Articles | Volume 10, issue 6
https://doi.org/10.5194/cp-10-2253-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-10-2253-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Millennial meridional dynamics of the Indo-Pacific Warm Pool during the last termination
L. Lo
High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan ROC
C.-C. Shen
CORRESPONDING AUTHOR
High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan ROC
K.-Y. Wei
High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan ROC
G. S. Burr
NSF-Arizona Accelerator Mass Spectrometry Facility, Department of Physics, University of Arizona, Tucson, AZ 85721, USA
High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan ROC
H.-S. Mii
Department of Earth Sciences, National Taiwan Normal University, Taipei 11677, Taiwan ROC
M.-T. Chen
Institute of Applied Geosciences, National Taiwan Ocean University, Keelung 20224, Taiwan ROC
S.-Y. Lee
Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan ROC
M.-C. Tsai
High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan ROC
Related authors
T.-Y. Li, C.-C. Shen, L.-J. Huang, X.-Y. Jiang, X.-L. Yang, H.-S. Mii, S.-Y. Lee, and L. Lo
Clim. Past, 10, 1211–1219, https://doi.org/10.5194/cp-10-1211-2014, https://doi.org/10.5194/cp-10-1211-2014, 2014
Miriam Pfeiffer, Hideko Takayanagi, Lars Reuning, Takaaki Konabe Watanabe, Saori Ito, Dieter Garbe-Schönberg, Tsuyoshi Watanabe, Chung-Che Wu, Chuan-Chou Shen, Jens Zinke, Geert-Jan Brummer, and Sri Yudawati Cahyarini
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-25, https://doi.org/10.5194/cp-2024-25, 2024
Revised manuscript accepted for CP
Short summary
Short summary
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface temperature in the SE tropical Indian Ocean. An enhanced seasonal cycle suggests that the tropical rainfall belt shifted northwards between 1855–1917. We explain this with greater warming in the NE Indian Ocean relative to the SE, which strengthens surface winds and coastal upwelling, leading to greater cooling in the eastern Indian Ocean south of the Equator.
Maike Leupold, Miriam Pfeiffer, Takaaki K. Watanabe, Lars Reuning, Dieter Garbe-Schönberg, Chuan-Chou Shen, and Geert-Jan A. Brummer
Clim. Past, 17, 151–170, https://doi.org/10.5194/cp-17-151-2021, https://doi.org/10.5194/cp-17-151-2021, 2021
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Ryu Uemura, Yudai Kina, Chuan-Chou Shen, and Kanako Omine
Clim. Past, 16, 17–27, https://doi.org/10.5194/cp-16-17-2020, https://doi.org/10.5194/cp-16-17-2020, 2020
Short summary
Short summary
The oxygen isotopic ratio of water in fluid inclusions in speleothems is an important proxy for the changes in past hydroclimate and temperatures. This isotopic ratio, however, may be affected by isotopic exchange between the water and the host calcite. Here we evaluate this exchange reaction based on a laboratory experiment. We demonstrated that the exchange was detectable but not significant for temperature reconstruction, likely because the reaction occurred only with a thin calcite layer.
Xiuyang Jiang, Yaoqi He, Xiaoyan Wang, Jinguo Dong, Zhizhong Li, and Chuan-Chou Shen
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-144, https://doi.org/10.5194/cp-2017-144, 2017
Manuscript not accepted for further review
Short summary
Short summary
Facilitated by a robust chronology with closely spaced U-Th ages, replicated sub-decadal-resolved δ18O records of two stalagmites from Sanxing Cave, Southwest China, express Asian Summer Monsoon (ASM) history from 79.0 ± 0.2 to 75.7 ± 0.2 thousand years before present (kyr BP, before AD 1950) to reveal detailed structure of MIS 5a/4 transition and Chinese Interstadial (CIS) 21.
