Articles | Volume 10, issue 6
https://doi.org/10.5194/cp-10-2201-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-10-2201-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Enhanced 20th-century heat transfer to the Arctic simulated in the context of climate variations over the last millennium
J. H. Jungclaus
CORRESPONDING AUTHOR
Max-Planck-Institut für Meteorologie, Hamburg, Germany
K. Lohmann
Max-Planck-Institut für Meteorologie, Hamburg, Germany
D. Zanchettin
Max-Planck-Institut für Meteorologie, Hamburg, Germany
Related authors
K. Lohmann, J. Mignot, H. R. Langehaug, J. H. Jungclaus, D. Matei, O. H. Otterå, Y. Q. Gao, T. L. Mjell, U. S. Ninnemann, and H. F. Kleiven
Clim. Past, 11, 203–216, https://doi.org/10.5194/cp-11-203-2015, https://doi.org/10.5194/cp-11-203-2015, 2015
Short summary
Short summary
We use model simulations to investigate mechanisms of similar Iceland--Scotland overflow (outflow from the Nordic seas) and North Atlantic sea surface temperature variability, suggested from palaeo-reconstructions (Mjell et al., 2015). Our results indicate the influence of Nordic Seas surface temperature on the pressure gradient across the Iceland--Scotland ridge, not a large-scale link through the meridional overturning circulation, is responsible for the (simulated) co-variability.
D. Zanchettin, O. Bothe, C. Timmreck, J. Bader, A. Beitsch, H.-F. Graf, D. Notz, and J. H. Jungclaus
Earth Syst. Dynam., 5, 223–242, https://doi.org/10.5194/esd-5-223-2014, https://doi.org/10.5194/esd-5-223-2014, 2014
Oliver Gutjahr, Nils Brüggemann, Helmuth Haak, Johann H. Jungclaus, Dian A. Putrasahan, Katja Lohmann, and Jin-Song von Storch
Geosci. Model Dev., 14, 2317–2349, https://doi.org/10.5194/gmd-14-2317-2021, https://doi.org/10.5194/gmd-14-2317-2021, 2021
Short summary
Short summary
We compare four ocean vertical mixing schemes in 100-year coupled simulations with the Max Planck Institute Earth System Model (MPI-ESM1.2) and analyse their model biases. Overall, the mixing schemes modify biases in the ocean interior that vary with region and variable but produce a similar global bias pattern. We therefore cannot classify any scheme as superior but conclude that the chosen mixing scheme may be important for regional biases.
Reinhard Schiemann, Panos Athanasiadis, David Barriopedro, Francisco Doblas-Reyes, Katja Lohmann, Malcolm J. Roberts, Dmitry V. Sein, Christopher D. Roberts, Laurent Terray, and Pier Luigi Vidale
Weather Clim. Dynam., 1, 277–292, https://doi.org/10.5194/wcd-1-277-2020, https://doi.org/10.5194/wcd-1-277-2020, 2020
Short summary
Short summary
In blocking situations the westerly atmospheric flow in the midlatitudes is blocked by near-stationary high-pressure systems. Blocking can be associated with extremes such as cold spells and heat waves. Climate models are known to underestimate blocking occurrence. Here, we assess the latest generation of models and find improvements in simulated blocking, partly due to increases in model resolution. These new models are therefore more suitable for studying climate extremes related to blocking.
Oliver Gutjahr, Dian Putrasahan, Katja Lohmann, Johann H. Jungclaus, Jin-Song von Storch, Nils Brüggemann, Helmuth Haak, and Achim Stössel
Geosci. Model Dev., 12, 3241–3281, https://doi.org/10.5194/gmd-12-3241-2019, https://doi.org/10.5194/gmd-12-3241-2019, 2019
Short summary
Short summary
We analyse how climatic mean states of the atmosphere and ocean change with increasing the horizontal model resolution of the Max Planck Institute Earth System Model (MPI-ESM1.2) and how they are affected by the representation of vertical mixing in the ocean. It is in particular a high-resolution ocean that reduces biases not only in the ocean but also in the atmosphere. The vertical mixing scheme affects the strength and stability of the Atlantic meridional overturning circulation (AMOC).
