Articles | Volume 9, issue 1
https://doi.org/10.5194/cp-9-135-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-135-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modern sedimentation patterns in Lake El'gygytgyn, NE Russia, derived from surface sediment and inlet streams samples
V. Wennrich
University of Cologne, Institute for Geology and Mineralogy, Cologne, Germany
A. Francke
University of Cologne, Institute for Geology and Mineralogy, Cologne, Germany
A. Dehnert
Swiss Federal Nuclear Safety Inspectorate ENSI, Brugg, Switzerland
O. Juschus
Eberswalde University for Sustainable Development, Eberswalde, Germany
T. Leipe
Leibniz Institute for Baltic Sea Research Warnemuende, Marine Geology, Rostock, Germany
University Bremen, Department of Geosciences, Crystallography/ZEKAM, Bremen, Germany
J. Brigham-Grette
University of Massachusetts, Department of Geosciences, Amherst, USA
P. S. Minyuk
Russian Academy of Sciences, Northeast Interdisciplinary Scientific Research Institute, Magadan, Russia
M. Melles
University of Cologne, Institute for Geology and Mineralogy, Cologne, Germany
El'gygytgyn Science Party
Related authors
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Elisabeth Dietze, Kai Mangelsdorf, Andrei Andreev, Cornelia Karger, Laura T. Schreuder, Ellen C. Hopmans, Oliver Rach, Dirk Sachse, Volker Wennrich, and Ulrike Herzschuh
Clim. Past, 16, 799–818, https://doi.org/10.5194/cp-16-799-2020, https://doi.org/10.5194/cp-16-799-2020, 2020
Short summary
Short summary
Long-term climate change impacts on fire, vegetation and permafrost in the Arctic are uncertain. Here, we show the high potential of organic compounds from low-temperature biomass burning to serve as proxies for surface fires in lake deposits. During warm periods of the last 430 000 years, surface fires are closely linked to the larch taiga forest with its moss–lichen ground vegetation that isolates the permafrost. They have reduced in warm–wet, spruce–dominated and cool–dry steppe environments.
Jack Longman, Daniel Veres, Vasile Ersek, Ulrich Salzmann, Katalin Hubay, Marc Bormann, Volker Wennrich, and Frank Schäbitz
Clim. Past, 13, 897–917, https://doi.org/10.5194/cp-13-897-2017, https://doi.org/10.5194/cp-13-897-2017, 2017
Short summary
Short summary
We present the first record of dust input into an eastern European bog over the past 10 800 years. We find significant changes in past dust deposition, with large inputs related to both natural and human influences. We show evidence that Saharan desertification has had a significant impact on dust deposition in eastern Europe for the past 6100 years.
K. Schittek, M. Forbriger, B. Mächtle, F. Schäbitz, V. Wennrich, M. Reindel, and B. Eitel
Clim. Past, 11, 27–44, https://doi.org/10.5194/cp-11-27-2015, https://doi.org/10.5194/cp-11-27-2015, 2015
V. Wennrich, P. S. Minyuk, V. Borkhodoev, A. Francke, B. Ritter, N. R. Nowaczyk, M. A. Sauerbrey, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1381–1399, https://doi.org/10.5194/cp-10-1381-2014, https://doi.org/10.5194/cp-10-1381-2014, 2014
A. Francke, V. Wennrich, M. Sauerbrey, O. Juschus, M. Melles, and J. Brigham-Grette
Clim. Past, 9, 2459–2470, https://doi.org/10.5194/cp-9-2459-2013, https://doi.org/10.5194/cp-9-2459-2013, 2013
N. R. Nowaczyk, E. M. Haltia, D. Ulbricht, V. Wennrich, M. A. Sauerbrey, P. Rosén, H. Vogel, A. Francke, C. Meyer-Jacob, A. A. Andreev, and A. V. Lozhkin
Clim. Past, 9, 2413–2432, https://doi.org/10.5194/cp-9-2413-2013, https://doi.org/10.5194/cp-9-2413-2013, 2013
H. Vogel, C. Meyer-Jacob, M. Melles, J. Brigham-Grette, A. A. Andreev, V. Wennrich, P. E. Tarasov, and P. Rosén
Clim. Past, 9, 1467–1479, https://doi.org/10.5194/cp-9-1467-2013, https://doi.org/10.5194/cp-9-1467-2013, 2013
Alice R. Paine, Isabel M. Fendley, Joost Frieling, Tamsin A. Mather, Jack H. Lacey, Bernd Wagner, Stuart A. Robinson, David M. Pyle, Alexander Francke, Theodore R. Them II, and Konstantinos Panagiotopoulos
Biogeosciences, 21, 531–556, https://doi.org/10.5194/bg-21-531-2024, https://doi.org/10.5194/bg-21-531-2024, 2024
Short summary
Short summary
Many important processes within the global mercury (Hg) cycle operate over thousands of years. Here, we explore the timing, magnitude, and expression of Hg signals retained in sediments of lakes Prespa and Ohrid over the past ∼90 000 years. Divergent signals suggest that local differences in sediment composition, lake structure, and water balance influence the local Hg cycle and determine the extent to which sedimentary Hg signals reflect local- or global-scale environmental changes.
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Kurt R. Lindberg, William C. Daniels, Isla S. Castañeda, and Julie Brigham-Grette
Clim. Past, 18, 559–577, https://doi.org/10.5194/cp-18-559-2022, https://doi.org/10.5194/cp-18-559-2022, 2022
Short summary
Short summary
Earth experiences regular ice ages resulting in shifts between cooler and warmer climates. Around 1 million years ago, the ice age cycles grew longer and stronger. We used bacterial and plant lipids preserved in an Arctic lake to reconstruct temperature and vegetation during this climate transition. We find that Arctic land temperatures did not cool much compared to ocean records from this period, and that vegetation shifts correspond with a long-term drying previously reported in the region.
Stephanie Scheidt, Matthias Lenz, Ramon Egli, Dominik Brill, Martin Klug, Karl Fabian, Marlene M. Lenz, Raphael Gromig, Janet Rethemeyer, Bernd Wagner, Grigory Federov, and Martin Melles
Geochronology, 4, 87–107, https://doi.org/10.5194/gchron-4-87-2022, https://doi.org/10.5194/gchron-4-87-2022, 2022
Short summary
Short summary
Levinson-Lessing Lake in northern central Siberia provides an exceptional opportunity to study the evolution of the Earth's magnetic field in the Arctic. This is the first study carried out at the lake that focus on the palaeomagnetic record. It presents the relative palaeointensity and palaeosecular variation of the upper 38 m of sediment core Co1401, spanning ~62 kyr. A comparable high-resolution record of this time does not exist in the Eurasian Arctic.