Sergey A. Gorbarenko, Xuefa Shi, Galina Yu. Malakhova, Aleksandr A. Bosin, Jianjun Zou, Yanguang Liu, and Min-Te Chen
Clim. Past, 13, 1063–1080, https://doi.org/10.5194/cp-13-1063-2017, https://doi.org/10.5194/cp-13-1063-2017, 2017
Heitor Evangelista, Ilana Wainer, Abdelfettah Sifeddine, Thierry Corrège, Renato C. Cordeiro, Saulo Lamounier, Daniely Godiva, Chuan-Chou Shen, Florence Le Cornec, Bruno Turcq, Claire E. Lazareth, and Ching-Yi Hu
Biogeosciences, 13, 2379–2386, https://doi.org/10.5194/bg-13-2379-2016, https://doi.org/10.5194/bg-13-2379-2016, 2016
Short summary
Short summary
Recent Southern Hemisphere (SH) atmospheric circulation, predominantly driven by stratospheric ozone depletion over Antarctica, has caused changes in climate across the extratropics. We present evidence that the Brazilian coast may have been impacted from both wind and sea surface temperature changes derived from this process. Skeleton analysis of massive coral species living in shallow waters off Brazil are very sensitive to air–sea interactions and seem to record this process.
Qing Wang, Houyun Zhou, Ke Cheng, Hong Chi, Chuan-Chou Shen, Changshan Wang, and Qianqian Ma
Clim. Past, 12, 871–881, https://doi.org/10.5194/cp-12-871-2016, https://doi.org/10.5194/cp-12-871-2016, 2016
Short summary
Short summary
The upper part of stalagmite ky1 (from top to 42.769 mm depth), consisting of 678 laminae, was collected from a cave in northern China, located in the East Asia monsoon area. The time of deposition ranges from AD 1217±20 to 1894±20. The analysis shows that both the variations in the thickness of the laminae themselves and the fluctuating degree of variation in the thickness of the laminae of stalagmite ky1 have obviously staged characteristics and synchronized with climate.
I. Hessler, S. P. Harrison, M. Kucera, C. Waelbroeck, M.-T. Chen, C. Anderson, A. de Vernal, B. Fréchette, A. Cloke-Hayes, G. Leduc, and L. Londeix
Clim. Past, 10, 2237–2252, https://doi.org/10.5194/cp-10-2237-2014, https://doi.org/10.5194/cp-10-2237-2014, 2014
J.-J. Yin, D.-X. Yuan, H.-C. Li, H. Cheng, T.-Y. Li, R. L. Edwards, Y.-S. Lin, J.-M. Qin, W. Tang, Z.-Y. Zhao, and H.-S. Mii
Clim. Past, 10, 1803–1816, https://doi.org/10.5194/cp-10-1803-2014, https://doi.org/10.5194/cp-10-1803-2014, 2014
C. R. Maupin, J. W. Partin, C.-C. Shen, T. M. Quinn, K. Lin, F. W. Taylor, J. L. Banner, K. Thirumalai, and D. J. Sinclair
Clim. Past, 10, 1319–1332, https://doi.org/10.5194/cp-10-1319-2014, https://doi.org/10.5194/cp-10-1319-2014, 2014
T.-Y. Li, C.-C. Shen, L.-J. Huang, X.-Y. Jiang, X.-L. Yang, H.-S. Mii, S.-Y. Lee, and L. Lo
Clim. Past, 10, 1211–1219, https://doi.org/10.5194/cp-10-1211-2014, https://doi.org/10.5194/cp-10-1211-2014, 2014
M. Yamamoto, H. Sai, M.-T. Chen, and M. Zhao
Clim. Past, 9, 2777–2788, https://doi.org/10.5194/cp-9-2777-2013, https://doi.org/10.5194/cp-9-2777-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Millenial/D-O
Leeuwin Current dynamics over the last 60 kyr – relation to Australian ecosystem and Southern Ocean change
Plateaus and jumps in the atmospheric radiocarbon record – potential origin and value as global age markers for glacial-to-deglacial paleoceanography, a synthesis
Millennial-scale variations in sedimentary oxygenation in the western subtropical North Pacific and its links to North Atlantic climate
Relative timing of precipitation and ocean circulation changes in the western equatorial Atlantic over the last 45 kyr
Regional seesaw between the North Atlantic and Nordic Seas during the last glacial abrupt climate events
Changes in the geometry and strength of the Atlantic meridional overturning circulation during the last glacial (20–50 ka)
Stratification of surface waters during the last glacial millennial climatic events: a key factor in subsurface and deep-water mass dynamics
Parallelisms between sea surface temperature changes in the western tropical Atlantic (Guiana Basin) and high latitude climate signals over the last 140 000 years
Thermal evolution of the western South Atlantic and the adjacent continent during Termination 1
Bottom water variability in the subtropical northwestern Pacific from 26 kyr BP to present based on Mg / Ca and stable carbon and oxygen isotopes of benthic foraminifera
Early deglacial Atlantic overturning decline and its role in atmospheric CO2 rise inferred from carbon isotopes (δ13C)
Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation
Persistent millennial-scale link between Greenland climate and northern Pacific Oxygen Minimum Zone under interglacial conditions
Deglacial intermediate water reorganization: new evidence from the Indian Ocean
Water mass evolution of the Greenland Sea since late glacial times
Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr
An ocean–ice coupled response during the last glacial: a view from a marine isotopic stage 3 record south of the Faeroe Shetland Gateway
Timing and magnitude of equatorial Atlantic surface warming during the last glacial bipolar oscillation
Dirk Nürnberg, Akintunde Kayode, Karl J. F. Meier, and Cyrus Karas
Clim. Past, 18, 2483–2507, https://doi.org/10.5194/cp-18-2483-2022, https://doi.org/10.5194/cp-18-2483-2022, 2022
Short summary
Short summary
The Leeuwin Current to the west of Australia steers the heat exchange between the tropical and the subantarctic ocean areas. Its prominent variability during the last glacial effectively shaped the Australian ecosystem and was closely related to the dynamics of the Antarctic Circumpolar Current. At ~ 43 ka BP, the rapidly weakening Leeuwin Current, the ecological response in Australia, and human interference likely caused the extinction of the exotic Australian megafauna.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Mélanie Wary, Frédérique Eynaud, Didier Swingedouw, Valérie Masson-Delmotte, Jens Matthiessen, Catherine Kissel, Jena Zumaque, Linda Rossignol, and Jean Jouzel
Clim. Past, 13, 729–739, https://doi.org/10.5194/cp-13-729-2017, https://doi.org/10.5194/cp-13-729-2017, 2017
Short summary
Short summary
The last glacial period was punctuated by abrupt climatic variations, whose cold atmospheric phases have been commonly associated with cold sea-surface temperatures and expansion of sea ice in the North Atlantic and adjacent seas. Here we provide direct evidence of a regional paradoxical see-saw pattern: cold Greenland and North Atlantic phases coincide with warmer sea-surface conditions and shorter seasonal sea-ice cover durations in the Norwegian Sea as compared to warm phases.
Pierre Burckel, Claire Waelbroeck, Yiming Luo, Didier M. Roche, Sylvain Pichat, Samuel L. Jaccard, Jeanne Gherardi, Aline Govin, Jörg Lippold, and François Thil
Clim. Past, 12, 2061–2075, https://doi.org/10.5194/cp-12-2061-2016, https://doi.org/10.5194/cp-12-2061-2016, 2016
Short summary
Short summary
In this paper, we compare new and published Atlantic sedimentary Pa/Th data with Pa/Th simulated using stream functions generated under various climatic conditions. We show that during Greenland interstadials of the 20–50 ka period, the Atlantic meridional overturning circulation was very different from that of the Holocene. Moreover, southern-sourced waters dominated the Atlantic during Heinrich stadial 2, a slow northern-sourced water mass flowing above 2500 m in the North Atlantic.
M. Wary, F. Eynaud, M. Sabine, S. Zaragosi, L. Rossignol, B. Malaizé, E. Palis, J. Zumaque, C. Caulle, A. Penaud, E. Michel, and K. Charlier
Clim. Past, 11, 1507–1525, https://doi.org/10.5194/cp-11-1507-2015, https://doi.org/10.5194/cp-11-1507-2015, 2015
Short summary
Short summary
This study reports the hydrological variations recorded at different depths of the water column SW of the Faeroe Is. during the last glacial abrupt climatic events (Heinrich events and Dansgaard-Oeschger cycles). Our combined multiproxy and high-resolution approach allows us to evidence that 1) Greenland and Heinrich stadials were characterized by strong stratification of surface waters, 2) this surface stratification seems to have played a key role in the dynamics of the underlying water masses
O. Rama-Corredor, B. Martrat, J. O. Grimalt, G. E. López-Otalvaro, J. A. Flores, and F. Sierro
Clim. Past, 11, 1297–1311, https://doi.org/10.5194/cp-11-1297-2015, https://doi.org/10.5194/cp-11-1297-2015, 2015
Short summary
Short summary
The alkenone sea surface temperatures in the Guiana Basin show a rapid transmission of the climate variability from arctic to tropical latitudes during the last two interglacials (MIS1 and MIS5e) and warm long interstadials (MIS5d-a). In contrast, the abrupt variability of the glacial interval does follow the North Atlantic climate but is also shaped by precessional changes. This arctic to tropical decoupling occurs when the Atlantic meridional overturning circulation is substantially reduced.