Manu Anna Thomas, Abhay Devasthale, Torben Koenigk, Klaus Wyser, Malcolm Roberts, Christopher Roberts, and Katja Lohmann
Geosci. Model Dev., 12, 1679–1702, https://doi.org/10.5194/gmd-12-1679-2019, https://doi.org/10.5194/gmd-12-1679-2019, 2019
Short summary
Short summary
Cloud processes occur at scales ranging from few micrometres to hundreds of kilometres. Their representation in global climate models and their fidelity are thus sensitive to the choice of spatial resolution. Here, cloud radiative effects simulated by models are evaluated using a satellite dataset, with a focus on investigating the sensitivity to spatial resolution. The evaluations are carried out using two approaches: the traditional statistical comparisons and the process-oriented evaluation.
D. Zanchettin, O. Bothe, F. Lehner, P. Ortega, C. C. Raible, and D. Swingedouw
Clim. Past, 11, 939–958, https://doi.org/10.5194/cp-11-939-2015, https://doi.org/10.5194/cp-11-939-2015, 2015
Short summary
Short summary
A discrepancy exists between reconstructed and simulated Pacific North American pattern (PNA) features during the early 19th century. Pseudo-reconstructions demonstrate that the available PNA reconstruction is potentially skillful but also potentially affected by a number of sources of uncertainty and deficiencies especially at multidecadal and centennial timescales. Simulations and reconstructions can be reconciled by attributing the reconstructed PNA features to internal variability.
K. Lohmann, J. Mignot, H. R. Langehaug, J. H. Jungclaus, D. Matei, O. H. Otterå, Y. Q. Gao, T. L. Mjell, U. S. Ninnemann, and H. F. Kleiven
Clim. Past, 11, 203–216, https://doi.org/10.5194/cp-11-203-2015, https://doi.org/10.5194/cp-11-203-2015, 2015
Short summary
Short summary
We use model simulations to investigate mechanisms of similar Iceland--Scotland overflow (outflow from the Nordic seas) and North Atlantic sea surface temperature variability, suggested from palaeo-reconstructions (Mjell et al., 2015). Our results indicate the influence of Nordic Seas surface temperature on the pressure gradient across the Iceland--Scotland ridge, not a large-scale link through the meridional overturning circulation, is responsible for the (simulated) co-variability.
D. Zanchettin, O. Bothe, C. Timmreck, J. Bader, A. Beitsch, H.-F. Graf, D. Notz, and J. H. Jungclaus
Earth Syst. Dynam., 5, 223–242, https://doi.org/10.5194/esd-5-223-2014, https://doi.org/10.5194/esd-5-223-2014, 2014
K. Lohmann, J. H. Jungclaus, D. Matei, J. Mignot, M. Menary, H. R. Langehaug, J. Ba, Y. Gao, O. H. Otterå, W. Park, and S. Lorenz
Ocean Sci., 10, 227–241, https://doi.org/10.5194/os-10-227-2014, https://doi.org/10.5194/os-10-227-2014, 2014
Related subject area
Subject: Climate Modelling | Archive: Marine Archives | Timescale: Holocene
Disentangling environmental drivers of subarctic dinocyst assemblage compositional change during the Holocene
The impact of early Holocene Arctic shelf flooding on climate in an atmosphere–ocean–sea–ice model
The Holocene thermal maximum in the Nordic Seas: the impact of Greenland Ice Sheet melt and other forcings in a coupled atmosphere–sea-ice–ocean model
Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records
Sabrina Hohmann, Michal Kucera, and Anne de Vernal
Clim. Past, 19, 2027–2051, https://doi.org/10.5194/cp-19-2027-2023, https://doi.org/10.5194/cp-19-2027-2023, 2023
Short summary
Short summary
Drivers for dinocyst assemblage compositions differ regionally and through time. Shifts in the assemblages can sometimes only be interpreted robustly by locally and sometimes globally calibrated transfer functions, questioning the reliability of environmental reconstructions. We suggest the necessity of a thorough evaluation of transfer function performance and significance for downcore applications to disclose the drivers for present and fossil dinocyst assemblages in a studied core location.
