Articles | Volume 9, issue 6
https://doi.org/10.5194/cp-9-2703-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-2703-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Black shale deposition during Toarcian super-greenhouse driven by sea level
M. Hermoso
University of Oxford – Department of Earth Sciences, South Parks Road, Oxford, OX1 3AN, UK
F. Minoletti
UPMC Université Paris 06 – UMR7193 ISTeP, 4 Place Jussieu, 75005 Paris, France
CNRS – UMR7193 ISTeP, 4 Place Jussieu, 75005 Paris, France
P. Pellenard
Université de Bourgogne, CNRS – UMR6282, Biogéosciences, 6 Boulevard Gabriel, 21000 Dijon, France
Related authors
Marine Casetta, Sylvie Philippe, Lucie Courcot, David Dumoulin, Gabriel Billon, François Baudin, Françoise Henry, Michaël Hermoso, and Jacinthe Caillaud
EGUsphere, https://doi.org/10.5194/egusphere-2024-1875, https://doi.org/10.5194/egusphere-2024-1875, 2024
Short summary
Short summary
This study examines soils in the highly industrialized Dunkerque agglomeration in France. Our work reveals the contamination of urban soils by metals from industrial dust, including Cr, Ni, Mo, Mn, Cd and Zn. While Cr, Ni and Mo are relatively stable in soils, Mn, Cd and Zn are more mobile and may pose environmental and health problems. Our findings highlight the need of careful consideration of future land use near industrial emitters, such as allotment gardens, due to these potential hazards.
Goulwen Le Guevel, Fabrice Minoletti, Carla Geisen, Gwendoline Duong, Virginia Rojas, and Michaël Hermoso
EGUsphere, https://doi.org/10.5194/egusphere-2024-1890, https://doi.org/10.5194/egusphere-2024-1890, 2024
Short summary
Short summary
This study explores the impact of environmental conditions on the chemistry of coccoliths, calcite minerals produced by marine algae, to better understand past climate changes. By cultivating different species of coccolithophores under various CO2 and pH levels, we have shown that the isotopic composition of certain species varies with CO2 concentration and quantified these variations.
Camille Godbillot, Fabrice Minoletti, Franck Bassinot, and Michaël Hermoso
Clim. Past, 18, 449–464, https://doi.org/10.5194/cp-18-449-2022, https://doi.org/10.5194/cp-18-449-2022, 2022
Short summary
Short summary
We test a new method to reconstruct past atmospheric CO2 levels based on the geochemistry of pelagic algal biominerals (coccoliths), which recent culture and numerical experiments have related to ambient CO2 concentrations. By comparing the isotopic composition of fossil coccoliths to the inferred surface ocean CO2 level at the time they calcified, we outline a transfer function and argue that coccolith vital effects can be used to reconstruct geological pCO2 beyond the ice core record.
Michaël Hermoso and Marceau Lecasble
Biogeosciences, 15, 6761–6772, https://doi.org/10.5194/bg-15-6761-2018, https://doi.org/10.5194/bg-15-6761-2018, 2018
Short summary
Short summary
This work examines the effect of salinity changes on the biogeochemistry of the coccolithophores with a palaeoproxy perspective. Although substantial changes in growth rate are observed between cells grown under various salinities, these physiological changes have no significant impact on the oxygen isotope composition of their biominerals. Thus, established coccolith δ18O / temperature calibrations are not complicated by salinity. By contrast, it does influence coccolith δ13C values.
M. Hermoso, I. Z. X. Chan, H. L. O. McClelland, A. M. C. Heureux, and R. E. M. Rickaby
Biogeosciences, 13, 301–312, https://doi.org/10.5194/bg-13-301-2016, https://doi.org/10.5194/bg-13-301-2016, 2016
M. Hermoso, D. Delsate, F. Baudin, L. Le Callonnec, F. Minoletti, M. Renard, and A. Faber
Solid Earth, 5, 793–804, https://doi.org/10.5194/se-5-793-2014, https://doi.org/10.5194/se-5-793-2014, 2014
Marine Casetta, Sylvie Philippe, Lucie Courcot, David Dumoulin, Gabriel Billon, François Baudin, Françoise Henry, Michaël Hermoso, and Jacinthe Caillaud
EGUsphere, https://doi.org/10.5194/egusphere-2024-1875, https://doi.org/10.5194/egusphere-2024-1875, 2024
Short summary
Short summary
This study examines soils in the highly industrialized Dunkerque agglomeration in France. Our work reveals the contamination of urban soils by metals from industrial dust, including Cr, Ni, Mo, Mn, Cd and Zn. While Cr, Ni and Mo are relatively stable in soils, Mn, Cd and Zn are more mobile and may pose environmental and health problems. Our findings highlight the need of careful consideration of future land use near industrial emitters, such as allotment gardens, due to these potential hazards.
