelling foraminifera. Results indicate an overall stable warm water transport at surface. The northward transport at subsurface evolves stepwise and stabilizes at 7 ka BP on the modern mode. These ocean transport changes seem to be controlled by the meltwater inflow into the North Atlantic.
Yannick Mary, Frédérique Eynaud, Christophe Colin, Linda Rossignol, Sandra Brocheray, Meryem Mojtahid, Jennifer Garcia, Marion Peral, Hélène Howa, Sébastien Zaragosi, and Michel Cremer
Clim. Past, 13, 201–216, https://doi.org/10.5194/cp-13-201-2017, https://doi.org/10.5194/cp-13-201-2017, 2017
Short summary
Short summary
In the boreal Atlantic, the subpolar and subtropical gyres (SPG and STG respectively) are key elements of the Atlantic Meridional Overturning Circulation (AMOC) cell and contribute to climate modulations over Europe. Here we document the last 10 kyr evolution of sea-surface temperatures over the North Atlantic with a focus on new data obtained from an exceptional sedimentary archive retrieved the southern Bay of Biscay, enabling the study of Holocene archives at (infra)centennial scales.
Quentin Dubois-Dauphin, Paolo Montagna, Giuseppe Siani, Eric Douville, Claudia Wienberg, Dierk Hebbeln, Zhifei Liu, Nejib Kallel, Arnaud Dapoigny, Marie Revel, Edwige Pons-Branchu, Marco Taviani, and Christophe Colin
Clim. Past, 13, 17–37, https://doi.org/10.5194/cp-13-17-2017, https://doi.org/10.5194/cp-13-17-2017, 2017
Mercè Cisneros, Isabel Cacho, Jaime Frigola, Miquel Canals, Pere Masqué, Belen Martrat, Marta Casado, Joan O. Grimalt, Leopoldo D. Pena, Giulia Margaritelli, and Fabrizio Lirer
Clim. Past, 12, 849–869, https://doi.org/10.5194/cp-12-849-2016, https://doi.org/10.5194/cp-12-849-2016, 2016
Short summary
Short summary
We present a high-resolution multi-proxy study about the evolution of sea surface conditions along the last 2700 yr in the north-western Mediterranean Sea based on five sediment records from two different sites north of Minorca. The novelty of the results and the followed approach, constructing stack records from the studied proxies to preserve the most robust patterns, provides a special value to the study. This complex period appears to have significant regional changes in the climatic signal.
C. Consolaro, T. L. Rasmussen, G. Panieri, J. Mienert, S. Bünz, and K. Sztybor
Clim. Past, 11, 669–685, https://doi.org/10.5194/cp-11-669-2015, https://doi.org/10.5194/cp-11-669-2015, 2015
Short summary
Short summary
A sediment core collected from a pockmark field on the Vestnesa Ridge (~80N) in the Fram Strait is presented. Our results show an undisturbed sedimentary record for the last 14 ka BP and negative carbon isotope excursions (CIEs) during the Bølling-Allerød interstadials and during the early Holocene. Both CIEs relate to periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere, suggesting an apparent correlation with warm climatic events.
M. Łącka, M. Zajączkowski, M. Forwick, and W. Szczuciński
Clim. Past, 11, 587–603, https://doi.org/10.5194/cp-11-587-2015, https://doi.org/10.5194/cp-11-587-2015, 2015
Short summary
Short summary
Storfjordrenna was deglaciated about 13,950 cal yr BP. During the transition from the sub-glacial to glaciomarine setting, Arctic Waters dominated its hydrography. However, the waters were not uniformly cold and experienced several warmer spells. Atlantic Water began to flow onto the shelves off Svalbard and into Storfjorden during the early Holocene, leading to progressive warming and significant glacial melting. A surface-water cooling and freshening occurred in late Holocene.