M. Blaschek and H. Renssen
Clim. Past, 9, 2651–2667, https://doi.org/10.5194/cp-9-2651-2013, https://doi.org/10.5194/cp-9-2651-2013, 2013
M. Blaschek and H. Renssen
Clim. Past, 9, 1629–1643, https://doi.org/10.5194/cp-9-1629-2013, https://doi.org/10.5194/cp-9-1629-2013, 2013
I. Dormoy, O. Peyron, N. Combourieu Nebout, S. Goring, U. Kotthoff, M. Magny, and J. Pross
Clim. Past, 5, 615–632, https://doi.org/10.5194/cp-5-615-2009, https://doi.org/10.5194/cp-5-615-2009, 2009
Cited articles
Ahmed, M. and the PAGES 2k Consortium: Continental-scale temperature variability during the last two millennia, Nat. Geosci., 6, 339–346, https://doi.org/10.1038/ngeo1797, 2013.
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., and Ingvaldsen, R. B.: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat, J. Climate, 25, 4736–4743, https://doi.org/10.1175/JCLI-D-11-00466.1, 2012.
Beitsch, A., Jungclaus, J. H., and Zanchettin, D.: Patterns of decadal-scale Arctic warming events in simulated climate, Clim. Dynam., 43, 1773–1789 https://doi.org/10.1007/s00382-013-2004-5, 2014.
Bengtsson, L., Semenov, V. A., and Johannessen, O. M.: The early twentieth-century warming in the Arctic – a possible explanation, J. Climate, 18, 4045–4057, https://doi.org/10.1175/1520-0442(2004)017<4045:TETWIT>2.0.CO;2, 2004.
Bjerknes, J.: Atlantic air-sea interaction, Adv. Geophys., 10, 1–82, 1964.
Boessenkool, K. P., Hall, I. R., Elderfield, H., and Yashayaev, I.: North Atlantic climate deep-ocean flow speed changes during the last 230 years, Geophys. Res. Lett., 34, L13614, https://doi.org/10.1029/2007GL030285, 2007.
Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., and Bellouin, N.: Aerosols implicated as a prime driver of twentieth century North Atlantic climate variability, Nature, 484, 228–232, https://doi.org/10.1038/nature10946, 2012.
Born, A., Stocker, T. F., Raible, C. C., and Levermann, A.: Is the Atlantic subpolar gyre bistable in comprehensive climate models? Clim. Dynam., 40, 2993–3007, https://doi.org/10.1007/s00382-012-1525-7, 2013a.
Born, A., Stocker, T. F., and Sandø, A. B.: Coupling of eastern and western subpolar North Atlantic: salt transport in the Irminger Current, Ocean Sci. Discuss., 10, 555–579, https://doi.org/10.5194/osd-10-555-2013, 2013b.
Bothe, O., Jungclaus, J. H., and Zanchettin, D.: Consistency of the multi-model CMIP5/PMIP3-past1000 ensemble, Clim. Past, 9, 2471–2487, https://doi.org/10.5194/cp-9-2471-2013, 2013.
Carton, J. A. and Giese, B. S.: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA), Mon. Weather Rev., 136, 2999–3017, https://doi.org/10.1175/2007MWR1978.1, 2008.
Crowley, T. J. and Unterman, M. B.: Technical details concerning development of a 1200 yr proxy index for global volcanism, Earth Syst. Sci. Data, 5, 187–197, https://doi.org/10.5194/essd-5-187-2013, 2013.