Goulwen Le Guevel, Fabrice Minoletti, Carla Geisen, Gwendoline Duong, Virginia Rojas, and Michaël Hermoso
EGUsphere, https://doi.org/10.5194/egusphere-2024-1890, https://doi.org/10.5194/egusphere-2024-1890, 2024
Short summary
Short summary
This study explores the impact of environmental conditions on the chemistry of coccoliths, calcite minerals produced by marine algae, to better understand past climate changes. By cultivating different species of coccolithophores under various CO2 and pH levels, we have shown that the isotopic composition of certain species varies with CO2 concentration and quantified these variations.
Camille Godbillot, Fabrice Minoletti, Franck Bassinot, and Michaël Hermoso
Clim. Past, 18, 449–464, https://doi.org/10.5194/cp-18-449-2022, https://doi.org/10.5194/cp-18-449-2022, 2022
Short summary
Short summary
We test a new method to reconstruct past atmospheric CO2 levels based on the geochemistry of pelagic algal biominerals (coccoliths), which recent culture and numerical experiments have related to ambient CO2 concentrations. By comparing the isotopic composition of fossil coccoliths to the inferred surface ocean CO2 level at the time they calcified, we outline a transfer function and argue that coccolith vital effects can be used to reconstruct geological pCO2 beyond the ice core record.
Michaël Hermoso and Marceau Lecasble
Biogeosciences, 15, 6761–6772, https://doi.org/10.5194/bg-15-6761-2018, https://doi.org/10.5194/bg-15-6761-2018, 2018
Short summary
Short summary
This work examines the effect of salinity changes on the biogeochemistry of the coccolithophores with a palaeoproxy perspective. Although substantial changes in growth rate are observed between cells grown under various salinities, these physiological changes have no significant impact on the oxygen isotope composition of their biominerals. Thus, established coccolith δ18O / temperature calibrations are not complicated by salinity. By contrast, it does influence coccolith δ13C values.
M. Hermoso, I. Z. X. Chan, H. L. O. McClelland, A. M. C. Heureux, and R. E. M. Rickaby
Biogeosciences, 13, 301–312, https://doi.org/10.5194/bg-13-301-2016, https://doi.org/10.5194/bg-13-301-2016, 2016
M. Hermoso, D. Delsate, F. Baudin, L. Le Callonnec, F. Minoletti, M. Renard, and A. Faber
Solid Earth, 5, 793–804, https://doi.org/10.5194/se-5-793-2014, https://doi.org/10.5194/se-5-793-2014, 2014
Cited articles
Algeo, T. J. and Lyons, T. W.: Mo – total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions, Paleoceanography, 21, PA1016, https://doi.org/10.1029/2004PA001112, 2006.
Al-Suwaidi, A., Angelozzi, G. N., Baudin, F., Damborenea, S. E, Hesselbo, S. P., Jenkyns, H. C., Manceñido, M. O., and Riccardi A. C: First record of the Early Toarcian oceanic anoxic event from the Southern Hemisphere, Neuquén Basin, Argentina, J. Geol. Soc., 167, 633–636, https://doi.org/10.1144/0016-76492010-025, 2010.
Boulila, S., Galbrun, B., Miller, K. G., Pekar, S. F., Browning, J. V., Laskar, J. and Wright, J. D.: On the origin of Cenozoic and Mesozoic "third-order" eustatic sequences, Earth-Sci. Rev., 109, 94–112, https://doi.org/10.1016/j.earscirev.2011.09.003, 2011.
Carter, E. S., Goričan, Š., Guex, J., O'Dogherty, L., De Wever, P., Dumitrica, P., Hori, R. S., Matsuoka, A., and Whalen, P. A.: Global radiolarian zonation for the Pliensbachian, Toarcian and Aalenian, Palaeogeogr. Palaeoecl., 297, 401–419, https://doi.org/10.1016/j.palaeo.2010.08.024, 2010.
Caruthers, A. H., Gröcke, D. R. and Smith, P. L.: The significance of an Early Jurassic (Toarcian) carbon-isotope excursion in Haida Gwaii (Queen Charlotte Islands), British Columbia, Canada, Earth Planet. Sc. Lett., 307, 19–26, https://doi.org/10.1016/j.epsl.2011.04.013, 2011.
Coe, A. L.: The record of sea level change in the sedimentary record, Cambridge University Press, Cambridge, 2003.