I. Hessler, S. P. Harrison, M. Kucera, C. Waelbroeck, M.-T. Chen, C. Anderson, A. de Vernal, B. Fréchette, A. Cloke-Hayes, G. Leduc, and L. Londeix
Clim. Past, 10, 2237–2252, https://doi.org/10.5194/cp-10-2237-2014, https://doi.org/10.5194/cp-10-2237-2014, 2014
A. D. Tegzes, E. Jansen, and R. J. Telford
Clim. Past, 10, 1887–1904, https://doi.org/10.5194/cp-10-1887-2014, https://doi.org/10.5194/cp-10-1887-2014, 2014
C. V. Dylmer, J. Giraudeau, F. Eynaud, K. Husum, and A. De Vernal
Clim. Past, 9, 1505–1518, https://doi.org/10.5194/cp-9-1505-2013, https://doi.org/10.5194/cp-9-1505-2013, 2013
C. Giry, T. Felis, M. Kölling, W. Wei, G. Lohmann, and S. Scheffers
Clim. Past, 9, 841–858, https://doi.org/10.5194/cp-9-841-2013, https://doi.org/10.5194/cp-9-841-2013, 2013
G. Siani, M. Magny, M. Paterne, M. Debret, and M. Fontugne
Clim. Past, 9, 499–515, https://doi.org/10.5194/cp-9-499-2013, https://doi.org/10.5194/cp-9-499-2013, 2013
Cited articles
Aagaard, K. and Greisman, P.: Toward New Mass and Heat Budgets for the Arctic Ocean, J. Geophys. Res., 80, 3821–3827, https://doi.org/10.1029/JC080i027p03821, 1975.
Aagaard, K., Foldvik, A., and Hillman, S. R.: The West Spitsbergen Current: Disposition and Water Mass Transformation, J. Geophys. Res., 92, 3778–3784, https://doi.org/10.1029/JC092iC04p03778, 1987.
Aagaard-Sørensen, S., Husum, K., Hald, M., and Knies, J.: Paleoceanographic development in the SW Barents Sea during the Late Weichselian–Early Holocene transition, Quaternary Sci. Rev., 29, 3442–3456, https://doi.org/10.1016/j.quascirev.2010.08.014, 2010.
Andersson, C., Pausata, F. S. R., Jansen, E., Risebrobakken, B., and Telford, R. J.: Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean, Clim. Past, 6, 179–193, https://doi.org/10.5194/cp-6-179-2010, 2010.
Azetsu-Scott, K. and Tan, F.C.: Oxygen isotope studies from Iceland to an East Greenland Fjord: behavior of glacial meltwater plume, Mar. Chem., 56, 239–251, 1997.
Berben, S. M. P., Husum, K., Cabedo-Sanz, P., and Belt, S. T.: Holocene sub centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea, Clim. Past Discuss., 9, 4893–4938, https://doi.org/10.5194/cpd-9-4893-2013, 2013.
Berger, A. and Loutre, M.: Insolation values for the climate of the last 10 million years, Quaternary Sci. Rev., 10, 297–317, https://doi.org/10.1016/0277-3791(91)90033-Q, 1991.
Birks, H. J. B.: Quantitative paleoenvironmental reconstructions, in: Statistical modelling of Quaternary science data, edited by: Maddy, D. and Brew, J. S., Quaternary Research Association, Cambridge, UK, 116–254, 1995.
Chistyakova, N., Ivanova, E., Risebrobakken, B., Ovsepyan, E., and Ovsepyan, Y.: Reconstruction of the postglacial environments in the southwestern Barents Sea based on foraminiferal assemblages, Oceanology, 50, 573–581, https://doi.org/10.1134/S0001437010040132, 2010.
Duplessy, J. C., Ivanova, E., Murdmaa, I., Paterne, M., and Labeyrie, L.: Holocene paleoceanography of the northern Barents Sea and variations of the northward heat transport by the Atlantic Ocean, Boreas, 30, 2–16, https://doi.org/10.1111/j.1502-3885.2001.tb00984.x, 2001.