Cunningham, L., Austin, W. E. N., Knudsen, K. L., Eiriksson, J., Scourse, J. D., Wanamaker Jr., A. D., Butler, P. G., Cage, A. G., Richter, T., Husum, K., Hald, M., Andersson, C., Zorita, E., Linderholm, H. W., Gunnarson, B. E., Sicre, M.-A., Sejruo, H. P., Jiang, H., and Wilson, R.: Reconstructions of surface ocean conditions from the northeast Atlantic and Nordic Seas during the last millennium, The Holocene, 23, 921–935, https://doi.org/10.1177/0959683613479677, 2013.
Drijfhout, S. S. and Hazeleger, W.: Changes in MOC and gyre-induced Atlantic Ocean heat transport, Geophys. Res. Lett., 33, L07707, https://doi.org/10.1029/2006GL025807, 2006.
Drijfhout, S., van Oldenborgh, G. J., and Cimatoribus, A.: Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns?, J. Climate, 25, 8373–8379, https://doi.org/10.1175/JCLI-D-12-00490.1, 2012.
Dylmer, C. V., Giradeau, J., Eynaud, F., Husum, K., and De Vernal, A.: Northward advection of Atlantic water in the eastern Nordic Seas, Clim. Past, 9, 1505–1518, https://doi.org/10.5194/cp-9-1505-2013, 2013.
Eden, C. and Jung, T.: North Atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation (1865–1997), J. Climate, 14, 676–691, 2001.
Fernández-Donado, L., González-Rouco, J. F., Raible, C. C., Ammann, C. M., Barriopedro, D., García-Bustamante, E., Jungclaus, J. H., Lorenz, S. J., Luterbacher, J., Phipps, S. J., Servonnat, J., Swingedouw, D., Tett, S. F. B., Wagner, S., Yiou, P., and Zorita, E.: Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium, Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, 2013.
Giorgetta, M. A., Jungclaus, J. H., Reick, C. H., Legutke, S., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W. A., Notz, D., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K., Stockhause, M., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5, J. Adv. Model Earth Syst., 5, 1–26, https://doi.org/10.1002/jame.20038, 2013.
Greatbatch, R., Fanning, A., Goulding, A., and Levitus, S.: A diagnosis of interpentadal circulation changes in the North Atlantic, J. Geophys. Res., 96, 22009–22023, 1991.
Häkkinen, S. and Rhines, P. B.: Shifting surface currents in the northern North Atlantic, J. Geophys. Res., 114, C04005, https://doi.org/10.1029/2008JC004883, 2009.
Hald, M., Salomonsen, G. R., Husum, K., and Wilson, L. J.: A 2000 year record of Atlantic Water temperature variability from Malangen Fjord, northeastern North Atlantic, The Holocene, 21, 1049–1059, https://doi.org/10.1177/0959683611400457, 2011.
Hall, I. R., Boessenkool, K. P., Barker, S., McCave, N., and Elderfield, H.: Surface and deep ocean coupling in the subpolar North Atlantic during the last 230 years, Paleoceanography, 25, PA2101, https://doi.org/10.1029/2009PA001886, 2010.
Hátún, H., Sandø, A. B., Drange, H., Hansen, B., and Valdimarsson, H.: Influence of the Atlantic subpolar gyre on the thermohaline circulation, Science, 309, 1841–1844, https://doi.org/10.1126/science.1114777, 2005.
Jungclaus, J. H. and Koenigk, T.: Low-frequency variability of the Arctic climate: the role of oceanic and atmospheric heat transport variations, Clim. Dynam., 34, 265–279, https://doi.org/10.1007/s00382-009-0569-9, 2010.
Jungclaus, J. H., Haak, H., Mikolajewicz, U., and Latif, M.: Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation, J. Climate, 18, 4016–4034, 2005.
