Articles | Volume 10, issue 4
https://doi.org/10.5194/cp-10-1523-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-10-1523-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027)
U. Kotthoff
Institut für Geologie, Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
D. R. Greenwood
Department of Biology, Brandon University, 270 18th Street, Brandon, Manitoba, R7A 6A9, Canada
F. M. G. McCarthy
Department of Earth Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, L2S 3A1, Canada
K. Müller-Navarra
Institut für Geologie, Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
S. Prader
Institut für Geologie, Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
S. P. Hesselbo
Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Treliever Road, Penryn, Cornwall TR10 9FE, UK
Related authors
Sabine Prader, Ulrich Kotthoff, Francine M.G. McCarthy, Gerhard Schmiedl, Timme H. Donders, and David R. Greenwood
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-511, https://doi.org/10.5194/bg-2017-511, 2018
Manuscript not accepted for further review
Short summary
Short summary
The observed palaeovegetation movement signals probably correspond to several glacial phases of the middle Oligocene and Early Miocene and might be best reflected within peaks of the conifer forests. Glacial phases exposed shallow shelf areas and allowed the spreading of substrate-depending forest formations. Temperature estimates revealing relative stable humid warm temperate conditions. A Sporadic occurred extinct taxon widens the understanding of its distribution pattern during the Cenozoic.
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
Christopher K. West, David R. Greenwood, Tammo Reichgelt, Alexander J. Lowe, Janelle M. Vachon, and James F. Basinger
Clim. Past, 16, 1387–1410, https://doi.org/10.5194/cp-16-1387-2020, https://doi.org/10.5194/cp-16-1387-2020, 2020
Short summary
Short summary
During the globally warm early Eocene 56 million years ago, lush forests extended up to the high Arctic. Fossil plants from the Canadian High Arctic and Pacific Northwest of North America are a window into this past
greenhouse world. We used an improved method for plant fossil climate reconstruction that provides a consensus reconstruction from all available proxies. Results show that the early Eocene climate in northern North America was similar across a broad range of latitudes.
Sabine Prader, Ulrich Kotthoff, Francine M.G. McCarthy, Gerhard Schmiedl, Timme H. Donders, and David R. Greenwood
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-511, https://doi.org/10.5194/bg-2017-511, 2018
Manuscript not accepted for further review
Short summary
Short summary
The observed palaeovegetation movement signals probably correspond to several glacial phases of the middle Oligocene and Early Miocene and might be best reflected within peaks of the conifer forests. Glacial phases exposed shallow shelf areas and allowed the spreading of substrate-depending forest formations. Temperature estimates revealing relative stable humid warm temperate conditions. A Sporadic occurred extinct taxon widens the understanding of its distribution pattern during the Cenozoic.
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
J. S. Eldrett, D. R. Greenwood, M. Polling, H. Brinkhuis, and A. Sluijs
Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, https://doi.org/10.5194/cp-10-759-2014, 2014
Related subject area
Subject: Vegetation Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and pCO2
Vegetation change across the Drake Passage region linked to late Eocene cooling and glacial disturbance after the Eocene–Oligocene transition
Life and death in the Chicxulub impact crater: a record of the Paleocene–Eocene Thermal Maximum
Climate variability and long-term expansion of peatlands in Arctic Norway during the late Pliocene (ODP Site 642, Norwegian Sea)
Southern high-latitude terrestrial climate change during the Palaeocene–Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau)
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Vann Smith, Sophie Warny, Kliti Grice, Bettina Schaefer, Michael T. Whalen, Johan Vellekoop, Elise Chenot, Sean P. S. Gulick, Ignacio Arenillas, Jose A. Arz, Thorsten Bauersachs, Timothy Bralower, François Demory, Jérôme Gattacceca, Heather Jones, Johanna Lofi, Christopher M. Lowery, Joanna Morgan, Noelia B. Nuñez Otaño, Jennifer M. K. O'Keefe, Katherine O'Malley, Francisco J. Rodríguez-Tovar, Lorenz Schwark, and the IODP–ICDP Expedition 364 Scientists
Clim. Past, 16, 1889–1899, https://doi.org/10.5194/cp-16-1889-2020, https://doi.org/10.5194/cp-16-1889-2020, 2020
Short summary
Short summary
A rare tropical record of the Paleocene–Eocene Thermal Maximum, a potential analog for future global warming, has been identified from post-impact strata in the Chicxulub crater. Multiproxy analysis has yielded evidence for increased humidity, increased pollen and fungi input, salinity stratification, bottom water anoxia, and sea surface temperatures up to 38 °C. Pollen and plant spore assemblages indicate a nearby diverse coastal shrubby tropical forest resilient to hyperthermal conditions.
