Articles | Volume 8, issue 6
https://doi.org/10.5194/cp-8-2031-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-8-2031-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Terminations VI and VIII (∼ 530 and ∼ 720 kyr BP) tell us the importance of obliquity and precession in the triggering of deglaciations
F. Parrenin
Laboratoire de Glaciologie et Géophysique de l'Environnement, UMR5183, CNRS/UJF, Grenoble, France
D. Paillard
Laboratoire des Sciences du Climat et de l'Environnement, CEA/CNRS/UVSQ, Gif-sur-Yvette, France
Viewed
Total article views: 4,032 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 02 Aug 2012)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,984 | 1,684 | 364 | 4,032 | 254 | 225 |
- HTML: 1,984
- PDF: 1,684
- XML: 364
- Total: 4,032
- BibTeX: 254
- EndNote: 225
Total article views: 3,209 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 12 Dec 2012)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,624 | 1,251 | 334 | 3,209 | 235 | 210 |
- HTML: 1,624
- PDF: 1,251
- XML: 334
- Total: 3,209
- BibTeX: 235
- EndNote: 210
Total article views: 823 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 02 Aug 2012)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
360 | 433 | 30 | 823 | 19 | 15 |
- HTML: 360
- PDF: 433
- XML: 30
- Total: 823
- BibTeX: 19
- EndNote: 15
Cited
22 citations as recorded by crossref.
- Machine learning approach reveals strong link between obliquity amplitude increase and the Mid-Brunhes transition T. Mitsui & N. Boers 10.1016/j.quascirev.2021.107344
- The deterministic excitation paradigm and the late Pleistocene glacial terminations S. Pierini 10.1063/5.0127715
- Synchronization phenomena observed in glacial–interglacial cycles simulated in an Earth system model of intermediate complexity T. Mitsui et al. 10.5194/esd-14-1277-2023
- Unusual weakening trend of the East Asian winter monsoon during MIS 8 revealed by Chinese loess deposits and its implications for ice age dynamics Q. Hao et al. 10.1016/j.gloplacha.2024.104389
- Obliquity and precession as pacemakers of Pleistocene deglaciations F. Feng & C. Bailer-Jones 10.1016/j.quascirev.2015.05.006
- The middle Pleistocene transition by frequency locking and slow ramping of internal period K. Nyman & P. Ditlevsen 10.1007/s00382-019-04679-3
- Is there 1.5-million-year-old ice near Dome C, Antarctica? F. Parrenin et al. 10.5194/tc-11-2427-2017
- A gradual change is more likely to have caused the Mid-Pleistocene Transition than an abrupt event E. Legrain et al. 10.1038/s43247-023-00754-0
- ZEMBA v1.0: an energy and moisture balance climate model to investigate Quaternary climate D. Gunning et al. 10.5194/gmd-18-2479-2025
- Influence of the choice of insolation forcing on the results of a conceptual glacial cycle model G. Leloup & D. Paillard 10.5194/cp-18-547-2022
- The Réunion Subchron vegetation and climate history of the northeastern Russian Arctic inferred from the Lake El'gygytgyn pollen record W. Zhao et al. 10.1016/j.palaeo.2015.06.047
- Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations K. Riechers et al. 10.5194/cp-18-863-2022
- A simple rule to determine which insolation cycles lead to interglacials P. Tzedakis et al. 10.1038/nature21364
- Pronounced northward shift of the westerlies during MIS 17 leading to the strong 100-kyr ice age cycles M. Sánchez Goñi et al. 10.1016/j.epsl.2019.01.032
- Distinct roles for precession, obliquity, and eccentricity in Pleistocene 100-kyr glacial cycles S. Barker et al. 10.1126/science.adp3491
- Insolation evolution and ice volume legacies determine interglacial and glacial intensity T. Mitsui et al. 10.5194/cp-18-1983-2022
- Interglacials of the last 800,000 years 10.1002/2015RG000482
- Why could ice ages be unpredictable? M. Crucifix 10.5194/cp-9-2253-2013
- Astronomical forcing shaped the timing of early Pleistocene glacial cycles Y. Watanabe et al. 10.1038/s43247-023-00765-x
- Late Pleistocene 100-kyr glacial cycles paced by precession forcing of summer insolation B. Hobart et al. 10.1038/s41561-023-01235-x
- Regional and global benthic δ18O stacks for the last glacial cycle L. Lisiecki & J. Stern 10.1002/2016PA003002
- Quaternary glaciations: from observations to theories D. Paillard 10.1016/j.quascirev.2014.10.002
22 citations as recorded by crossref.