Elisabeth Dietze, Kai Mangelsdorf, Andrei Andreev, Cornelia Karger, Laura T. Schreuder, Ellen C. Hopmans, Oliver Rach, Dirk Sachse, Volker Wennrich, and Ulrike Herzschuh
Clim. Past, 16, 799–818, https://doi.org/10.5194/cp-16-799-2020, https://doi.org/10.5194/cp-16-799-2020, 2020
Short summary
Short summary
Long-term climate change impacts on fire, vegetation and permafrost in the Arctic are uncertain. Here, we show the high potential of organic compounds from low-temperature biomass burning to serve as proxies for surface fires in lake deposits. During warm periods of the last 430 000 years, surface fires are closely linked to the larch taiga forest with its moss–lichen ground vegetation that isolates the permafrost. They have reduced in warm–wet, spruce–dominated and cool–dry steppe environments.
Gaia Sinopoli, Odile Peyron, Alessia Masi, Jens Holtvoeth, Alexander Francke, Bernd Wagner, and Laura Sadori
Clim. Past, 15, 53–71, https://doi.org/10.5194/cp-15-53-2019, https://doi.org/10.5194/cp-15-53-2019, 2019
Short summary
Short summary
Climate changes occur today as they occurred in the past. This study deals with climate changes reconstructed at Lake Ohrid (Albania and FYROM) between 160 000 and 70 000 years ago. Climate reconstruction, based on a high-resolution pollen study, provides quantitative estimates of past temperature and precipitation. Our data show an alternation of cold/dry and warm/wet periods. The last interglacial appears to be characterized by temperatures higher than nowadays.
Alessia Masi, Alexander Francke, Caterina Pepe, Matthias Thienemann, Bernd Wagner, and Laura Sadori
Clim. Past, 14, 351–367, https://doi.org/10.5194/cp-14-351-2018, https://doi.org/10.5194/cp-14-351-2018, 2018
Short summary
Short summary
The first high-resolution Lake Dojran pollen record for the last 12 500 years is presented. The ecological succession shows Late Glacial steppe vegetation gradually replaced, since 11 500 yr BP, by Holocene mesophilous forests. The first human traces are recorded around 5000 yr BP and increased considerably since the Bronze Age. Pollen data and sedimentological, biomarker and diatom data available from the same core contribute to an understanding of the environmental history of the Balkans.
Carmen A. Friese, Johannes A. van Hateren, Christoph Vogt, Gerhard Fischer, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 17, 10163–10193, https://doi.org/10.5194/acp-17-10163-2017, https://doi.org/10.5194/acp-17-10163-2017, 2017
Short summary
Short summary
This article deals with an investigation on the seasonal change in the sources of Saharan dust deposited in and off Mauritania using mineralogy. Onshore, dust was sourced from Western Sahara and a local source during summer and from Mauritania and Mali during winter. Offshore, dust was sourced from Mauritania, Mali and Libya during summer and from Western Sahara during winter. The outcome of the study has important implications for the reconstruction of past climates using dust deposits.
Jack Longman, Daniel Veres, Vasile Ersek, Ulrich Salzmann, Katalin Hubay, Marc Bormann, Volker Wennrich, and Frank Schäbitz
Clim. Past, 13, 897–917, https://doi.org/10.5194/cp-13-897-2017, https://doi.org/10.5194/cp-13-897-2017, 2017
Short summary
Short summary
We present the first record of dust input into an eastern European bog over the past 10 800 years. We find significant changes in past dust deposition, with large inputs related to both natural and human influences. We show evidence that Saharan desertification has had a significant impact on dust deposition in eastern Europe for the past 6100 years.
Bernd Wagner, Thomas Wilke, Alexander Francke, Christian Albrecht, Henrike Baumgarten, Adele Bertini, Nathalie Combourieu-Nebout, Aleksandra Cvetkoska, Michele D'Addabbo, Timme H. Donders, Kirstin Föller, Biagio Giaccio, Andon Grazhdani, Torsten Hauffe, Jens Holtvoeth, Sebastien Joannin, Elena Jovanovska, Janna Just, Katerina Kouli, Andreas Koutsodendris, Sebastian Krastel, Jack H. Lacey, Niklas Leicher, Melanie J. Leng, Zlatko Levkov, Katja Lindhorst, Alessia Masi, Anna M. Mercuri, Sebastien Nomade, Norbert Nowaczyk, Konstantinos Panagiotopoulos, Odile Peyron, Jane M. Reed, Eleonora Regattieri, Laura Sadori, Leonardo Sagnotti, Björn Stelbrink, Roberto Sulpizio, Slavica Tofilovska, Paola Torri, Hendrik Vogel, Thomas Wagner, Friederike Wagner-Cremer, George A. Wolff, Thomas Wonik, Giovanni Zanchetta, and Xiaosen S. Zhang
Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017, https://doi.org/10.5194/bg-14-2033-2017, 2017
Short summary
Short summary
Lake Ohrid is considered to be the oldest existing lake in Europe. Moreover, it has a very high degree of endemic biodiversity. During a drilling campaign at Lake Ohrid in 2013, a 569 m long sediment sequence was recovered from Lake Ohrid. The ongoing studies of this record provide first important information on the environmental and evolutionary history of the lake and the reasons for its high endimic biodiversity.
Beth E. Caissie, Julie Brigham-Grette, Mea S. Cook, and Elena Colmenero-Hidalgo
Clim. Past, 12, 1739–1763, https://doi.org/10.5194/cp-12-1739-2016, https://doi.org/10.5194/cp-12-1739-2016, 2016
Short summary
Short summary
This paper presents the first millennial-scale reconstruction of Marine Isotope Stage (MIS) 11 (~400 ka) from the subarctic Pacific Ocean. We use diatoms, calcareous nannofossils, grain size, and carbon and nitrogen isotopes to examine changing productivity and sea ice. These change in sync with other regional and global records. Initially, MIS 11 is highly productive, due to increased upwelling. Sea ice declines gradually during this warm period, but is present throughout.