Sina Panitz, Ulrich Salzmann, Bjørg Risebrobakken, Stijn De Schepper, and Matthew J. Pound
Clim. Past, 12, 1043–1060, https://doi.org/10.5194/cp-12-1043-2016, https://doi.org/10.5194/cp-12-1043-2016, 2016
Short summary
Short summary
This paper presents the first late Pliocene high-resolution pollen record for the Norwegian Arctic, covering the time period 3.60 to 3.14 million years ago (Ma). The climate of the late Pliocene has been widely regarded as relatively stable. Our results suggest a high climate variability with alternating cool temperate forests during warmer-than-presen periods and boreal forests similar to today during cooler intervals. A spread of peatlands at the expense of forest indicates long-term cooling.
L. Contreras, J. Pross, P. K. Bijl, R. B. O'Hara, J. I. Raine, A. Sluijs, and H. Brinkhuis
Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, https://doi.org/10.5194/cp-10-1401-2014, 2014
Cited articles
Beug, H.-J.: Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, Verlag Dr. Friedrich Pfeil, München, 2004.
Browning, J. V., Miller, K. G., Barron, J., Katz, M. E., Kulhanek, D. K., McCarthy, F. M. G., Feigenson, M. D., Olsson, R. K., and Sugerman, P. J.: Chronology of Eocene-Miocene sequences on the New Jersey shallow shelf: Implications for regional, interregional, and global correlations, Geosphere, 9, 1–23, 2013.
Bryson, R. A. and Hare, F. K. (eds): Climates of North America, world survey of climatology 11, Elsevier, Amsterdam, 1974.
Contreras, L., Pross, J., Bijl, P.K., Koutsodendris, A., Raine, J.I., van de Schootbrugge, B., and Brinkhuis, H.: Early to middle Eocene vegetation dynamics at the Wilkes Land Margin (East Antarctica), Rev. Palaeobot. Palynol., 197, 119–142, 2013.
Cramer, B.S., Toggweiler, J. R., Wright, D., Katz, M. E., and Miller, K. G.: Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation, Paleoceanography, 24, 1–14, 2009.
Csanady, G. T. and Hamilton. P.: Circulation of Slopewater, Continental Shelf Research, 8, 568–624, 1988.
Davis, R. B. and Webb III, T.: The contemporary distribution of pollen in eastern North America: a comparison with the vegetation, Quat. Res., 5, 395–434, 1975
DeConto, R. M., Pollard, D., Wilson, P. A., Pälike, H., Lear, C. H., and Pagani, M.: Thresholds for Cenozoic bipolar glaciation, Nature, 455, 652–657, 2008.
Delcourt, P. A., Delcourt, H. R., and Webb III, T.: Atlas of Mapped Distribution of Dominance and Modern Pollen Percentages for Important Tree Taxa of Eastern North America, AASP Contribution 14, 131 pp., 1984.
Eldrett, J. S., Greenwood, D. R., Harding, I. C., and Huber, M.: Increased seasonality through the Eocene to Oligocene transition in northern high latitudes, Nature, 459, 969–974, 2009.
Eldrett, J. S., Greenwood, D. R., Polling, M., Brinkhuis, H., and Sluijs, A.: A seasonality trigger for carbon injection at the Paleocene–Eocene Thermal Maximum, Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, 2014.
Fang, J., Wang, Z., and Tang, Z. (Eds.): Atlas of Woody Plants in China, Distribution and Climate, Vols. 1 & 2, Higher Education Press, Beijing, and Springer-Verlag, Berlin, 1–1972, 2011.
Fang, L., Bjerrum, C., Hesselbo, S. P., Kotthoff, U., McCarthy, M. F. G., Huang, B., and Ditchfield, P. W.: Carbon-isotope stratigraphy from terrestrial organic matter through the Monterey Event, Miocene, New Jersey margin (IODP Expedition 313), Geosphere, 9, 1303–1318, 2013.