Duplessy, J. C., Cortijo, E., Ivanova, E., Khusid, T., Labeyrie, L., Levitan, M., Murdmaa, I., and Paterne, M.: Paleoceanography of the Barents Sea during the Holocene, Paleoceanography, 20, PA4004, https://doi.org/10.1029/2004PA001116, 2005.
Dylmer, C. V., Giraudeau, J., Eynaud, F., Husum, K., and De Vernal, A.: Northward advection of Atlantic water in the eastern Nordic Seas over the last 3000 yr: a coccolith investigation of volume transport and surface water changes, Clim. Past Discuss., 9, 1259–1295, https://doi.org/10.5194/cpd-9-1259-2013, 2013.
Ehrmann, W. U. and Thiede, J.: History of Mesozoic and Cenozoic sediment fluxes to the North Atlantic Ocean, Contributions to Sedimentology, 15, 1–109, 1985.
Fairbanks, R. G.: A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation, Nature, 342, 637–642, 1989.
Feyling-Hanssen, R. W.: The Foraminifer Elphidium excavatum (Terquem) and Its Variant Forms, Micropaleontology, 18, 337–354, 1972.
Fohrmann, H., Backhaus, J. O., Blaume, F., and Rumohr, J.: Sediments in bottom-arrested gravity plumes: numerical case studies, J. Phys. Oceanogr., 28, 2250–2274, 1998.
Gerdes, R., Karcher, M. J., Kauker, F., and Schauer, U.: Causes and development of repeated Arctic Ocean warming events, Geophys. Res. Lett., 30, 1980, https://doi.org/10.1029/2003GL018080, 2003.
Hald, M. and Korsun, S.: Distribution of modern benthic foraminifera from fjords of Svalbard, European Arctic, The J. Foraminif. Res., 27, 101–122, https://doi.org/10.2113/gsjfr.27.2.101, 1997.
Hald, M. and Steinsund, P. I.: Distribution of surface sediment benthic foraminifera in the southwestern Barents Sea, The J. Foraminif. Res., 22, 347–362, https://doi.org/10.2113/gsjfr.22.4.347, 1992.
Hald, M. and Steinsund, P. I.: Benthic foraminifera and carbonate dissolution in the surface sediments of the Barents and Kara Seas, Ber. Polarforsch., 212, 285–307, 1996.
Hald, M. and Vorren, T. O.: Modern and Holocene foraminifera and sediments on the continental shelf off Troms, North Norway, Boreas, 13, 133–154, 1984.
Hald, M., Steinsund, P. I., Dokken, T., Korsun, S., Polyak, L., and Aspeli, R.: Recent and late Quaternary distribution of Elphidium excavatum f. clavatum in the Arctic seas, Cushman Foundation Special Publications, 32, 141–153, 1994.
Hald, M., Andersson, C., Ebbesen, H., Jansen, E., Klitgaard-Kristensen, D., Risebrobakken, B., Salomonsen, G. R., Sarnthein, M., Sejrup, H. P., and Telford, R. J.: Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene, Quaternary Sci. Rev., 26, 3423–3440, https://doi.org/10.1016/j.quascirev.2007.10.005, 2007.
Hald, M., Salomonsen, G. R., Husum, K., and Wilson, L. J.: A 2000 year record of Atlantic Water temperature variability from the Malangen Fjord, northeastern North Atlantic, The Holocene, 21, 1049–1059, https://doi.org/10.1177/0959683611400457, 2011.
Hass, H. C.: A method to reduce the influence of ice-rafted debris on a grain size record from northern Fram Strait, Arctic Ocean, Polar Research, 21, 299–306, https://doi.org/10.1111/j.1751-8369.2002.tb00084.x, 2002.
