Articles | Volume 9, issue 5
Research article
13 Sep 2013
Research article |  | 13 Sep 2013

Mid-Holocene ocean and vegetation feedbacks over East Asia

Z. Tian and D. Jiang

Abstract. Mid-Holocene ocean and vegetation feedbacks over East Asia are investigated by a set of numerical experiments performed with the version 4 of the Community Climate System Model (CCSM4). With reference to the pre-industrial period, most of the mid-Holocene annual and seasonal surface-air temperature and precipitation changes are found to result from a direct response of the atmosphere to insolation forcing, while dynamic ocean and vegetation modulate regional climate of East Asia to some extent. Because of its thermal inertia, the dynamic ocean induced an additional warming of 0.2 K for the annual mean, 0.5 K in winter (December–February), 0.0003 K in summer (June–August), and 1.0 K in autumn (September–November), but a cooling of 0.6 K in spring (March–May) averaged over China, and it counteracted (amplified) the direct effect of insolation forcing for the annual mean and in winter and autumn (spring) for that period. The dynamic vegetation had an area-average impact of no more than 0.4 K on the mid-Holocene annual and seasonal temperatures over China, with an average cooling of 0.2 K for the annual mean. On the other hand, ocean feedback induced a small increase of precipitation in winter (0.04 mm day−1) and autumn (0.05 mm day−1), but a reduction for the annual mean (0.14 mm day−1) and in spring (0.29 mm day−1) and summer (0.34 mm day−1) over China, while it also suppressed the East Asian summer monsoon rainfall. The effect of dynamic vegetation on the mid-Holocene annual and seasonal precipitation was comparatively small, ranging from −0.03 mm day−1 to 0.06 mm day−1 averaged over China. In comparison, the CCSM4 simulated annual and winter cooling over China agrees with simulations within the Paleoclimate Modeling Intercomparison Project (PMIP), but the results are contrary to the warming reconstructed from multiple proxy data for the mid-Holocene. Ocean feedback narrows this model–data mismatch, whereas vegetation feedback plays an opposite role but with a level of uncertainty.