Frederiksen, N. O.: Paleogene sporomorph Biostratigraphy, Northeastern Virginia, Palynology 3, 129–167, 1979.
Frederiksen, N. O.: Sporomorphs from the Jackson Group (Upper Eocene) and adjacent strata of Mississippi and western Alabama, Geol. Surv. Prof. Paper, 1084, 1980.
Frederiksen, N. O.: Midwayan (Paleocene) pollen correlations in the Eastern United States, Micropaleontology, 37, 101–123, 1991.
Gallen, S. F., Wegmann, K. W., Bohnenstieh, D. W. R.: Miocene rejuvenation of topographic relief in the southern Appalachians, GSA Today, 23, 4–10, 2013.
Gray, J.: Temperate Pollen Genera in the Eocene (Claiborne) Flora, Alabama, Science, 132, 808–810, 1960.
Greenwood, D. R., Archibald, S. B., Mathewes, R. W., and Moss, P. T.: Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape, Can. J. Earth Sci., 42, 167–185, 2005.
Greenwood, D. R., Hill, C. R., and Conran, J. G.: Prumnopitys anglica sp. nov. (Podocarpaceae) from the Eocene of England, Taxon 62, 565–580, 2013.
Greller, A. M. and Rachele, L. D.: Climatic limits of exotic genera in the Legler palynoflora, Miocene, New Jersey, USA, Rev. Palaeobot. Palynol., 40, 149–163, 1984.
Grimm, G. W. and Denk, T.: Reliability and resolution of the coexistence approach – A revalidation using modern-day data. Rev. Palaeobot. Palynol., 172, 33–47, 2012.
Groot, J. J.: Palynological evidence for Late Miocene, Pliocene, and Early Pleistocene climate changes in the middle U.S. Atlantic Coastal Plain, Quaternary Sci. Rev., 10, 147–162, 1991.
Hansen, B. C. S., Grimm, E. C., and Watts, W. A.: Palynology of the Peace Creek site, Polk County, Florida. Geol. Soc. Am. Bull., 113, 682–692, 2001.
Harley, M. M. and Baker, W. J.: Pollen aperture morphology in Arecaceae: application within phylogenetic analyses, and a summary of the fossil record of palm-like pollen, Grana, 40, 45–77, 2001.
Havill, N. P., Campbell, C. S., Vining, T. F., LePage, B., Bayer, R. J., and Donoghue, M. J.: Phylogeny and Biogeography of Tsuga (Pinaceae) inferred from Nuclear Ribosomal ITS and Chloroplast DNA Sequence Data, Syst. Bot., 33, 478–489, 2008.
Herold, N., You, Y., Müller, R. D., and Seton, M.: Climate model sensitivity to changes in Miocene paleotopography, Aust. J. Earth Sci., 56, 1049–1059, 2009.
Herold, N., Huber, M., and Müller, R. D.: Modeling the Miocene Climatic Optimum. Part 1 Land and Atmosphere, J. Climate, 24, 6353–6372, 2011.
Herold, N., Huber, M., Müller, R. D., and Seton, M.: Modeling the Miocene Climatic Optimum: Ocean circulation, Paleoceanography, 27, PA1209, https://doi.org/10.1029/2010PA002041, 2012.
Heusser, L. E. and Shackleton, N.: Direct Marine-Continental Correlation: 150 000-Year Oxygen Isotope pollen record from the North Pacific, Science, 204, 837–838, 1979.
Hooghiemstra, H.: Palynological records from Northwest African marine sediments: a general outline of the interpretation of the pollen signal, Philos. Trans. R. Soc. Lond. B Biol. Sci., 318, 431–449, 1988.
Hopkins, J. A. and McCarthy, F. M. G.: Postdepositional palynomorph degradation in Quaternary shelf sediments: a laboratory experiment studying the effects of progressive oxidation, Palynology, 26, 167–184, 2002.
Jacobs, B. F., Kingston, J. D., and Jacobs, L. L.: The origin of grass dominated ecosystems, Ann. Mo. Bot. Gard., 86, 590–644, 1999.
Janis, C. M.: Tertiary mammal evolution in the context of changing climates, vegetation and tectonic events, Annu. Rev. Ecol. Syst., 24, 467–500, 1993.