Hopkins, T. S.: The GIN Sea–-A synthesis of its physical oceanography and literature review 1972–1985, Earth-Sci. Rev., 30, 175–318, https://doi.org/10.1016/0012-8252(91)90001-v, 1991.
Husum, K. and Hald, M.: A continuous marine record 8000–1600 cal. yr BP from the Malangenfjord, north Norway: foraminiferal and isotopic evidence, The Holocene, 14, 877–887, 2004.
Ingvaldsen, R. B.: Width of the North Cape Current and location of the Polar Front in the western Barents Sea, Geophys. Res. Lett., 32, L16603, https://doi.org/10.1029/2005gl023440, 2005.
Ivanova, E. V., Ovsepyan, E. A., Risebrobakken, B., and Vetrov, A. A.: Downcore distribution of living calcareous foraminifera and stable isotopes in the western Barents Sea, The J. Foraminif. Res., 38, 337–356, 2008.
Jennings, A. E., Weiner, N. J., Helgadottir, G., and Andrews, J. T.: Modern foraminiferal faunas of the southwestern to northern Iceland shelf: oceanography and environmental controls, The J. Foraminif. Res., 34, 180–207, https://doi.org/10.2113/34.3.180, 2004.
Jernas, P., Klitgaard Kristensen, D., Husum, K., Wilson, L., and Koç, N.: Paleoenvironmental changes of the last two millennia on the western and northern Svalbard shelf, Boreas, 42, 236–255, 2013.
Juggings, S.: C2 Version 1.7.2 User Guide. Software for ecological and paleoecological data analysis and visualization, Newcastle University, Newcastle upon Tyne UK, 2010.
Klitgaard-Kristensen, D., Sejrup, H. P., and Haflidason, H.: The Last 18 kyr Fluctuations in Norwegian Sea Surface Conditions and Implications for the Magnitude of Climatic Change: Evidence from the North Sea, Paleoceanography, 16, 455–467, https://doi.org/10.1029/1999PA000495, 2001.
Klitgaard-Kristensen, D., Rasmussen, T. L., and Koç, N.: Palaeoceanographic changes in the northern Barents Sea during the last 16 000 years – new constraints on the last deglaciation of the Svalbard-Barents Sea Ice Sheet, Boreas, 42, 798–813, https://doi.org/10.1111/j.1502-3885.2012.00307.x, 2013.
Knudsen, K. L.: Foraminiferer I Kvartær stratigrafi: Laboratorie og fremstillingsteknik samt udvalgte eksempler, Geologisk Tidsskrift 3, 1–25, 1998.
Lloyd, J. M.: Modern distribution of benthic foraminifera from Disko Bugt, West Greenland, The J. Foraminif. Res., 36, 315–331, 2006.
Loeng, H.: Features of the physical oceanographic conditions of the Barents Sea, Polar Res., 10, 5–18, https://doi.org/10.1111/j.1751-8369.1991.tb00630.x, 1991.
Lubinski, D. J., Polyak, L., and Forman, S. L.: Freshwater and Atlantic water inflows to the deep northern Barents and Kara seas since ca 13 14C ka: foraminifera and stable isotopes, Quaternary Sci. Rev., 20, 1851–1879, https://doi.org/10.1016/S0277-3791(01)00016-6, 2001.
Mackensen, A. and Hald, M.: Cassidulina teretis Tappan and C. laevigata d'Orbigny; their modern and late Quaternary distribution in northern seas, The J. Foraminif. Res., 18, 16–24, https://doi.org/10.2113/gsjfr.18.1.16, 1988.
Mangerud, J. and Gulliksen, S.: Apparent radiocarbon ages of recent marine shells from Norway, Spitsbergen, and Arctic Canada, Quaternary Res., 5, 263–273, https://doi.org/10.1016/0033-5894(75)90028-9, 1975.
Mangerud, J., Bondevik, S., Gulliksen, S., Hufthammer, A. K., and Høisæter, T.: Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic, Quaternary Sci. Rev., 25, 3228–3245, https://doi.org/10.1016/j.quascirev.2006.03.010, 2006.