C. M. Chiessi, S. Mulitza, G. Mollenhauer, J. B. Silva, J. Groeneveld, and M. Prange
Clim. Past, 11, 915–929, https://doi.org/10.5194/cp-11-915-2015, https://doi.org/10.5194/cp-11-915-2015, 2015
Short summary
Short summary
Here we show that temperatures in the western South Atlantic increased markedly during the major slowdown event of the Atlantic meridional overturning circulation (AMOC) of the last deglaciation. Over the adjacent continent, however, temperatures followed the rise in atmospheric carbon dioxide, lagging changes in oceanic temperature. Our records corroborate the notion that the long duration of the major slowdown event of the AMOC was fundamental in driving the Earth out of the last glacial.
Y. Kubota, K. Kimoto, T. Itaki, Y. Yokoyama, Y. Miyairi, and H. Matsuzaki
Clim. Past, 11, 803–824, https://doi.org/10.5194/cp-11-803-2015, https://doi.org/10.5194/cp-11-803-2015, 2015
A. Schmittner and D. C. Lund
Clim. Past, 11, 135–152, https://doi.org/10.5194/cp-11-135-2015, https://doi.org/10.5194/cp-11-135-2015, 2015
Short summary
Short summary
Model simulations of carbon isotope changes as a result of a reduction in the Atlantic Meridional Overturning Circulation (AMOC) agree well with sediment data from the early last deglaciation, supporting the idea that the AMOC was substantially reduced during that time period of global warming. We hypothesize, and present supporting evidence, that changes in the AMOC may have caused the coeval rise in atmospheric CO2, owing to a reduction in the efficiency of the ocean's biological pump.
L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen
Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, https://doi.org/10.5194/cp-10-591-2014, 2014
O. Cartapanis, K. Tachikawa, O. E. Romero, and E. Bard
Clim. Past, 10, 405–418, https://doi.org/10.5194/cp-10-405-2014, https://doi.org/10.5194/cp-10-405-2014, 2014
S. Romahn, A. Mackensen, J. Groeneveld, and J. Pätzold
Clim. Past, 10, 293–303, https://doi.org/10.5194/cp-10-293-2014, https://doi.org/10.5194/cp-10-293-2014, 2014
M. M. Telesiński, R. F. Spielhagen, and H. A. Bauch
Clim. Past, 10, 123–136, https://doi.org/10.5194/cp-10-123-2014, https://doi.org/10.5194/cp-10-123-2014, 2014
J.-R. Riethdorf, D. Nürnberg, L. Max, R. Tiedemann, S. A. Gorbarenko, and M. I. Malakhov
Clim. Past, 9, 1345–1373, https://doi.org/10.5194/cp-9-1345-2013, https://doi.org/10.5194/cp-9-1345-2013, 2013
J. Zumaque, F. Eynaud, S. Zaragosi, F. Marret, K. M. Matsuzaki, C. Kissel, D. M. Roche, B. Malaizé, E. Michel, I. Billy, T. Richter, and E. Palis
Clim. Past, 8, 1997–2017, https://doi.org/10.5194/cp-8-1997-2012, https://doi.org/10.5194/cp-8-1997-2012, 2012
S. Weldeab
Clim. Past, 8, 1705–1716, https://doi.org/10.5194/cp-8-1705-2012, https://doi.org/10.5194/cp-8-1705-2012, 2012
Cited articles
Anand, P. A., Elderfield, H., and Conte, M. H.: Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series, Paleoceanography, 18, 1050, https://doi.org/10.1029/2002PA000846, 2003.
Ayliffe, L. K., Gagan, M. K., Zhao, J.-x., Drysdale, R. N., Hellstrom, J. C., Hantoro, W. S., Griffiths, M. L., Scott-Gagan, H., Pierre, E. S, Cowley, J. A., and Suwargadi, B. W.: Rapid interhemispheric climate links \it via the Australasian monsoon during the last deglacialtion, Nature Commun., 4, 2908, https://doi.org/10.1038/ncomms3908, 2013.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations, Paleocenography, 13, 150–160, 1998.