James M. Russell, Satria Bijaksana, Hendrik Vogel, Martin Melles, Jens Kallmeyer, Daniel Ariztegui, Sean Crowe, Silvia Fajar, Abdul Hafidz, Doug Haffner, Ascelina Hasberg, Sarah Ivory, Christopher Kelly, John King, Kartika Kirana, Marina Morlock, Anders Noren, Ryan O'Grady, Luis Ordonez, Janelle Stevenson, Thomas von Rintelen, Aurele Vuillemin, Ian Watkinson, Nigel Wattrus, Satrio Wicaksono, Thomas Wonik, Kohen Bauer, Alan Deino, André Friese, Cynthia Henny, Imran, Ristiyanti Marwoto, La Ode Ngkoimani, Sulung Nomosatryo, La Ode Safiuddin, Rachel Simister, and Gerald Tamuntuan
Sci. Dril., 21, 29–40, https://doi.org/10.5194/sd-21-29-2016, https://doi.org/10.5194/sd-21-29-2016, 2016
Short summary
Short summary
The Towuti Drilling Project seeks to understand the long-term environmental and climatic history of the tropical western Pacific and to discover the unique microbes that live in metal-rich sediments. To accomplish these goals, in 2015 we carried out a scientific drilling project on Lake Towuti, located in central Indonesia. We recovered over 1000 m of core, and our deepest core extended 175 m below the lake floor and gives us a complete record of the lake.
Aleksandra Cvetkoska, Elena Jovanovska, Alexander Francke, Slavica Tofilovska, Hendrik Vogel, Zlatko Levkov, Timme H. Donders, Bernd Wagner, and Friederike Wagner-Cremer
Biogeosciences, 13, 3147–3162, https://doi.org/10.5194/bg-13-3147-2016, https://doi.org/10.5194/bg-13-3147-2016, 2016
Giovanni Zanchetta, Eleonora Regattieri, Biagio Giaccio, Bernd Wagner, Roberto Sulpizio, Alex Francke, Hendrik Vogel, Laura Sadori, Alessia Masi, Gaia Sinopoli, Jack H. Lacey, Melanie J. Leng, and Niklas Leicher
Biogeosciences, 13, 2757–2768, https://doi.org/10.5194/bg-13-2757-2016, https://doi.org/10.5194/bg-13-2757-2016, 2016
Short summary
Short summary
Chronology is fundamental in paleoclimatology for understanding timing of events and their origin. In this paper we try to obtain a more detailed chronology for the interval comprised between ca. 140 and 70 ka for the DEEP core in Lake Ohrid using regional independently-dated archives (i.e. speleothems and/or lacustrine succession with well-dated volcanic layers). This allows to insert the DEEP chronology within a common chronological frame between different continental and marine proxy records.
Niklas Leicher, Giovanni Zanchetta, Roberto Sulpizio, Biagio Giaccio, Bernd Wagner, Sebastien Nomade, Alexander Francke, and Paola Del Carlo
Biogeosciences, 13, 2151–2178, https://doi.org/10.5194/bg-13-2151-2016, https://doi.org/10.5194/bg-13-2151-2016, 2016
Janna Just, Norbert R. Nowaczyk, Leonardo Sagnotti, Alexander Francke, Hendrik Vogel, Jack H. Lacey, and Bernd Wagner
Biogeosciences, 13, 2093–2109, https://doi.org/10.5194/bg-13-2093-2016, https://doi.org/10.5194/bg-13-2093-2016, 2016
Short summary
Short summary
The magnetic record from Lake Ohrid reflects a strong change in geochemical conditions in the lake. Before 320 ka glacial sediments contain iron sulfides, while later glacials are dominated by siderite. Superimposed on this large-scale pattern are climatic induced changes in the magnetic mineralogy. Glacial and stadial sediments are characterized by relative increases of high- vs. low-coercivity minerals which relate to enhanced erosion in the catchment, possibly due to a sparse vegetation.
Jack H. Lacey, Melanie J. Leng, Alexander Francke, Hilary J. Sloane, Antoni Milodowski, Hendrik Vogel, Henrike Baumgarten, Giovanni Zanchetta, and Bernd Wagner
Biogeosciences, 13, 1801–1820, https://doi.org/10.5194/bg-13-1801-2016, https://doi.org/10.5194/bg-13-1801-2016, 2016
Short summary
Short summary
We use stable isotope data from carbonates to provide a palaeoenvironmental reconstruction covering the last 637 kyr at Lake Ohrid (FYROM/Albania). Our results indicate a relatively stable climate until 450 ka, wetter climate conditions at 400–250 ka, and a transition to a drier climate after 250 ka. This work emphasises the importance of Lake Ohrid as a valuable archive of climate change in the northern Mediterranean region.
Laura Sadori, Andreas Koutsodendris, Konstantinos Panagiotopoulos, Alessia Masi, Adele Bertini, Nathalie Combourieu-Nebout, Alexander Francke, Katerina Kouli, Sébastien Joannin, Anna Maria Mercuri, Odile Peyron, Paola Torri, Bernd Wagner, Giovanni Zanchetta, Gaia Sinopoli, and Timme H. Donders
Biogeosciences, 13, 1423–1437, https://doi.org/10.5194/bg-13-1423-2016, https://doi.org/10.5194/bg-13-1423-2016, 2016
Short summary
Short summary
Lake Ohrid (FYROM/Albania) is the deepest, largest and oldest lake in Europe. To understand the climatic and environmental evolution of its area, a palynological study was undertaken for the last 500 ka. We found a correspondence between forested/non-forested periods and glacial-interglacial cycles of marine isotope stratigraphy. Our record shows a progressive change from cooler and wetter to warmer and dryer interglacial conditions. This shift is also visible in glacial vegetation.
X. S. Zhang, J. M. Reed, J. H. Lacey, A. Francke, M. J. Leng, Z. Levkov, and B. Wagner
Biogeosciences, 13, 1351–1365, https://doi.org/10.5194/bg-13-1351-2016, https://doi.org/10.5194/bg-13-1351-2016, 2016
Alexander Francke, Bernd Wagner, Janna Just, Niklas Leicher, Raphael Gromig, Henrike Baumgarten, Hendrik Vogel, Jack H. Lacey, Laura Sadori, Thomas Wonik, Melanie J. Leng, Giovanni Zanchetta, Roberto Sulpizio, and Biagio Giaccio
Biogeosciences, 13, 1179–1196, https://doi.org/10.5194/bg-13-1179-2016, https://doi.org/10.5194/bg-13-1179-2016, 2016
Short summary
Short summary
Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old. To recover a long paleoclimate record for the Mediterranean region, a deep drilling was carried out in 2013 within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site record.