Jungclaus, J. H., Macrander, A., and Käse, R. H.: Modelling the overflow across the Greenland-Scotland Ridge, in: Arctic-subarctic ocean fluxes, edited by: Dickson, R. R., Meincke, J., and Rhines, P., Springer, Dordrecht, 527–549, 2008.
Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M. A., Crowley, T. J., Pongratz, J., Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D., Botzet, M., Esch, M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E., Schnur, R., Widmann, H., Claussen, M., Stevens, B., and Marotzke, J.: Climate and carbon-cycle variability over the last millennium, Clim. Past, 6, 723–737, https://doi.org/10.5194/cp-6-723-2010, 2010.
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D., and von Storch, J.-S.: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model, J. Adv. Model Earth Syst., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013.
Kaufman, D. S., Schneider, D. P., McKay, N. P., Ammann, C. M., Bradley, R. S., Briffa, K. R., Miller, G. H., Otto-Bliesner, B. L., Overpeck, J. T., Vinther, B. M., and Arctic Lakes 2K project members: Recent warming reverses long-term Arctic cooling, Science, 325, 1236–1239, https://doi.org/10.1126/science.1173983, 2009.
Keith, D. W.: Meridional energy transport: uncertainty in zonal means, Tellus, 47A, 30–44, 1995.
Kim, H. and An, S.-I.: On the subarctic North Atlantic cooling due to global warming, Theor. Appl. Climatol., 114, 1–19, https://doi.org/10.1007/s00704-012-0805-9, 2012.
Kinnard, C., Zdanowicz, C. M., Fisher, D. A., Isaksson, E., De Vernal, A., and Thompson, L. G.: Reconstructed changes in Arctic sea ice over the last 1,450 years, Nature, 479, 509–513, https://doi.org/10.1038/nature10581, 2011.
Koenigk, T. and Brodeau, L.: Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth, Clim. Dynam., 42, 3101–3120, https://doi.org/10.1007/s00382-013-1821-x,2014.
Latif, M., Böning, C., Willebrand, J., Biastoch, A., Dengg, J., Keenlyside, N., Schweckendiek, U., and Madec, G.: Is the Thermohaline Circulation Changing?, J. Climate, 19, 4631–4637, https://doi.org/10.1175/JCLI3876.1, 2006.
Levermann, A. and Born, A.: Bistability of the Atlantic subpolar gyre in a coarse-resolution climate model, Geophys. Res. Lett., 34, L24605, https://doi.org/10.1029/2007GL031732, 2007.
Lohmann, K., Jungclaus, J. H., Matei, D., Mignot, J., Menary, M., Langehaug, H. R., Ba, J., Gao, Y., Otterå, O. H., Park, W., and Lorenz, S.: The role of subpolar deep water formation and Nordic Seas overflows in simulated multidecadal variability of the Atlantic meridional overturning circulation, Ocean Sci., 10, 227–241, https://doi.org/10.5194/os-10-227-2014, 2014.
Lozier, M. S.: Deconstructing the Conveyor Belt, Science, 328, 1507–1511, https://doi.org/10.1126/science.1189250, 2010.
Lozier, M. S., Roussenov, V., Reed, M. S. C., and Williams, R. G.: Opposing decadal changes for the North Atlantic meridional overturning circulation, Nat. Geosci., 3, 728–734, https://doi.org/10.1038/NGEO947, 2010.
Mahlstein, I. and Knutti, R.: Ocean heat transport as a cause for model uncertainty in projected Arctic warming, J. Climate, 24, 1451–1460, https://doi.org/10.1175/JCLI3713.1, 2011.
Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M., and Roeske, F.: The Max-Planck-Institute global ocean/sea-ice model with orthogonal curvilinear coordinates, Ocean Model., 5, 91–127, 2003.
Miettinen, A., Divine, D., Koç, N., Godtliebsen, F., and Hall, I. R.: Multicentennial variability of the sea surface temperature gradient across the subpolar North Atlantic over the last 2.8kyr, J. Climate, 25, 4205–4219, https://doi.org/10.1175/JCLI-D-11-00581.1, 2012.