Midttun, L.: Formation of dense bottom water in the Barents Sea, Deep Sea Res. Part A., 32, 1233–1241, 1985.
Polyak, L., Korsun, S., Febo, L. A., Stanovoy, V., Khusid, T., Hald, M., Paulsen, B. E., and Lubinski, D. J.: Benthic foraminiferal assemblages from the southern Kara Sea, a river-influenced arctic marine environment, The J. Foraminif. Res., 32, 252–273, https://doi.org/10.2113/32.3.252, 2002.
Poole, D.: Neogene and Quaternary Paleoenvironments in the Norwegian Sea Shelf, PhD Thesis, University of Tromsø, Norway, 1994.
Rasmussen, T. L., Thomsen, E., \'Slubowska, M. A., Jessen, S., Solheim, A., and Koç, N.: Paleoceanographic evolution of the SW Svalbard margin (76° N) since 20 000 14C yr BP, Quaternary Res., 67, 100–114, https://doi.org/10.1016/j.yqres.2006.07.002, 2007.
Rasmussen, T., Forwick, M., and Mackensen, A.: Reconstruction of Atlantic Water to Isfjorden, Svalbard during the Holocene: Correlation to climate and seasonality, Mar. Micropaleontol., 94–95, 80–90, 2012.
Rasmussen, T. L., Thomsen, E., Skirbekk, K., \'Slubowska-Woldengen, M., Klitgaard Kristensen, D., and Koç, N.: Holocene temperature variability in the northern Nordic Seas: Interplay of Atlantic-, Arctic- and Polar water masses, Quaternary Sci. Rev., https://doi.org/10.1016/j.quascirev.2013.10.034, 2013.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Grootes, P. M., Guilderson, T. P., Haflidason,H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D.L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E.M., Southon, Staff, R.A., J. R., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887, 2013.
Renssen, H., Seppä, H., Heiri, O., Roche, D. M., Goosse, H., and Fichefet, T.: The spatial and temporal complexity of the Holocene thermal maximum, Nat. Geosci., 2, 411–414, https://doi.org/10.1038/ngeo513, 2009.
Risebrobakken, B., Jansen, E., Andersson, C., Mjelde, E., and Hevrøy, K.: A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas, Paleoceanography, 18, 1017, https://doi.org/10.1029/2002PA000764, 2003.
Risebrobakken, B., Moros, M., Ivanova, E. V., Chistyakova, N., and Rosenberg, R.: Climate and oceanographic variability in the SW Barents Sea during the Holocene, The Holocene, 20, 609–621, https://doi.org/10.1177/0959683609356586, 2010.
Risebrobakken, B., Dokken, T., Smedsrud, L., Andersson, C., Jansen, E., Moros, M., and Ivanova, E.: Early Holocene temperature variability in the Nordic Seas: The role of oceanic heat advection versus changes in orbital forcing, Paleoceanography, 26, PA4206, https://doi.org/10.1029/2011PA002117, 2011.
Rüther, D. C., Bjarnadóttir, L. R., Junttila, J., Husum, K., Rasmussen, T. L., Lucchi, R. G., and Andreassen, K.: Pattern and timing of the northwestern Barents Sea Ice Sheet deglaciation and indications of episodic Holocene deposition, Boreas, 41, 494–512, https://doi.org/10.1111/j.1502-3885.2011.00244.x, 2012.
Rytter, F., Knudsen, K. L., Seidenkrantz, M. S., and Eiríksson, J.: Modern distribution of benthic foraminifera on the north Icelandic shelf and slope, The J. Foraminif. Res., 32, 217–244, https://doi.org/10.2113/32.3.217, 2002.
Sætre, R.: The Norwegian coastal current: oceanography and climate, Tapir Academic Press, Trondheim, 2007.