Jarzen, D. M. and Dilcher, D. L.: Middle Eocene terrestrial palynomorphs from the Dolime Minerals and Gulf Hammock Quarries, Florida, USA, Palynology 30, 89–110, 2006.
Jarzen, D. M., Corbett, S. L., and Manchester, S. R.: Palynology and paleoecology of the Middle Miocene Alum Bluff Flora, Liberty, Palynology 34, 261–286, 2010.
Jiménez-Moreno, G., Rodriguez, F. J., Pardo-Iguzquiza, E., Fauquette, S., Suc, J., and Muller, P.: High resolution palynological analysis in late early-middle Miocene core from the Pannonian Basin, Hungary: climate changes, astronomical forcing and eustatic fluctuations in the Central Paratethys, Palaeogeogr. Palaeoclimatol. Palaeoecol., 216, 73–97, 2005.
Jiménez-Moreno, G., Fauquette, S., Fauquette, S., Suc, J., and Aziz, H. A.: Early Miocene repetitive vegetation and climatic changes in the lacustrine deposits of the Rubielos de Mora Basin (Teruel, NE Spain), Palaeogeogr. Palaeoclimatol. Palaeoecol., 250, 103–113, 2007.
Kaneps, A. G.: Gulf Stream: velocity fluctuations during the late Cenozoic, Science, 204, 297–301, 1981.
Kotthoff, U., Müller, U. C., Pross, J., Schmiedl, G., Lawson, I. T., van de Schootbrugge, B., and Schulz, H.: Late Glacial and Holocene vegetation dynamics in the Aegean region: An integrated view based on pollen data from marine and terrestrial archives, Holocene, 18, 1019–1032, 2008a.
Kotthoff, U., Pross, J., Müller, U. C., Peyron, O., Schmiedl, G., Schulz, H., and Bordon, A.: Timing and characteristics of terrestrial vegetation change in the NE Mediterranean region associated with the formation of marine Sapropel S1: A land-sea correlation, Quat. Sci. Rev., 27, 832–845, 2008b.
Krutzsch, W.: Atlas der mittel- und jungtertiären dispersen Sporen- und Pollen- sowie der Mikroplanktonformen des nördlichen Mitteleuropa, Lieferung II, VEB Deutscher Verlag der Wissenschaften, Berlin, 141 pp., 1963a.
Krutzsch, W.: Atlas der mittel- und jungtertiären dispersen Sporen- und Pollen- sowie der Mikroplanktonformen des nördlichen Mitteleuropa, Lieferung III, VEB Deutscher Verlag der Wissenschaften, Berlin, 128 pp., 1963b.
Krutzsch, W.: Atlas der mittel- und jungtertiären dispersen Sporen- und Pollen- sowie der Mikroplanktonformen des nördlichen Mitteleuropa, Lieferung IV und V, VEB Deutscher Verlag der Wissenschaften, Berlin, 232 pp., 1967.
Krutzsch, W.: Atlas der mittel- und jungtertiären dispersen Sporen- und Pollen- sowie der Mikroplanktonformen des nördlichen Mitteleuropa, Lieferung VII, VEB Deutscher Verlag der Wissenschaften, Berlin, 175 pp., 1970.
Krutzsch, W.: Atlas der mittel- und jungtertiären dispersen Sporen- und Pollen- sowie der Mikroplanktonformen des nördlichen Mitteleuropa, Lieferung VI, VEB Deutscher Verlag der Wissenschaften, Berlin, 234 pp., 1971.
Lacourse, T., Mathewes, R. W., and Fedje, D.W.: Paleoecology of late-glacial terrestrial deposits with in situ conifers from the submerged continental shelf of western Canada, Quat. Res., 60, 180–188, 2003.
Larsson, L. M., Dybkjaer, K., Rasmussen, E. S., Piasecki, S., Utescher, T., and Vajda, V.: Miocene climate evolution of northern Europe: A palynological investigation from Denmark, Palaeogeogr. Palaeoclimatol. Palaeoecol., 309, 161–175, 2011.
Leopold, E. B., Liu, G., and Clay-Poole, S.: Low-biomass vegetation in the Oligocene?, in: Eocene-Oligocene climatic and biotic evolution, edited by: Prothero, D. A. and Bergren, W. A., Princeton, NJ, Princeton University Press, 399–420, 1992.
Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S. R., Leckie, R. M., and Pearson, A.: Global cooling during the Eocene-Oligocene climate transition, Science, 323, 1187–1190, 2009.
McAndrews, J. H., Berti, A. A., and Norris, G.: Key to the Quaternary Pollen and Spores of the Great Lakes Region. Life Science Miscellaneous Publications, Royal Ontario Museum, Toronto, 65 pp., 1973.
McCartan, L., Tiffney, B. H., Wolfe, J. A., Ager, T. A., Wing, S. L., Sirkin, L. E., Ward, L. W., and Brooks, J.: Late Tertiary floral assemblages from upland gravel deposits of the southern Maryland Coastal Plain, Geology, 18, 311–314, 1990.
McCarthy, F. M. G. and Mudie, P.: Oceanic pollen transport and pollen:dinocyst ratios as markers of late Cenozoic sea level change and sediment transport, Palaeogeogr. Palaeoclimatol. Palaeoecol., 138, 187–206, 1998.
McCarthy, F. M. G., Gostlin, K. E., Mudie, P. J., and Scott, D. B.: Synchronous palynological changes in early Pleistocene sediments off New Jersey and Iberia, and a possible paleoceanographic explanation, Palynology, 24, 63–77, 2000.
McCarthy, F. M. G., Gostlin, K. E., Mudie, P. J., and Pedersen, R. O.: The palynological record of terrigenous flux to the deep sea: late Pliocene-Recent examples from 41N in the abyssal Atlantic and Pacific oceans. Rev. Palaeobot. Palynol., 128, 81–95, 2004
McCarthy, F. M. G., Katz, M., Kotthoff, U., Browning, J., Miller, K., Zanatta, R., Williams, R., Drljepan, M., Hesselbo, S. P., Bjerrum, C., and Mountain, G.: Eustatic control of New Jersey margin architecture: palynological evidence from IODP Expedition 313, Geosphere, 9, https://doi.org/10.1130/GES00853.1, 2013.
Miller, K. G. and Sugarman, P. J.: Correlating Miocene sequences in onshore New Jersey boreholes (IODP Leg 150X) with global δ18O and Maryland outcrops, Geology, 23, 747–750, 1995.
Miller, K. G. and Mountain, G. S., Leg 150 Shipboard Party, members of the New Jersey Coastal Plain drilling project.: Drilling and dating New Jersey Oligocene-Miocene Sequences: Ice volume, global sea level, and Exxon records, Science, 271, 1092–1095, 1996.
Miller, K. G., Fairbanks, R. G., and Mountain, G. S.: Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion, Paleoceanography, 2, 1–19, 1987.
Miller, K. G., Wright, J. D., and Fairbanks, R. G.: Unlocking the Ice House: Oligocene-Miocene Oxygen Isotopes, Eustasy, and Margin Erosion, J. Geophys. Res., 96, 6829–6848, 1991.
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugerman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F.: The Phanerozoic record of global sea-level change, Science, 310, 1293–1298, 2005.
Miller, K. G., Mountain, G. S., Wright, J. D., and Browning, J. V.: A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records, Oceanography, 24, 40–53, 2011.
Miller, K. G, Browning, J. V., Mountain, G. S., Bassetti, M. A., Monteverde, D., Katz, M. E., Inwood, J., Lofi, J., and Proust, J.-N.: Sequence boundaries are impedance contrasts: Core-seismic integration of Oligocene-Miocene sequences, New Jersey shallow shelf, Geosphere, 9, 1257–1285, 2013.
Mosbrugger, V. and Utescher, T.: The coexistence approach – a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils, Palaeogeogr. Palaeoclimatol. Palaeoecol., 134, 61–86, 1997.
Mosbrugger, V., Utescher, T., and Dilcher, D. L.: Cenozoic continental climatic evolution of Central Europe, P. Natl. Acad. Sci. USA, 102, 1–6, 2005.
Mountain, G. S., Proust, J.-N., McInroy, D., Cotterill, C, and the Expedition 313 scientists: Proceedings of Integrated Ocean Drilling Program, 313, Tokyo (Integrated Ocean Drilling Program Management International, Inc.), 2010.