Elena Jovanovska, Aleksandra Cvetkoska, Torsten Hauffe, Zlatko Levkov, Bernd Wagner, Roberto Sulpizio, Alexander Francke, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 1149–1161, https://doi.org/10.5194/bg-13-1149-2016, https://doi.org/10.5194/bg-13-1149-2016, 2016
H. Baumgarten, T. Wonik, D. C. Tanner, A. Francke, B. Wagner, G. Zanchetta, R. Sulpizio, B. Giaccio, and S. Nomade
Biogeosciences, 12, 7453–7465, https://doi.org/10.5194/bg-12-7453-2015, https://doi.org/10.5194/bg-12-7453-2015, 2015
Short summary
Short summary
Gamma ray (GR) fluctuations and K values from downhole logging data obtained in the sediments of Lake Ohrid correlate with the global climate reference record (LR04 stack from δ18O) (Lisiecki and Raymo, 2005). GR and K values are considered a reliable proxy to depict glacial-interglacial cycles and document warm, humid and cold, drier periods. A robust age model for the downhole logging data over the past 630kyr was established and will play a crucial role for other working groups.
A. J. Coletti, R. M. DeConto, J. Brigham-Grette, and M. Melles
Clim. Past, 11, 979–989, https://doi.org/10.5194/cp-11-979-2015, https://doi.org/10.5194/cp-11-979-2015, 2015
Short summary
Short summary
Evidence from Pleistocene sediments suggest that the Arctic's climate went through multiple sudden transitions, warming by 2-4 °C (compared to preindustrial times), and stayed warm for hundreds to thousands of years. A climate modelling study of these events suggests that the Arctic's climate and landscape drastically changed, transforming a cold and barren landscape as we know today to a warm, lush, evergreen and boreal forest landscape only seen in the modern midlatitudes.
K. Schittek, M. Forbriger, B. Mächtle, F. Schäbitz, V. Wennrich, M. Reindel, and B. Eitel
Clim. Past, 11, 27–44, https://doi.org/10.5194/cp-11-27-2015, https://doi.org/10.5194/cp-11-27-2015, 2015
V. Wennrich, P. S. Minyuk, V. Borkhodoev, A. Francke, B. Ritter, N. R. Nowaczyk, M. A. Sauerbrey, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1381–1399, https://doi.org/10.5194/cp-10-1381-2014, https://doi.org/10.5194/cp-10-1381-2014, 2014
A. A. Andreev, P. E. Tarasov, V. Wennrich, E. Raschke, U. Herzschuh, N. R. Nowaczyk, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1017–1039, https://doi.org/10.5194/cp-10-1017-2014, https://doi.org/10.5194/cp-10-1017-2014, 2014
B. Wagner, T. Wilke, S. Krastel, G. Zanchetta, R. Sulpizio, K. Reicherter, M. J. Leng, A. Grazhdani, S. Trajanovski, A. Francke, K. Lindhorst, Z. Levkov, A. Cvetkoska, J. M. Reed, X. Zhang, J. H. Lacey, T. Wonik, H. Baumgarten, and H. Vogel
Sci. Dril., 17, 19–29, https://doi.org/10.5194/sd-17-19-2014, https://doi.org/10.5194/sd-17-19-2014, 2014
P. S. Minyuk, V. Y. Borkhodoev, and V. Wennrich
Clim. Past, 10, 467–485, https://doi.org/10.5194/cp-10-467-2014, https://doi.org/10.5194/cp-10-467-2014, 2014
C. Meyer-Jacob, H. Vogel, A. C. Gebhardt, V. Wennrich, M. Melles, and P. Rosén
Clim. Past, 10, 209–220, https://doi.org/10.5194/cp-10-209-2014, https://doi.org/10.5194/cp-10-209-2014, 2014
P. E. Tarasov, A. A. Andreev, P. M. Anderson, A. V. Lozhkin, C. Leipe, E. Haltia, N. R. Nowaczyk, V. Wennrich, J. Brigham-Grette, and M. Melles
Clim. Past, 9, 2759–2775, https://doi.org/10.5194/cp-9-2759-2013, https://doi.org/10.5194/cp-9-2759-2013, 2013
A. Francke, V. Wennrich, M. Sauerbrey, O. Juschus, M. Melles, and J. Brigham-Grette
Clim. Past, 9, 2459–2470, https://doi.org/10.5194/cp-9-2459-2013, https://doi.org/10.5194/cp-9-2459-2013, 2013
N. R. Nowaczyk, E. M. Haltia, D. Ulbricht, V. Wennrich, M. A. Sauerbrey, P. Rosén, H. Vogel, A. Francke, C. Meyer-Jacob, A. A. Andreev, and A. V. Lozhkin
Clim. Past, 9, 2413–2432, https://doi.org/10.5194/cp-9-2413-2013, https://doi.org/10.5194/cp-9-2413-2013, 2013
M. Magny, N. Combourieu-Nebout, J. L. de Beaulieu, V. Bout-Roumazeilles, D. Colombaroli, S. Desprat, A. Francke, S. Joannin, E. Ortu, O. Peyron, M. Revel, L. Sadori, G. Siani, M. A. Sicre, S. Samartin, A. Simonneau, W. Tinner, B. Vannière, B. Wagner, G. Zanchetta, F. Anselmetti, E. Brugiapaglia, E. Chapron, M. Debret, M. Desmet, J. Didier, L. Essallami, D. Galop, A. Gilli, J. N. Haas, N. Kallel, L. Millet, A. Stock, J. L. Turon, and S. Wirth
Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, https://doi.org/10.5194/cp-9-2043-2013, 2013
A. C. Gebhardt, A. Francke, J. Kück, M. Sauerbrey, F. Niessen, V. Wennrich, and M. Melles
Clim. Past, 9, 1933–1947, https://doi.org/10.5194/cp-9-1933-2013, https://doi.org/10.5194/cp-9-1933-2013, 2013
M. A. Sauerbrey, O. Juschus, A. C. Gebhardt, V. Wennrich, N. R. Nowaczyk, and M. Melles
Clim. Past, 9, 1949–1967, https://doi.org/10.5194/cp-9-1949-2013, https://doi.org/10.5194/cp-9-1949-2013, 2013
U. Frank, N. R. Nowaczyk, P. Minyuk, H. Vogel, P. Rosén, and M. Melles
Clim. Past, 9, 1559–1569, https://doi.org/10.5194/cp-9-1559-2013, https://doi.org/10.5194/cp-9-1559-2013, 2013
H. Vogel, C. Meyer-Jacob, M. Melles, J. Brigham-Grette, A. A. Andreev, V. Wennrich, P. E. Tarasov, and P. Rosén
Clim. Past, 9, 1467–1479, https://doi.org/10.5194/cp-9-1467-2013, https://doi.org/10.5194/cp-9-1467-2013, 2013
L. Cunningham, H. Vogel, V. Wennrich, O. Juschus, N. Nowaczyk, and P. Rosén
Clim. Past, 9, 679–686, https://doi.org/10.5194/cp-9-679-2013, https://doi.org/10.5194/cp-9-679-2013, 2013