Müller, W. A., Matei, D., Bersch, M., Jungclaus, J. H., Haak, H., Lohmann, K., Compo, G. P., Sardeshmukh, P. D., and Marotzke, J.: A 20th century reanalysis-forced ocean model to reconstruct the North Atlantic climate variations during the 1920s, Clim. Dynam., https://doi.org/10.1007/s00382-014-2267-5, in press, 2014.
Østerhus, S. and Gammelsrød, T.: The abyss of the Nordic Seas is warming, J. Climate, 12, 3297–3304, 1999.
Pavlov, A., Tverberg, V., Ivanov, B., Nilsen, F., Falk-Petersen, S., and Granskog, M.: Warming of Atlantic Water in two west Spitsbergen fjords over the last century (1912–2009), Polar Res., 32, 11206, https://doi.org/10.3402/polar.v32i0.11206, 2013.
Polyakov, I. V., Alekseev, G. V., Timokhov, L. A., Bhatt, U. S., Colony, R. L., Simmons, H. L., Walsh, D., Walsh, J. E., and Zakharov, V. F.: Variability of the Intermediate Atlantic Water of the Arctic Ocean over the last 100 years, J. Climate, 17, 4485–4497, 2004.
Polyakov, I. V., Alexeev, V. A., Bhatt, U. S., Polyakova, E. I., and Zhang, X.: North Atlantic warming: patterns of long-term trend and multidecadal variability, Clim. Dynam., 34, 439–457, https://doi.org/10.1007/s00382-008-0522-3, 2010.
Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.: A reconstruction of global agricultural areas and land cover for the last millennium, Global Biogeochem. Cy., 22, GB3018, https://doi.org/10.1029/2007GB003153, 2008.
Rayner, N. A., Brohan, P., Parker, D. E., Folland, C. K., Kennedy, J. J., Vanicek, M., Ansell, T. J., and Tett, S. F. B.: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid nineteenth century: the HadSST2 data set, J. Climate, 19, 446–469, https://doi.org/10.1175/jcli3637.1, 2006.
Reverdin, G.: North Atlantic Subpolar Gyre Surface Variability (1895–2009), J. Climate, 23, 4571–4584, https://doi.org/10.1175/2010JCLI3493.1, 2010.
Saenko, O. A., Fyfe, J. C., and England, M. H.: On the response of the oceanic wind-driven circulation to atmospheric CO2 increase, Clim. Dynam., 25, 415–426, https://doi.org/10.1007/s00382-005-0032-5, 2005.
Schauer, U., Beszynnka-Möller, A., Walczowski, W., Fahrbach, E., Piechura, J., and Hansen, E.: Variations of measured heat flow through Fram Strait between 1997 and 2006, in: Arctic-subarctic ocean fluxes, edited by: Dickson, R. R., Meincke, J., and Rhines, P., Springer, Dordrecht, 65–85, 2008.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v.1.0), Geosci. Model Dev., 4, 33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011.
Sedláček, J. and Mysak, L. A.: A model study of the Little Ice Age and beyond: changes in ocean heat content, hydrography and circulation since 1500, Clim. Dynam., 33, 461–475, https://doi.org/10.1007/s00382-008-0503-6, 2009.
Serreze, M. C., Barnett, A. P., Slater, A. G., Steele, M., Zhang, J., and Trenberth, K. E.: The large-scale energy budget of the Arctic, J. Geophys. Res., 112, D11122, https://doi.org/10.1029/2006JD008230, 2007.
Shaffrey, L. and Sutton, R.: Bjerknes compensation and the decadal variability of the energy transports in a coupled climate model, J. Climate, 19, 1167–1448, https://doi.org/10.1175/JCLI3652.1, 2006.