Mudie, P. J.: Pollen distribution in recent marine sediments, eastern Canada, Can. J. Earth Sci., 19, 729–747, 1982.
Mudie, P. J. and McCarthy, F. M. G.: Late Quaternary pollen transport processes, western North Atlantic: Data from box models, cross-margin and N-S transects, Mar. Geol., 118, 79–105, 1994.
Natural Resources Canada: Climatic Range map (1971–2000 scenario)/climatic profile: Canadian Forest Service, Sault Ste. Marie, http://planthardiness.gc.ca/index.pl?lang=enandm=13andp=1, last access: May, 2012.
Nichols, D. J.: North American and European species of Momipites ("Engelhardtia") and related genera, Geosci. Man., 7, 103–117, 1973.
Nichols, D. J. and Brown, J. L.: Palynostratigraphy of the Tullock Member lower Paleocene of the Fort Union Formation in the Powder River Basin Montana and Wyoming. Evolution of sedimentary basins Powder River Basin, US Geological Survey Bulletin 1917, F1–F35, 10 plates, 1992.
Oboh, F. E., Jaramillo, C. A., and Reeves Morris, L. M.: Late Eocene-Early Oligocene paleofloristic patterns in southern Mississippi and Alabama, US Gulf Coast, Rev. Palaeobot. Palynol., 91, 23–34, 1996.
Pagani, M., Arthur, M. A., and Freeman, K. H.: Miocene evolution of atmospheric carbon dioxide, Paleoceanography, 14, 273–292, 1999.
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S.: Marked decline in atmospheric carbon dioxide concentrations during the Paleogene, Science, 309, 600–603, 2005.
Pagani, M., Caldeira, K., Berner, R., and Beerling D. J.: The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years, Nature, 460, 85–88, 2009.
Pazzaglia, F. J. and Brandon, M. T.: Macrogeomorphic evolution of the post-Triassic Appalachian mountains determined by deconvolution of the offshore basin sedimentary record, Basin Res., 8, 255–278, 1996.
Pazzaglia, F. J., Robinson, R. A. J., and Traverse, A.: Palynology of the Bryn Mawr Formation (Miocene): insights on the age and genesis of the Middle Atlantic margin fluvial deposits, Sediment. Geol., 108, 19–44, 1997.
Pekar, S. F. and DeConto, R. M.: High-resolution ice-volume estimates for the early Miocene: Evidence for a dynamic ice sheet in Antarctica, Palaeogeogr. Palaeoclimatol. Palaeoecol., 231, 101–109, 2006.
Pinet, P. R., Popenoe, P., and Neilligan, D. F.: Gulf Stream: reconstruction of Cenzoic clow patterns over the Blake Plateau, Geology, 9, 266–270, 1981.
Poag, C. W. and Sevon, W. D.: A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic Continental Margin, Geomorphology, 2, 119–157, 1989.
Pross, J., Klotz, S., and Mosbrugger, V.: Reconstructing palaeotemperatures for the Early and Middle Pleistocene using the mutual climatic range method based on plant fossils, Quat. Sci. Rev., 19, 1785–1799, 2000.
Pross, J., Contreras, L., Bijl, P. K., Greenwood, D. R., Bohaty, S. M., Schouten, S., Bendle, J. A., Röhl, U., Tauxe, L., Raine, J. I., Huck, C. E., van de Flierdt, T., Jamieson, S. S. R., Stickley, C. E., van de Schootbrugge, B., Escutia, C., Brinkhuis, H., and IODP Expedition 318 Scientists: Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch, Nature, 488, 73–77, 2012.
Quaijtaal, W., Donders, T. H., Persico, D., and Louwye, S.: Characterising the middle Miocene Mi-events in the Eastern North Atlantic realm: A first high-resolution marine palynological record from the Porcupine Basin, Palaeogeogr. Palaeoclimatol. Palaeoecol., 399, 140–159, 2014.
Rachele, L. D.: Palynology of the Legler Lignite: a deposit in the Tertiary Cohansey Formation of New Jersey, USA, Rev. Palaeobot. Palynol., 22, 225–252, 1976.