R. M. D'Anjou, J. H. Wei, I. S. Castañeda, J. Brigham-Grette, S. T. Petsch, and D. B. Finkelstein
Clim. Past, 9, 567–581, https://doi.org/10.5194/cp-9-567-2013, https://doi.org/10.5194/cp-9-567-2013, 2013
A. Francke, B. Wagner, M. J. Leng, and J. Rethemeyer
Clim. Past, 9, 481–498, https://doi.org/10.5194/cp-9-481-2013, https://doi.org/10.5194/cp-9-481-2013, 2013
P. S. Minyuk, T. V. Subbotnikova, L. L. Brown, and K. J. Murdock
Clim. Past, 9, 433–446, https://doi.org/10.5194/cp-9-433-2013, https://doi.org/10.5194/cp-9-433-2013, 2013
K. M. K. Wilkie, B. Chapligin, H. Meyer, S. Burns, S. Petsch, and J. Brigham-Grette
Clim. Past, 9, 335–352, https://doi.org/10.5194/cp-9-335-2013, https://doi.org/10.5194/cp-9-335-2013, 2013
A. R. Holland, S. T. Petsch, I. S. Castañeda, K. M. Wilkie, S. J. Burns, and J. Brigham-Grette
Clim. Past, 9, 243–260, https://doi.org/10.5194/cp-9-243-2013, https://doi.org/10.5194/cp-9-243-2013, 2013
B. Wagner, A. Francke, R. Sulpizio, G. Zanchetta, K. Lindhorst, S. Krastel, H. Vogel, J. Rethemeyer, G. Daut, A. Grazhdani, B. Lushaj, and S. Trajanovski
Clim. Past, 8, 2069–2078, https://doi.org/10.5194/cp-8-2069-2012, https://doi.org/10.5194/cp-8-2069-2012, 2012
Cited articles
Allen, J. R. M., Brandt, U., Brauer, A., Hubberten, H.-W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J. F. W., Nowaczyk, N. R., Oberhänsli, H., Watts, W. A., Wulf, S., and Zolitschka, B.: Rapid environmental changes in southern Europe during the last glacial period, Nature, 400, 740–743, https://doi.org/10.1038/23432, 1999.
Asikainen, C. A., Francus, P., and Brigham-Grette, J.: Sedimentology, clay mineralogy and grain-size as indicators of 65 ka of climate change from El'gygytgyn Crater Lake, Northeastern Siberia, J. Paleolimnol., 37, 105–122, https://doi.org/10.1007/s10933-006-9026-5, 2007.
Barr, I. D. and Clark, C. D.: Glaciers and climate in Pacific Far NE Russia during the Last Glacial Maximum, J. Quaternary Sci., 26, 227–237, https://doi.org/10.1002/jqs.1450, 2011.
Belyi, V.: Structure and formation of the El\textasciiacute gygytgyn Basin (Anadyr Mountains), Geomorphologia, 1, 31–41, 2001.
Belyi, V.: Impactite generation in the El'gygytgyn depression, northeast Russia, as a volcanic phenomenon. 2. On the petrography and geochemistry of the impactites, J. Volcanol. Seismol., 4, 149–163, https://doi.org/10.1134/s0742046310030012, 2010.
Belyi, V. and Belaya, B.: Late stage of the Okhotsk-Chukchi Volcanogenic Belt development (upstream of the Enmyvaam River), NEISRI FEB RAS, Magadan, Russia, 108 pp., 1998.
Belyi, V. and Raikevich, M. I.: The El'gygytgyn lake basin (geological structure, morphostructure, impactites, problems of investigation and preservation of nature), NEISRI FEB RAS, Magadan, 27 pp., 1994.
Bindler, R., Renberg, I., Appleby, P. G., Anderson, N. J., and Rose, N. L.: Mercury Accumulation Rates and Spatial Patterns in Lake Sediments from West Greenland:? A Coast to Ice Margin Transect, Environ. Sci. Technol., 35, 1736–1741, https://doi.org/10.1021/es0002868, 2001.
Bloesch, J.: Mechanisms, measurement and importance of sediment resuspension in lakes, Mar. Freshwater Res., 46, 295–304, 1995.
Blott, S. J. and Pye, K.: GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Processes Land., 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.
Bortels, H.: Molybdän als Katalysator bei der biologischen Stickstoffbindung, Arch. Mikrobiol., 1, 333–342, https://doi.org/10.1007/bf00510471, 1930.
Brigham-Grette, J., Haug, G. H., and Climate Working Group: Climate Dynamics and Global Environments: A Community Vision for the Next Decade in ICDP, Continental scientific drilling: a decade of progress and challenges for the future, 53–94, 2007a.
Brigham-Grette, J., Melles, M., Minyuk, P., and Scientific Party: Overview and significance of a 250 ka paleoclimate record from El'gygytgyn Crater Lake, NE Russia, J. Paleolimnol., 37, 1–16, https://doi.org/10.1007/s10933-006-9017-6, 2007b.
Cannon, W. F., Dean, W. E., and Bullock, J. H.: Effects of Holocene climate change on mercury deposition in Elk Lake, Minnesota: The importance of eolian transport in the mercury cycle, Geology, 31, 187–190, https://doi.org/10.1130/0091-7613(2003)031<0187:eohcco>2.0.co;2, 2003.
Cherniak, D. J. and Watson, E. B.: A study of strontium diffusion in plagioclase using Rutherford backscattering spectroscopy, Geochim. Cosmochim. Ac., 58, 5179–5190, 1994.
Cohen, A. S.: Scientific drilling and biological evolution in ancient lakes: lessons learned and recommendations for the future, Hydrobiologia, 682, 3–25, https://doi.org/10.1007/s10750-010-0546-7, 2012.
Côté, M. M. and Burn, C. R.: The oriented lakes of Tuktoyaktuk Peninsula, Western Arctic Coast, Canada: a GIS-based analysis, Permafrost Periglac., 13, 61–70, https://doi.org/10.1002/ppp.407, 2002.
Cremer, H. and Wagner, B.: The diatom flora in the ultra-oligotrophic Lake EI'gygytgyn, Chukotka, Polar Biol., 26, 105–114, https://doi.org/10.1007/s00300-002-0445-0, 2003.
Cremer, H., Wagner, B., Juschus, O., and Melles, M.: A microscopical study of diatom phytoplankton in deep crater Lake El'gygytgyn, Northeast Siberia, Algological Studies, 116, 147–169, 2005.
Cressie, N. A. C.: Statistics for spatial data, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 900 pp., 1991.
El Bouseily, A. M. and El Sokkary, A. A.: The relation between Rb, Ba and Sr in granitic rocks, Chem. Geol., 16, 207–219, 1975.