Bolliet, T., Holbourn, A., Kuhnt, W., Laj, C., Kissel, c., Beaufort, L., Kienast, M., Andersen, N., and Garbe-Schönberg, D.: Mindanao Dome variability over the last 160 kyr: Episodic glacial cooling of the West Pacific Warm Pool, Paleoceanography, 26, PA1208, https://doi.org/10.1029/2010PA001966, 2011.
Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to Northern Hemisphere cooling, Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546, 2006.
Carolin, S. A., Cobb, K. M., Adkins, J. F., Clark, B., Conroy, J. L., Lejau, S., Malang, J., and Tuen, A. A.: Varied response of Western Pacific hydrology to climate forcings over the last glacial period, Science, 340, 1564–1566, 2013.
Chiang, J. C. H. and Bitz, C. M.: Influence of high latitude ice cover on the marine Intertropical Convergence Zone, Clim. Dynam., 25, 477–496, 2005.
Cravatte, S., Delcroix, T., Zhang, D., McPhaden, M., and Leloup, J.: Observed freshening and warming of the western Pacific Warm Pool, Clim. Dynam., 33, 565–589, 2009.
de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F., and Beaufort, L.: Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years, Nature, 433, 294–298, 2005.
Feng, J., Li, J., and Xie, F.: Long-term variation of the Principal mode of boreal spring Hadley Circulation linked to SST over the Indo-Pacific Warm Pool, J. Clim., 26, 532–544, 2013.
Gagan, M., Hendy, E. J., Haberle, S. G., and Hantoro, W. S.: Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern oscillation, Quaternary Int., 118–-119, 127–143, 2004.
Gibbons, F. T., Oppo, D. W., Mohtadi, M., Rosenthal, Y., Cheng, J., Liu, Z., and Linsley, B. K.: Deglacial 18O and hydrological variability in the tropical and Indian Oceans, Earth Planet. Sci. Lett., 387, 240–251, 2014.
Grenier, M., Cravatte, S., Blanke, B., Menkes, C., Joch-Larrouy, A., Durand, F., Melet, A., and Jeandel, C.: From the western boundary currents to the Pacific Equatorial Undercurrent: Modeled pathways and water mass evolutions, J. Geophys. Res., 116, C12044, https://doi.org/10.1029/2011JC007477, 2011.
Griffiths, M. L., Drysdale, R. N., Gagan, M. K., Zhao, J.-X., Ayliffe, L. K., Hellstrom, J. C., Hantoro, W. S., Frisia, S., Feng, Y.-X., Cartwright, I., St. Pierre, E., Fischer, M., J., and Suwargadi, B. W.: Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise, Nature Geosci., 2, 636–639, 2009.
Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H. W., and Stoner, J.: Antarctic timing of surface water changes off Chile and Patagonian ice sheet response, Science, 304, 1959–1962, 2004.
Lea, D. W., Pak, D. K., and Spero, H. J.: Climate impact of late Quaternary equatorial Pacific sea surface temperature variations, Science, 289, 1719–1724, 2000.
Lea, D. W., Pak, D. K., Peterson, L. C., and Hughen, K. A.: Synchroneity of tropical high-latitude Atlantic temperatures over the last glacial termination, Science, 301, 1361–1364, 2003.
Leduc, G., Schneider, R., Kim, J. H., and Lohmann, G.: Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry, Quaternary Sci. Rev., 29, 989–1004, 2010.
Lee, S.-Y., Chiang, J. C. H., Matsumoto, K., and Tokos, K.: Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO2: Modeling perspective and paleoceanographic implications, Paleoceanography, 26, PA1214, https://doi.org/10.1029/2010PA002004, 2011.
Levi, C., Labeyrie, L., Bassinot, F., Guichard, F., Cortijo, E., Waelbroeck, C., Caillon, N., Duprat, J., de Garidel-Thoron, T., and Elderfield, H.: Low-latitude hydrological cycle and rapid climate changes during the last deglaciation, Geochem. Geophy. Geosy., 8, Q05N12, https://doi.org/10.1029/2006GC001514, 2007.
Linsley, B. K., Rosenthal, Y., and Oppo, D. W.: Holocene evolution of the Indonesian throughflow and the western Pacific warm Pool, Nature Geosci., 3, 578–583, 2010.