Cohen, A. S., Coe, A. L., and Harding, S. M.: Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering, Geology, 32, 157–160, https://doi.org/10.1130/G20158.1, 2004.
de Graciansky, J. C., Hardenbol, J., Jacquin, T., and Vail, P. R. (Eds): Mesozoic and Cenozoic Sequence Stratigraphy of European basins: SEPM Spec. Pub. 60, Tulsa, Oklahoma, 1998.
Dera, G., Pellenard, P., Neige, P., Deconinck, J.-F., Pucéat, E., and Dommergues, J.-L.: Distribution of clay minerals in Early Jurassic Peritethyan seas: Palaeoclimatic significance inferred from multiproxy comparisons, Palaeogeogr. Palaeoecl., 271, 39–51, https://doi.org/10.1016/j.palaeo.2008.09.010, 2009.
De Wever, P. and Baudin, F.: Palaeogeography of radiolarite and organic-rich deposits in Mesozoic Tethys, Geol. Rundsch., 85, 310–326, 1996.
Erba, E.: Calcareous nannofossils and Mesozoic oceanic anoxic events, Mar. Micropaleontol., 52, 85–106, 2004.
Erba, E.: The first 150 million years history of calcareous nannoplankton: Biosphere – geosphere interactions, Palaeogeogr. Palaeocl., 232, 237–250, 2006.
Gély, J. and Lorenz, J.: Lias and Dogger series of the Paris Basin (France): syn-sedimentary tectonic and palaeogeographic reconstructions for each ammonite biozonation level, Geobios, 39, 631–649, https://doi.org/10.1016/j.geobios.2005.06.005, 2006.
Gill, B. C., Lyons, T. W., and Jenkyns, H. C.: A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event, Earth Planet. Sc. Lett., 312, 484–496, https://doi.org/10.1016/j.epsl.2011.10.030, 2011.
Gröcke, D. R., Hori, R. S., Trabucho-Alexandre, J., Kemp, D. B., and Schwark, L.: An open ocean record of the Toarcian oceanic anoxic event, Solid Earth, 2, 245–257, https://doi.org/10.5194/se-2-245-2011, 2011.
Guillocheau, F., Robin, C., Allemand, P., Bourquin, S., Brault, N., Dromart, G., Friedenberg, R., Garcia, J.-P., Gaulier, J.-M., Gaumet, F., Grosdoy, B., Hanot, F., Le Strat P., Mettraux, M., Nalpas, T., Prijac, C., Rigollet, C., Serrano, O., and Grandjean, G.: Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints, Geodin. Acta, 13, 189–245, 2000.
Hallam, A.: A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge, Palaeogeogr. Palaeocl., 167, 23–37, https://doi.org/10.1016/S0031-0182(00)00229-7, 2001.
Hermoso, M., Le Callonnec, L., Minoletti, F., Renard, M., and Hesselbo, S. P.: Expression of the Early Toarcian negative carbon-isotope excursion in separated carbonate microfractions (Jurassic, Paris Basin), Earth Planet. Sc. Lett., 277, 194–203, https://doi.org/10.1016/j.epsl.2008.10.013, 2009a.
Hermoso, M., Minoletti, F., Le Callonnec, L., Jenkyns, H. C., Hesselbo, S. P., Rickaby, R. E. M., Renard, M., de Rafélis, M., and Emmanuel, L.: Global and local forcing of Early Toarcian seawater chemistry: A comparative study of different paleoceanographic settings (Paris and Lusitanian basins), Paleoceanography, 24, 1–15, https://doi.org/10.1029/2009PA001764, 2009b.
Hermoso, M., Minoletti, F., Rickaby, R. E. M., Hesselbo, S. P., Baudin, F., and Jenkyns, H. C.: Dynamics of a stepped carbon-isotope excursion: Ultra high-resolution study of Early Toarcian environmental change, Earth Planet. Sc. Lett., 319–320, 45–54, https://doi.org/10.1016/j.epsl.2011.12.021, 2012.
Hesselbo, S. P.: Sequence stratigraphy and inferred relative sea-level change from the onshore British Jurassic, Proceedings of the Geologists' Association, 119, 19–34, https://doi.org/10.1016/S0016-7878(59)80069-9, 2008.
Hesselbo, S. P., Gröcke, D., Jenkyns, H., Bjerrum, C., Farrimond, P., Morgans Bell, H. S., and Green, O.: Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event, Nature, 406, 392–395, https://doi.org/10.1038/35019044, 2000.
Hori, R. S.: The Toarcian radiolarian event in bedded cherts from southwestern Japan, Mar. Micropaleontol., 30, 159–169, https://doi.org/10.1016/S0377-8398(96)00024-2, 1997.