Emmermann, R. and Lauterjung, J.: Double X-ray analysis of cuttings and rock flour: a powerful tool for rapid and reliable determination of borehole lithostratigraphy, Scientific Drilling, 1, 269–282, 1990.
Fagel, N., Alleman, L. Y., Granina, L., Hatert, F., Thamo-Bozso, E., Cloots, R., and André, L.: Vivianite formation and distribution in Lake Baikal sediments, Global Planet. Change, 46, 315–336, 2005.
Fedorov, G. and Kupolov, A.: Gas Mercury Survey in the El'gygytgyn Crater, in: The Expedition El'gygytgyn Lake 2003 (Siberian Arctic), edited by: Melles, M., Minyuk, P., Brigham-Grette, J., and Juschus, O., Reports on Polar and Marine Research, 509, 69–70, 2005.
Fedorov, G., Nolan, M., Brigham-Grette, J., Bolshiyanov, D., Schwamborn, G., and Juschus, O.: Lake El'gygytgyn water and sediment balance components overview and its implications for the sedimentary record, Clim. Past Discuss., 8, 3977–4001, https://doi.org/10.5194/cpd-8-3977-2012, 2012.
Francke, A., Wennrich, V., Sauerbrey, M., Juschus, O., Melles, M., and Brigham-Grette, J.: Multivariate statistic and time series analyses of grain-size data in Quaternary sediments of Lake El'gygytgyn, NE Russia, Clim. Past Discuss., 9, 217–244, https://doi.org/10.5194/cpd-9-217-2013, 2013.
Fujita, K., Mackey, K. G., McCaleb, R. C., Gubina, L. V., Kovalev, V. N., Imaev, V. S., and Smirnov, V. N.: Seismicity of Chukotka, northeastern Russia, in: Tectonic Evolution of the Bering Shelf-Chukchi Sea-Arctic Margin and Adjacent Landmasses, edited by: Miller, L., Grantz, A., and Klemperer, S. L., Geol. S. Am. S., 360, 259–272, 2002.
Gasse, F., Vidal, L., Develle, A.-L., and Van Campo, E.: Hydrological variability in the Northern Levant: a 250 ka multi-proxy record from the Yammo\^{u}neh (Lebanon) sedimentary sequence, Clim. Past, 7, 1261–1284, https://doi.org/10.5194/cp-7-1261-2011, 2011.
Gelety, V., Gapon, A., Kalmychkov, G., Parkhomenko, I. Y., and Kostrova, S.: Mercury in the surficial bottom sediments of lake Baikal, Geochem. Int., 43, 220–226, 2005.
Gelety, V., Kalmykov, G., and Parkhomenko, I.: Mercury in the sedimentary deposits of Lake Baikal, Geochem. Int., 45, 170–177, https://doi.org/10.1134/s001670290702005x, 2007.
Glotov, V. Ye. and Zuev, S. A.: Hydrological characteristics of Lake El'gygytgyn, Kolyma, 3–4, 18–23, 1995.
Glushkova, O. Yu.: Geomorphological correlation of Late Pleistocene glacial complexes of Western and Eastern Beringia, Quaternary Sci. Rev., 20, 405–417, https://doi.org/10.1016/s0277-3791(00)00108-6, 2001.
Glushkova, O. Yu and Smirnov, V. N.: Highest Lake Terraces, in: The expedition El'gygytgyn Lake 2003 (Siberian Arctic), edited by: Melles, M., Minyuk, P., Brigham-Grette, J., and Juschus, O., Reports on Polar and Marine Research, 509, 85–88, 2005.
Glushkova, O. Yu. and Smirnov, V. N.: Pliocene to Holocene geomorphic evolution and paleogeography of the El'gygytgyn Lake region, NE Russia, J. Paleolimnol., 37, 37–47, https://doi.org/10.1007/s10933-006-9021-x, 2007.
Gurov, E. P. and Gurova, Ye.: Stages of shock metamorphism of silicic volcanic rocks in the El'gygytgyn meteorite crater, Chukotka, Dokl. Acad. Nauk SSSR.: Earth Science subsection, 249, 121–123, 1979.
Gurov, E. P., Koeberl, C., Reimold, W. U., Brandstätter, F., and Amare, K.: Shock metamorphism of siliceous volcanic rocks of the El'gygytgyn impact crater (Chukotka, Russia), Geol. S. Am. S., 384, 391–391, 2005.
Gurov, E. P., Koeberl, C., and Yamnichenko, A.: El'gygytgyn impact crater, Russia: Structure, tectonics, and morphology, Meteorit. Planet. Sci., 42, 307–319, 2007.
Halfman, J. D. and Scholz, C. A.: Suspended Sediments in Lake Malawi, Africa: A Reconnaissance Study, J. Great Lakes Res., 19, 499–511, 1993.
Hawley, N. and Lee, C.-H.: Sediment resuspension and transport in Lake Michigan during the unstratified period, Sedimentology, 46, 791–805, https://doi.org/10.1046/j.1365-3091.1999.00251.x, 1999.
Jébrak, M. and Hernandez, A.: Tectonic deposition of mercury in the Almadén district, Las Cuevas deposit, Spain, Miner. Deposita, 30, 413–423, https://doi.org/10.1007/bf00196401, 1995.
Juschus, O., Melles, M., Gebhardt, A. C., and Niessen, F.: Late Quaternary mass movement events in Lake El'gygytgyn, North-eastern Siberia, Sedimentology, 56, 2155–2174, https://doi.org/10.1111/j.1365-3091.2009.01074.x, 2009.
Juschus, O., Pavlov, M., Schwamborn, G., Preusser, F., Fedorov, G., and Melles, M.: Late Quaternary lake-level changes of Lake El'gygytgyn, NE Siberia, Quaternary Res., 76, 441–451, https://doi.org/10.1016/j.yqres.2011.06.010, 2011.
Kelley, S. P., Spicer, R. A., and Herman, A. B.: New Ar-40/Ar-39 dates for Cretaceous Chauna Group tephra, north-eastern Russia, and their implications for the geologic history and floral evolution of the North Pacific region, Cretaceous Res., 20, 97–106, 1999.
Konishchev, V. N.: Characteristics of Cryogenic Weathering in the Permafrost Zone of the European USSR, Arctic Alpine Res., 14, 261–265, 1982.
Koval, P. V., Kalmychkov, G. V., Gelety, V. F., Leonova, G. A., Medvedev, V. I., and Andrulaitis, L. D.: Correlation of natural and technogenic mercury sources in the Baikal polygon, Russia, J. Geochem. Explor., 66, 277–289, 1999.