Reichgelt, T., Kennedy, E. M., Mildenhall, D. C., Conran, J. G., Greenwood, D. R., and Lee, D. E.: Quantitative palaeoclimate estimates for Early Miocene southern New Zealand: evidence from Foulden Maar, Palaeogeogr. Palaeoclimatol. Palaeoecol., 378, 36–44, 2013.
Rich, F. J., Pirkle, F. L., and Arenberg E.: Palynology and paleoecology of strata associated with the Ohoopee River dune field, Emanuel County, Georgia, Palynology 26, 239–256, 2002.
Schlitzer, R.: Ocean Data View, http://odv.awi.de, 2011.
Shackleton, N. J. and Kennett, J. P.: Paleotemperature history oft he Cenozoic and initiation of Antarctic glaciation: Oxygen and carbon isotopic analyses in DSDP sites 277, 279, and 281, in: Initial reports of the Deep Sea Drilling Project, 29, 743–755, 1975.
Stockmarr, J.: Tablets with spores used in absolute pollen analysis, Pollen et Spores, 13, 615–21, 1971.
Strömberg, C. A. E.: Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America, P. Natl. Acad. Sci. USA, 102, 11980–11984, 2005.
Stults, D. Z., Axsmith, B. J., and Liu, Y.-S.: Evidence of white pine (Pinus subgenus Strobus) dominance from the Pliocene Northeastern Gulf of Mexico Coastal Plain, Palaeogeogr. Palaeoclimatol. Palaeoecol., 287, 95–100, 2010.
Taylor, L. L., Leake, J. R., Quirk, J., Hardy, K., Banwart, S. A., and Beerling, D. J.: Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm, Geobiology, 7, 171–191, 2009.
Thompson, R. S., Anderson, K. H., and Bartlein, P. J.: Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America. U.S. Geological Survey Professional Paper 1650 A and B. Online Version 1.0, 14 December 1999, http://pubs.usgs.gov/pp/p1650-a/, 1999.
Thompson, R. S., Anderson, K. H., Bartlein, P. J., and Smith, S. A.: Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America; additional conifers, hardwoods, and monocots. US Geological Survey Professional Paper 1650 C, http://pubs.er.usgs.gov/publication/pp1650C, p. 386, 2000.
Thompson, R. S., Anderson, K. H., Pelltier, R. T., Strickland, L. E., Bartlein, P. J., and Shafer, S. L.: Quantitative estimation of climatic parameters from vegetation data in North America by the mutual climatic range technique, J. Quat. Sci., 51, 18–39, 2012.
Traverse, A.: Palynofloral geochronology of the Brandon Lignite of Vermont, USA. Rev. Palaeobot. Palynol., 82, 265–297, 1994.
Traverse, A.: Paleopalynology. Second edition. In: Topics of Geobiology, 28. 813 pp., 2008.
Utescher, T., Djordjevic-Milutinovic, D., Bruch, A., and Mosbrugger, V.: Palaeoclimate and vegetation change in Serbia during the last 30 M, Palaeogeogr. Palaeoclimatol. Palaeoecol., 253, 141–152, 2007.
Utescher, T., Ivanov, D., Harzhauser, M., Bozukov, V., Ashraf, A. R., Rolf, C., Urbat, M., and Mosbrugger, V.: Cyclic climate and vegetation change in the Late Miocene of Western Bulgaria, Palaeogeogr. Palaeoclimatol. Palaeoecol., 272, 99–114, 2009.
Wade, B. S. and Pälike, H.: Oligocene climate dynamics. Paleoceanography, 19, PA4019, https://doi.org/10.1029/2004PA001042, 2004.
Willis, K. J. and McElwain, J. C.: The Evolution of Plants. Oxford University Press, Oxford, 2002.
Wolfe, J. A.: Climatic, floristic, and vegetational changes near the Eocene/Oligocene boundary in North America, in: Eocene-Oligocene climatic and biotic evolution, edited by: Prothero, D. A. and Bergren, W. A., Princeton, NJ, Princeton University Press, 421–436, 1992.
Wright, J. D. and Miller, K. G.: Early and Middle Miocene stable isotopes: implications for deepwater circulation and climate, Paleoceanography, 7, 357–389, 1992.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, 2001a.
Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H., and Flower, B. P.: Climate response to orbital forcing across the Oligocene-Miocene boundary, Science, 292, 274–278, 2001b.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, 2008.