Izumi, K., Miyaji, T., and Tanabe, K.: Early Toarcian (Early Jurassic) oceanic anoxic event recorded in the shelf deposits in the northwestern Panthalassa: Evidence from the Nishinakayama Formation in the Toyora area, west Japan, Palaeogeogr. Palaeocl., 315–316, 100–108, https://doi.org/10.1016/j.palaeo.2011.11.016, 2012.
Jenkyns, H. C.: The Early Toarcian (Jurassic) Anoxic Event, Am. J. Sci., 288, 101–151, 1988.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophy. Geosy., 11, 1–30, https://doi.org/10.1029/2009GC002788, 2010.
Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P., and Parkinson, D. N.: Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography, J. Geol. Soc., 159, 351–378, https://doi.org/10.1144/0016-764901-130, 2002.
Kemp, D., Coe, A., Cohen, A., and Schwark, L.: Astronomical pacing of methane release in the Early Jurassic period, Nature, 437, 396–399, https://doi.org/10.1038/nature04037, 2005.
Kemp, D., Coe, A. L., Cohen, A. S., and Weedon, G. P.: Astronomical forcing and chronology of the early Toarcian (Early Jurassic) oceanic anoxic event in Yorkshire, UK, Paleoceanography, 26, PA4210, https://doi.org/10.1029/2011PA002122, 2011.
Lézin, C., Andreu, B., Pellenard, P., Bouchez, J.-L., Emmanuel, L., Fauré, P., and Landrein, P.: Geochemical disturbance and paleoenvironmental changes during the Early Toarcian in NW Europe, Chem. Geol., 341, 1–15, https://doi.org/10.1016/j.chemgeo.2013.01.003, 2013.
Lorenz, C.: Forage scientifique de Sancerre-Couy, Cher: Terrains sédimentaires, Doc. BRGM, 136, Orléans, France, 185 pp., 1987.
Lu, Z., Jenkyns, H. C., and Rickaby, R. E. M.: Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events, Geology, 38, 1107–1110, https://doi.org/10.1130/G31145.1, 2010.
McArthur, J. M., Algeo, T. J., van de Schootbrugge, B., Li, Q., and Howarth, R. J.: Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event, Paleoceanography, 23, PA4217, https://doi.org/10.1029/2008PA001607, 2008.
McElwain, J. C., Wade-Murphy, J., and Hesselbo, S. P.: Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals, Nature, 435, 479–482, https://doi.org/10.1038/nature03618, 2005.
Morard, A., Guex, J., Bartolini, A., Morettini, E., and de Wever, P.: A new scenario for the Domerian - Toarcian transition, Bull. Soc. Géol. Fr., 174, 351–356, https://doi.org/10.2113/174.4.351, 2003.
Neuendorf, K. K. E., Mehl Jr., J. P., and Jackson, J. A.: Glossary of Geology, American Geological Institute, Alexandria, 779 pp., 2005.
Pearce, C. R., Cohen, A. S., Coe, A. L., and Burton, K. W.: Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic, Geology, 36, 231–234, https://doi.org/10.1130/G24446A.1, 2008.
Röhl, H.-J., Schmid-Röhl, A., Oschmann, W., Frimmel, A., and Schwark, L.: The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate, Palaeogeogr. Palaeocl., 165, 27–52, https://doi.org/10.1016/S0031-0182(00)00152-8, 2001.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals as paleoredox and paleoproductivity proxies: An update, Chem. Geol., 232, 12–32, https://doi.org/10.1016/j.chemgeo.2006.02.012, 2006.
Wignall, P. B., Newton, R. J., and Little, C. T. S.: The timing of paleoenvironmental change and cause-and-effect relationships during the early Jurassic mass extinction in Europe, Am. J. Sci., 305, 1014–1032, https://doi.org/10.2475/ajs.305.10.1014, 2005.
Williams, C. J., Hesselbo, S. P., Jenkyns, H. C., and Morgans-Bell, H. S.: Quartz silt in mudrocks as a key to sequence stratigraphy (Kimmeridge Clay Formation, Late Jurassic, Wessex Basin, UK), Terra Nova, 13, 449–455, https://doi.org/10.1046/j.1365-3121.2001.00378.x, 2001.
Woodfine, R. G., Jenkyns, H. C., Sarti, M., Baroncini, F., and Violante, C.: The response of two Tethyan carbonate platforms to the early Toarcian (Jurassic) oceanic anoxic event: environmental change and differential subsidence, Sedimentology, 55, 1011–1028, 2008.