Sarnthein, M., Van Kreveld, S., Erlenkeuser, H., Grootes, P. M., Kucera, M., Pflaumann, U., and Schulz, M.: Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75° N, Boreas, 32, 447–461, https://doi.org/10.1111/j.1502-3885.2003.tb01227.x, 2003.
Seidenkrantz, M. S.: Cassidulina teretis Tappan and Cassidulina neoteretis new species (Foraminifera): stratigraphic markers for deep sea and outer shelf areas, J. Micropalaeontol., 14, 145–157, https://doi.org/10.1144/jm.14.2.145, 1995.
Sejrup, H. P., Birks, H. J. B., Klitgaard Kristensen, D., and Madsen, H.: Benthonic foraminiferal distributions and quantitative transfer functions for the northwest European continental margin, Mar. Micropaleontol., 53, 197–226, https://doi.org/10.1016/j.marmicro.2004.05.009, 2004.
Shackleton, N. J.: Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial, Centre National de la Recherche Scientifique Colleagues Internationeaux, 219, 203–209, 1974.
Simstich, J., Sarnthein, M., and Erlenkeuser, H.: Paired δ18O signals of Neogloboquadrina pachyderma (s) and Turborotalita quinqueloba show thermal stratification structure in Nordic Seas, Mar. Micropaleontol., 48, 107–125, 2003.
Skirbekk, K., Klitgaard Kristensen, D., Rasmussen, T. L., Koç, N., and Forwick, M.: Holocene climate variations at the entrance to a warm Arctic fjord: evidence from Kongsfjorden trough, Svalbard, in: Fjord Systems and Archives, edited by: Howe, J. A., Austin, W. E. N., Forwick, M., and Paetzel, M., Geological Society of London, Special Publications, 344, London, 289–304, 2010.
\'Slubowska, M. A., Koç, N., Rasmussen, T. L., and Klitgaard-Kristensen, D.: Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: Evidence from the northern Svalbard continental margin, 80° N, Paleoceanography, 20, PA4014, https://doi.org/10.1029/2005PA001141, 2005.
\'Slubowska-Woldengen, M., Rasmussen, T. L., Koç, N., Klitgaard-Kristensen, D., Nilsen, F., and Solheim, A.: Advection of Atlantic Water to the western and northern Svalbard shelf since 17,500 cal yr BP, Quaternary Sci. Rev., 26, 463–478, https://doi.org/10.1016/j.quascirev.2006.09.009, 2007.
Stein, R. and Macdonald, R. W.: The organic carbon cycle in the Arctic Ocean, Springer, Berlin, 2004.
Steinsund, P. I.: Benthic foraminifera in surface sediments of the Barents and Kara Seas: Modern and late Quaternary applications, PhD thesis, University of Tromsø, Norway, 1994.
Stuiver, M., Reimer, P. J., and Reimer, R. W.: CALIB 7.0. (WWW program and Documentation), 2005.
ter Braak, C. J. F. and Juggins, S.: Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages, Hydrobiologia, 269–270, 485–502, https://doi.org/10.1007/bf00028046, 1993.
Voronina, E., Polyak, L., De Vernal, A., and Peyron, O.: Holocene variations of sea-surface conditions in the southeastern Barents Sea, reconstructed from dinoflagellate cyst assemblages, J. Quaternary Sci., 16, 717–726, https://doi.org/10.1002/jqs.650, 2001.
Wilson, L. J., Hald, M., and Godtliebsen, F.: Foraminiferal faunal evidence of twentieth-century Barents Sea warming, Holocene, 21, 527–537, https://doi.org/10.1177/0959683610385718, 2011.
Wohlfarth, B., Lemdahl, G., Olsson, S., Persson, T., Snowball, I., Ising, J., and Jones, V.: Early Holocene environment on Bjørnøya (Svalbard) inferred from multidisciplinary lake sediment studies, Polar Res., 14, 253–275, 1995.