- Machine learning approach reveals strong link between obliquity amplitude increase and the Mid-Brunhes transition T. Mitsui & N. Boers 10.1016/j.quascirev.2021.107344
- The deterministic excitation paradigm and the late Pleistocene glacial terminations S. Pierini 10.1063/5.0127715
- Synchronization phenomena observed in glacial–interglacial cycles simulated in an Earth system model of intermediate complexity T. Mitsui et al. 10.5194/esd-14-1277-2023
- Unusual weakening trend of the East Asian winter monsoon during MIS 8 revealed by Chinese loess deposits and its implications for ice age dynamics Q. Hao et al. 10.1016/j.gloplacha.2024.104389
- Obliquity and precession as pacemakers of Pleistocene deglaciations F. Feng & C. Bailer-Jones 10.1016/j.quascirev.2015.05.006
- The middle Pleistocene transition by frequency locking and slow ramping of internal period K. Nyman & P. Ditlevsen 10.1007/s00382-019-04679-3
- Is there 1.5-million-year-old ice near Dome C, Antarctica? F. Parrenin et al. 10.5194/tc-11-2427-2017
- A gradual change is more likely to have caused the Mid-Pleistocene Transition than an abrupt event E. Legrain et al. 10.1038/s43247-023-00754-0
- ZEMBA v1.0: an energy and moisture balance climate model to investigate Quaternary climate D. Gunning et al. 10.5194/gmd-18-2479-2025
- Influence of the choice of insolation forcing on the results of a conceptual glacial cycle model G. Leloup & D. Paillard 10.5194/cp-18-547-2022
- The Réunion Subchron vegetation and climate history of the northeastern Russian Arctic inferred from the Lake El'gygytgyn pollen record W. Zhao et al. 10.1016/j.palaeo.2015.06.047
- Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations K. Riechers et al. 10.5194/cp-18-863-2022
- A simple rule to determine which insolation cycles lead to interglacials P. Tzedakis et al. 10.1038/nature21364
- Pronounced northward shift of the westerlies during MIS 17 leading to the strong 100-kyr ice age cycles M. Sánchez Goñi et al. 10.1016/j.epsl.2019.01.032
- Distinct roles for precession, obliquity, and eccentricity in Pleistocene 100-kyr glacial cycles S. Barker et al. 10.1126/science.adp3491
- Insolation evolution and ice volume legacies determine interglacial and glacial intensity T. Mitsui et al. 10.5194/cp-18-1983-2022
- Interglacials of the last 800,000 years 10.1002/2015RG000482
- Why could ice ages be unpredictable? M. Crucifix 10.5194/cp-9-2253-2013
- Astronomical forcing shaped the timing of early Pleistocene glacial cycles Y. Watanabe et al. 10.1038/s43247-023-00765-x
- Late Pleistocene 100-kyr glacial cycles paced by precession forcing of summer insolation B. Hobart et al. 10.1038/s41561-023-01235-x
- Regional and global benthic δ18O stacks for the last glacial cycle L. Lisiecki & J. Stern 10.1002/2016PA003002
- Quaternary glaciations: from observations to theories D. Paillard 10.1016/j.quascirev.2014.10.002
Saved (final revised paper)
Latest update: 23 Aug 2025