Koval, P., Udodov, Y., San'kov, V., Yasenovskii, A., and Andrulaitis, L.: Geochemical activity of faults in the Baikal Rift Zone (Mercury, Radon, and Thoron), Dokl. Earth Sci., 409, 912–915, https://doi.org/10.1134/s1028334x06060171, 2006.
Layer, P. W.: Argon-40/argon-39 age of the El'gygytgyn impact event, Chukotka, Russia, Meteorit. Planet. Sci., 35, 591–599, 2000.
Lin, Z. and Puls, R. W.: Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process, Environ. Geol., 39, 753–759, https://doi.org/10.1007/s002540050490, 2000.
Lion, L. W., Altmann, R. S., and Leckie, J. O.: Trace-metal adsorption characteristics of estuarine particulate matter: evaluation of contributions of iron/manganese oxide and organic surface coatings, Environ. Sci. Technol., 16, 660–666, https://doi.org/10.1021/es00104a007, 1982.
Lorey, P. and Driscoll, C. T.: Historical Trends of Mercury Deposition in Adirondack Lakes, Environ. Sci. Technol., 33, 718–722, https://doi.org/10.1021/es9800277, 1999.
Lozhkin, A. V., Anderson, P. M., Matrosova, T. V., Minyuk, P. S., Brigham-Grette, J., and Melles, M.: Continuous Record of Environmental Changes in Chukotka during the Last 350 Thousand Years, Russ. J. Pac. Geol., 1, 550–555, https://doi.org/10.1134/s1819714007060048, 2007.
Melles, M., Minyuk, P., Brigham-Grette, J., and Juschus, O (Eds.).: The Expedition El\textasciiacute gygytgyn Lake 2003 (Siberian Arctic), Reports on Polar and Marine Research, 509, 139 pp., 2005.
Melles, M., Brigham-Grette, J., Glushkova, O. Yu., Minyuk, P. S., Nowaczyk, N. R., and Hubberten, H. W.: Sedimentary geochemistry of core PG1351 from Lake El'gygytgyn – a sensitive record of climate variability in the East Siberian Arctic during the past three glacial-interglacial cycles, J. Paleolimnol., 37, 89–104, https://doi.org/10.1007/s10933-006-9025-6, 2007.
Melles, M., Brigham-Grette, J., Minyuk, P., Koeberl, C., Andreev, A., Cook, T., Fedorov, G., Gebhardt, C., Haltia-Hovi, E., Kukkonen, M., Nowaczyk, N., Schwamborn, G., Wennrich, V., and and the El\textasciiacute gygytgyn Scientific Party: The Lake El'gygytgyn Scientific Drilling Project – Conquering Arctic Challenges through Continental Drilling, Scientific Drilling, 11, 29–40, 2011.
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich, V., DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., Cook, T. L., Haltia-Hovi, E., Kukkonen, M., Lozhkin, A. V., Rosén, P., Tarasov, P., Vogel, H., and Wagner, B.: 2.8 Million Years of Arctic Climate Change from Lake El'gygytgyn, NE Russia, Science, 337, 315–320, https://doi.org/10.1126/science.1222135, 2012.
Minyuk, P. S., Brigham-Grette, J., Melles, M., Borkhodoev, V. Ya., and Glushkova, O. Yu.: Inorganic geochemistry of El'gygytgyn Lake sediments (northeastern Russia) as an indicator of paleoclimatic change for the last 250 kyr, J. Paleolimnol., 37, 123–133, https://doi.org/10.1007/s10933-006-9027-4, 2007.
Minyuk, P., Borkhodoev, V. Ya., and Goryachev, N.: Geochemical characteristics of sediments from Lake El'gygytgyn, Chukotka Peninsula, as indicators of climatic variations for the past 350 ka, Dokl. Earth Sci., 436, 94–97, https://doi.org/10.1134/s1028334x11010181, 2011.
Minyuk, P. S., Borkhodoev, V. Ya., and Wennrich, V.: Inorganic data from El'gygytgyn Lake sediments: stages 6–11, Clim. Past Discuss., accepted, 2013.
Mock, C. J., Bartlein, P. J., and Anderson, P. M.: Atmospheric circulation patterns and spatial climatic variations in Beringia, Int. J. Climatol., 18, 1085–1104, https://doi.org/10.1002/(SICI)1097-0088(199808)18:10<1085::AID-JOC305>3.0.CO;2-K, 1998.
Müller, B., Granina, L., Schaller, T., Ulrich, A., and Wehrli, B.: P, As, Sb, Mo, and Other Elements in Sedimentary Fe/Mn Layers of Lake Baikal, Environ. Sci. Technol., 36, 411–420, https://doi.org/10.1021/es010940z, 2002.
Nekrasov, I. A.: About the origin and history of the El'gygytgyn Lake basin, Geol. Geofiz., 1, 47–59, 1963.
Nesbitt, H. W. and Young, G. M.: Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations, Geochim. Cosmochim. Ac., 48, 1523–1534, 1984.
Niessen, F., Gebhardt, A. C., Kopsch, C., and Wagner, B.: Seismic investigation of the El'gygytgyn impact crater lake (Central Chukotka, NE Siberia): preliminary results, J. Paleolimnol., 37, 49–63, https://doi.org/10.1007/s10933-006-9022-9, 2007.
Nolan, M.: Analysis of local AWS and NCEP/NCAR reanalysis data at Lake El'gygtytgyn, and its implications for maintaining multi-year lake-ice covers, Clim. Past Discuss., 8, 1443–1483, https://doi.org/10.5194/cpd-8-1443-2012, 2012.
Nolan, M. and Brigham-Grette, J.: Basic hydrology, limnology, and meteorology of modern Lake El'gygytgyn, Siberia, J. Paleolimnol., 37, 17–35, https://doi.org/10.1007/s10933-006-9020-y, 2007.
Nolan, M., Liston, G., Prokein, P., Brigham-Grette, J., Sharpton, V. L., and Huntzinger, R.: Analysis of lake ice dynamics and morphology on Lake El'gygytgyn, NE Siberia, using synthetic aperture radar (SAR) and Landsat, J. Geophys. Res.-Atmos., 108, 8162, https://doi.org/10.1029/2001JD000934, 2002.
Nowaczyk, N. R., Minyuk, P., Melles, M., Brigham-Grette, J., Glushkova, O. Yu., Nolan, M., Lozhkin, A. V., Stetsenko, T. V., Andersen, P. M., and Forman, S. L.: Magnetostratigraphic results from impact crater lake El'gygytgyn, northeastern Siberia: a possibly 300 kyr long terrestrial paleoclimate record from the Arctic, Geophys. J. Int., 150, 109–126, https://doi.org/10.1046/j.1365-246X.2002.01625.x, 2002.