Shi, F., Yang, B., Ljungqvist, F. C., and Yang, F.: Multi-proxy reconstruction of Arctic summer temperatures over the past 1400 years, Clim. Res., 54, 113–128, https://doi.org/10.3354/cr01112, 2012.
Skagseth, Ø., Furevik, T., Ingvaldsen, R., Loeng, H., Mork, K. A., Orvik, K. A., and Ozhigin, V.: Volume and heat transport to the Arctic Ocean via the Norwegian and Barents Sea, in: Arctic-subarctic ocean fluxes, edited by: Dickson, R. R., Meincke, J., and Rhines, P., Springer, Dordrecht, 45–64, 2008.
Smith, T. M. and Reynolds, R. W.: Improved extended reconstruction of SST (1854–1997), J. Climate, 17, 2466–2477, https://doi.org/10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2, 2004.
Spielhagen, R. F., Wagner, K., Sørensen, S. A., Zamelczyk, K., Kandiano, E., Budeus, G., Husum, K., Marchitto, T. M., and Hald, M.: Enhanced modern heat transfer to the Arctic by warm Atlantic Water, Science, 331, 450–453, https://doi.org/10.1126/science.1197397, 2011.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: Atmosphereric component of the MPI-M Earth system Model: Echam6, J. Adv. Model Earth Syst., 5, 146–172, https://doi.org/10.1002/jame.20015, 2013.
Vieira, L. E. A., Solanki, S. K., Krivova, N. A., and Usoskin, I.: Evolution of the solar irradiance during the Holcene, Astron. Astroph., 531, A6, https://doi.org/10.1051/0004-6361/201015843, 2011.
Wang, Y.-M., Lean, J. L., and Sheeley Jr., N. R.: Modeling the Sun's magnetic field and irradiance since 1713, Astrophys. J., 625, 522–538, https://doi.org/10.1086/429689, 2005.
Werner, K., Spielhagen, R. F., Bauch, D., Hass, H. C., Kandiano, E., and Zamelcyk, K.: Atlantic water advection to the eastern Fram Strait – multiproxy evidence for late Holocene variability, Paleogeography, Paleoclimatology, Paleoecology, 308, 264–276, https://doi.org/10.1016/j.palaeo.2011.05.030, 2011.
Zanchettin, D., Timmreck, C., Graf, H.-F., Rubino, A., Lorenz, S., Lohmann, K., Krüger, K., and Jungclaus, J. H.: Bi-decadal variability excited in the coupled ocean-atmosphere system by strong tropical volcanic eruptions, Clim. Dynam., 39, 419–444, https://doi.org/10.1007/s00382-011-1167-1, 2012.
Zanchettin, D., Timmreck, C., Bothe, O., Lorenz, S. J., Hegerl, G., Graf, H.-F., Luterbacher, J., and Jungclaus, J. H.: Background conditions influence the decadal climate response to strong volcanic eruptions, J. Geophys. Res.-Atmos., 118, 4090–4106, https://doi.org/10.1002/jgrd.50229, 2013.
Zhang, R., Delworth, T. L., Sutton, R., Hodson, D. L. R., Dixon, K. W., Held, I. M., Kushnir, Y., Marshall, J., Ming, Y., Msadek, R., Robson, J., Rosati, A. J., Ting, M. F., and Vecci, G.: Have aerosols caused the observed Atlantic multidecadal variability?, J. Atmos. Sci., 70, 1135–1144, https://doi.org/10.1175/JAS-D-12-0331.1, 2013.
Short summary
Temperature reconstructions for the Atlantic Water layer in Fram Strait have previously revealed a dramatic warming during the 20th century that is unprecedented in the last 2000 years. Our study presents results from climate model simulations over the last millennium that are able to reproduce such changes and relate them to increased oceanic heat transports to the Arctic and to a re-organization of the North Atlantic ocean circulation caused by global warming.
Temperature reconstructions for the Atlantic Water layer in Fram Strait have previously revealed...