Lo, L., Lai, Y.-H., Wei, K.-Y., Lin, Y.-S., Mii, H.-S., and Shen, C.-C.: Persistent sea surface temperature and declined sea surface salinity in the northwestern tropical Pacific over the past 7500 years, J. Asian Earth Sci., 66, 234–239, 2013.
Lo, L., Shen, C.-C., Lu, C.-J., Chen, Y.-C., Chang, C.-C., Wei, K.-Y., Qu, D., and Gagan, M. K.: Determination of element/Ca ratios in foraminifera and corals using cold- and hot-plasma techniques in inductively coupled plasma sector field mass spectrometry, J. Asian Earth Sci., 81, 115–122, 2014.
McGee, D., Donohoe, A., Marshall, J., and Ferreira, D.: Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene, Earth Planet. Sci. Lett., 390, 69–79, 2014.
Meckler, A. N., Clarkson, M. O., Cobb, K. M., Sodemann, H., and Adkins, J. F.: Interglacial hydroclimate in the tropical West Pacific through the late Pleistocene, Science, 336, 1301–1304, 2012.
Melet, A., Verron, J., Gourdeau, L., and Koch-Larrouy, A.: Equatorial pathways of Solomon Sea water masses and their modification, J. Phys. Oceano., 40, 810–826, 2011.
Mohtadi, M., Oppo, D. W., Steinke, S., Stuut, J.-B. W., De Pol-Holz, R., Hebbeln, D., and Lückge, A.: Glacial to Holocene swings of the Australian-Indonesian monsoon, Nature Geosci., 4, 540–544, 2011.
Mohtadi, M. Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang, X., Stenike, S., and Lückge, A.: North Atlantic forcing of tropical Indian Ocean climate, Nature, 509, 76–80, 2014.
Muller, J., Kylander, M., Wüst, R. A. J., Weiss, D., Martinez-Cortizas, A., LeGrande, A. N., Jennerjahn, T., Behling, H., Andreson, W. T., and Jacobson, G.: Possible evidence for wet Heinrich phases in tropical Australia: the Lynch's Crater deposit, Quaternary Sci. Rev., 27, 468–475, 2008.
Northern Greenland Ice Core Project Members: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, 2004.
Oppo, D. W., Rosenthal, Y., and Linsley, B. K.: 2,000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool, Nature, 460, 1113–1116, 2009.
Pahnke, K., Zahn, R., Elderfield, H., and Schulz, M.: 340,000-year centennial-scale marine record of Southern Hemisphere climatic oscillation, Science, 301, 948–952, 2003.
Pena, L. D., Cacho, I., Ferretti, P., and Hall, M. A.: El Niño-Southern Oscillation-like variability during glacial terminations and interlatitudinal teleconnections, Paleoceanography, 23, PA3101, https://doi.org/10.1029/2008PA001620, 2008.
Qu, T., Gao, S., and Fine, R. A.: Subduction of South Pacific tropical water and its equatorward pathways as shown by a simulated passive tracer, J. Phys. Oceanogr., 43, 1551–1565, 2013.
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeyer, C. E.: INTCAL09 and MARINE09 radiocarbon age calibration curves, 0-50,000 cal BP, Radiocarbon, 51, 1111–1150, 2009.
Reynolds, R. W., Rayner, N. A., Smith, T. M., and Stokes, D. C.: An improved in situ and satellite SST analysis for climate, J. Clim., 15, 1609–1625, 2002.
Rosenthal, Y., Oppo, D. W., and Linsley, B. K.: The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific, Geophys. Res. Lett., 30, 1428, https://doi.org/10.1029/2002GL016612, 2003.
Shakun, J. D. and Carlson, A. E.: A global perspective on Last Glacial maximum to Holocene climate change, Quaternary Sci. Rev., 29, 1801–1816, 2010.
Shen, C.-C., Hasting, D. W., Lee, T., Chiu, C.-H., Lee, M.-Y., Wei, K.-Y., and Edwards, R. L.: High precision glacial-interglacial benthic foraminiferal Sr/Ca records from the eastern equatorial Atlantic Ocean and Caribbean Sea, Earth Planet. Sci. Lett., 190, 197–209, 2001.
Shen, C.-C., Chiu, H.-Y., Chiang, H.-W., Chu, M.-F., Wei, K.-Y., Steinke, S., Chen, M.-T., Lin, Y.-S., and Lo, L.: High precision measurements of Mg/Ca and Sr/Ca ratios in carbonates by cold plasma inductively coupled plasma quadrupole mass spectrometry, Chem. Geol., 236, 339–349, 2007.