Nowaczyk, N. R., Melles, M., and Minyuk, P.: A revised age model for core PG1351 from Lake El'gygytgyn, Chukotka, based on magnetic susceptibility variations tuned to northern hemisphere insolation variations, J. Paleolimnol., 37, 65–76, https://doi.org/10.1007/s10933-006-9023-8, 2007.
Oliver, M. A. and Webster, R.: Kriging: a method of interpolation for geographical information systems, Int. J. Geogr. Inf. Syst., 4, 313–332, https://doi.org/10.1080/02693799008941549, 1990.
Outridge, P. M., Sanei, H., Stern, G. A., Hamilton, P. B., and Goodarzi, F.: Evidence for Control of Mercury Accumulation Rates in Canadian High Arctic Lake Sediments by Variations of Aquatic Primary Productivity, Environ. Sci. Technol., 41, 5259–5265, https://doi.org/10.1021/es070408x, 2007.
Petschick, R., Kuhn, G., and Gingele, F.: Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography, Mar. Geol., 130, 203–229, 1996.
Robinson, C., Shimmield, G., and Creer, K.: Geochemistry of Lago Grande di Monticchio, S. Italy, in: Paleolimnology of European Maar Lakes, edited by: Negendank, J. and Zolitschka, B., Lecture Notes in Earth Sciences, Springer Berlin/Heidelberg, 317–332, 1993.
Sauerbrey, M., Juschus, O., Gebhardt, C., Wennrich, V., Nowaczyk, N., and Melles, M.: Mass movement deposits in the 3.6Ma sediment record of Lake El'gygytgyn, Chukotka, NE Siberia: classification, distribution and preliminary interpretation, Clim. Past Discuss., accepted, 2013.
Schwamborn, G., Meyer, H., Fedorov, G., Schirrmeister, L., and Hubberten, H.: Ground ice and slope sediments archiving late Quaternary paleoenvironment and paleoclimate signals at the margins of El'gygytgyn Impact Crater, NE Siberia, Quaternary Res., 66, 259–272, 2006.
Schwamborn, G., Fedorov, G., Schirrmeister, L., Meyer, H., and Hubberten, H. W.: Periglacial sediment variations controlled by late Quaternary climate and lake level change at Elgygytgyn Crater, Arctic Siberia, Boreas, 37, 55–65, https://doi.org/10.1111/j.1502-3885.2007.00011.x, 2008a.
Schwamborn, G., Förster, A., Diekmann, B., Schirrmeister, L., and Fedorov, G.: Mid- to Late-Quaternary Cryogenic Weathering Conditions at Elgygytgyn Crater, Northeastern Russia: Inference from Mineralogical and Microtextural Properties of the Sediment Record, Ninth International Conference On Permafrost, Fairbanks, 1601–1606, 2008b.
Schwamborn, G., Fedorov, G., Ostanin, N., Schirrmeister, L., Andreev, A., and the El'gygytgyn Scientific Party: Depositional dynamics in the El'gygytgyn Crater margin: implications for the 3.6 Ma old sediment archive, Clim. Past, 8, 1897–1911, https://doi.org/10.5194/cp-8-1897-2012, 2012.
Sidorov, A., Chekhov, A., Volkov, A., and Alekseev, V.: Metallogeny of the inner and outer zones of the Okhotsk-Chukotsk volcanogenic belt, Dokl. Earth Sci., 439, 949–954, https://doi.org/10.1134/s1028334x11060122, 2011.
Stone, D. B., Layer, P. W., and Raikevich, M. I.: Age and paleomagnetism of the Okhotsk-Chukotka Volcanic Belt (OCVB) near Lake El'gygytgyn, Chukotka, Russia, Stephan Mueller Special Publication Series, 4, 243–260, 2009.
Swann, G. E. A., Leng, M. J., Juschus, O., Melles, M., Brigham-Grette, J., and Sloane, H. J.: A combined oxygen and silicon diatom isotope record of Late Quaternary change in Lake El'gygytgyn, North East Siberia, Quaternary Sci. Rev., 29, 774–786, https://doi.org/10.1016/j.quascirev.2009.11.024, 2010.
Tessier, A.: Sorption of trace elements on natural particles in oxic environments, in: Environmental particles, edited by: Buffle, J. and van Leeuwen, H. P., Lewis Publishers, Chelsea, 425–453, 1992.
Treshnikov, A. F.: Atlas of the Arctic, Main Department of Geodesy and Cartography under the Council of Ministers of the USSR, Moscow, 1985.
Viehberg, F. A., Ülgen, U. B., Damc\i , E., Franz, S. O., Ön, S. A., Roeser, P. A., Çağatay, M. N., Litt, T., and Melles, M.: Seasonal hydrochemical changes and spatial sedimentological variations in Lake Iznik (NW Turkey), Quaternary Int., 274, 102–111, https://doi.org/10.1016/j.quaint.2012.05.038, 2012.
Vogel, H., Wessels, M., Albrecht, C., Stich, H. B., and Wagner, B.: Spatial variability of recent sedimentation in Lake Ohrid (Albania/Macedonia), Biogeosciences, 7, 3333–3342, https://doi.org/10.5194/bg-7-3333-2010, 2010.
Vogt, C.: Regional and temporal variations of mineral assemblages in Arctic Ocean sediments as climatic indicator during glacial/interglacial changes, Reports on Polar Research, 251, 1–309, 1997.
Vogt, C., Lauterjung, J., and Fischer, R. X.: Investigation of the Clay Fraction ($<2$ μm) of the Clay Minerals Society Reference Clays, Clay. Clay Miner., 50, 388–400, 2002.
Wennrich, V., Minyuk, P., Borkhodoev, V., Francke, A., Ritter, B., Nowaczyk, N., Haltia-Hovi, E. M., Brigham-Grette, J., Melles, M., and El'gygytgyn Science Party.: Pliocene and Pleistocene climate and environmental history of Lake El'gygytgyn/ NE Russia based on high-resolution inorganic geochemistry data, Clim. Past, this issue, in prep., 2013.
Wetzel, R. G.: Limnology : lake and river ecosystems, 3. Edn., Elsevier Academic Press, San Diego, 1006 pp., 2001.
Yanase, W. and Abe-Ouchi, A.: The LGM surface climate and atmospheric circulation over East Asia and the North Pacific in the PMIP2 coupled model simulations, Clim. Past, 3, 439–451, https://doi.org/10.5194/cp-3-439-2007, 2007.