Shiau, L.-J., Chen, M.-T., Clemens, S. C., Huh, C.-A., Yamamoto, M., and Yokoyama, Y.: Warm pool hydrological and terrestrial variability near southern Papua New Guinea over the past 50k, Geophys. Res. Lett., 38, L00F01, https://doi.org/10.1029/2010GL045309, 2011.
Shiau, L.-J., Chen, M.-T., Huh, C.-A., Yamamoto, M., and Yokoyama, Y.: Insolation and cross-hemispheric controls on Australian monsoon variability over the past 180 ka: New evidence from off shore southeastern Papua New Guinea, J. Quaternary Sci., 27, 911–920, 2012.
Steinke, S., Chiu, H.-I., Yu, P.-S., Shen, C.-C., Erlenkeuser, H., Löwemark, L., and Chen, M.-T.: On the influence of sea level and monsoon climate on the southern South China Sea freshwater budget over the past 22,000 years, Quaternary Sci. Rev., 25, 1475–1488, 2006.
Steinke, S., Kienast, M., Groeneveld, J., Lin, L.-C., Chen, M.-T., and Rendle-Bühring, R.: Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea: toward resolving seasonality, Quaternary Sci. Rev., 27, 688–700, 2008.
Stenni, B., Jouzel, J., Masson-Delmotte, V., Röthlisberger, R., Castellano, E., Cattani, O., Falourd, S., Johnsen, S. J., Longinelli, A., Sachs, J. P., Selmo, E., Souchez, R., Steffensen, J. P., and Udisti, R.: A late-glacial high-resolution site and source temperature record derived from EPICA Dome C isotope records (East Antarctica), Earth Planet. Sci. Lett., 217, 183–195, 2003.
Stott, L., Poulsen, C., Lund, S., and Thunell, R.: Super ENSO and global climate oscillations at millennial time scales, Science, 297, 222–226, 2002.
Stott, L., Cannariato, K., Thunell, R., Haug, G. H., Koutavas, A., and Lund, S.: Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch, Nature, 431, 56–59, 2004.
Stuiver, M., Reimer, P. J., and Reimer, R. W.: CALIB 6.0. (WWW program and documentation), available at: http://calib.qub.ac.uk/calib/, 2010.
Visser, K., Thunell, R., and Stott, L.: Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation, Nature, 421, 152–155, 2003.
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C.-C., and Dorale, J. A.: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China, Science, 294, 2345–2348, 2001.
Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Ito, E., Wang, Y., Kong, X., and Solheid, M.: Millennial-scale precipitation changes in southern Brazil over the past 90,000 years, Geophys. Res. Lett., 34, L23701, https://doi.org/10.1029/2007GL031149, 2007.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records, Quaternary Sci. Rev., 21, 295–205, 2002.
Williams, A. P. and Funk, C.: A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa, Clim. Dynam., 37, 2417–2435, 2011.
Xu, J., Holbourn, A., Kuhnt, W., Jian, Z., and Kawamura, H.: Changes in ther thermocline structure of the Indonesian outflow during Terminations I and II, Earth Planet. Sci. Lett., 273, 152–162, 2008.
Yan, X.-H., Ho, C.-R., Zheng, Q., and Klemas, V.: Temperature and size variabilities of the western Pacific warm pool, Science, 258, 1643–1645, 1992.
Zhao, M., Huang, C.-Y., Wang, C.-C., and Wei, G.: A millennial-scale U^K'37 sea surface temperature record from the South China Sea (8 °N) over the last 150 kyr: Monsoon and sea-level influence, Palaeogeogr. Palaeoclimatol. Palaeoecol., 236, 39–55, 2006.
Short summary
1. We have reconstructed new meridional thermal and precipitation stacked records in the Indo-Pacific Warm Pool (IPWP) during the last termination.
2. Meridional thermal gradient variations in the IPWP show tight links to the Northern Hemisphere millennial timescales event.
3. Anomalous warming in the south IPWP region could induce the southward shifting of the Intertropical Convergence Zone (ITCZ) in the IPWP during the Heinrich 1 and Younger Dryas events.
1. We have reconstructed new meridional thermal and precipitation stacked records in the...