Archer, D., Winguth, A., Lea, D., and Mahowald, N.: What caused the glacial/interglacial atmospheric
pCO
2 cycles?, Rev. Geophys., 38, 159–189, 2000a.
Archer, D., Eshel, G., Winguth, A., Broecker, W., Pierrehumbert, R., Tobis, M., and Jacob, R.: Atmospheric
pCO
2 sensitivity to the biological pump of the cean, Global Biogeochem. Cy., 14, 1219–1230, 2000b.
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron fertilization studies, Global Biogeochem. Cy., 20, GB2017, https://doi.org/10.1029/2005GB002591, 2006.
Beck, J., Warren, J., Richards, D., Edwards, R., Smart, B. S. P., Donahue, D., Hererra-Osterheld, S., Burr, G., Calsoyas, L., Jull, A., and Biddulph, D.: Extremely Large Variations of Atmospheric
14C Concentration During the Last Glacial Period, Science, 292, 2453–2458, https://doi.org/10.1126/science.1056649, 2001.
Berger, W. and Keir, R.: Glacial-Holocene Changes in atmospheric CO
2 and the deep-sea record, in: Climate Processes and Climate Sensitivity, edited by: Hansen, J. E. and Takahashi, T., 303–317, 1984.
Berner, R. and Honjo, S.: Pelagic Sedimentation of Aragonite: Its Geochemical Significance, Science, 211, 940–942, https://doi.org/10.1126/science.211.4485.940, 1981.
Bird, M., Lloyd, J., and Farquhar, G.: Terrestrial carbon storage at the LGM, Nature, 371, 566, https://doi.org/10.1038/371566a0, 1994.
Böning, C., Dispert, A., Visbeck, M., Rintoul, S., and Schwarzkopf, F.: The response of the Antarctic Circumpolar Current to recent climate change, Nat. Geosci., 1, 864–869, 2008.
Boyle, E.: Vertical oceanic nutrient fractionation and glacial/interglacial CO
2 cycles, Nature, 331, 55–56, 1988.
Bradtmiller, L., Anderson, R., Sachs, J., and Fleisher, M.: A deeper respired carbon pool in the glacial equatorial Pacific Ocean, Earth Planet. Sc. Lett., 299, 417–425, 2010.
Broecker, W.: Ocean chemistry during glacial time, Geochim. Cosmochim. Acta, 46, 1689–1706, 1982.
Broecker, W. and Barker, S.: A 190 \permil drop in atmosphere's Δ
14C during the "Mystery Interval" (17.5 to 14.5 kyr), Earth Planet. Sc. Lett., 256, 90–99, 2007.
Broecker, W. and Peng, T.: The role of {CaCO}
3 compensation in the glacial to interglacial atmospheric {CO}
2 change, Global Biogeochem. Cy., 1, 15–29, 1987.
Broecker, W., Lynch-Stieglitz, J., Clark, E., Hajdas, I., and Bonani, G.: What caused the atmosphere's CO
2 content to rise during the last 8000 years?, Geochem. Geophy. Geosys., 2(10), 1062–1074, https://doi.org/10.1029/2001GC000177, 2001.
Broecker, W., Clark, E., Barker, S., Hajdas, I., Bonani, G., and Moreno, E.: Radiocarbon age of late glacial deep water from the equatorial Pacific, Paleoceanography, 22, PA2206, https://doi.org/10.1029/2006PA001359, 2007.
Brovkin, V., Ganopolski, A., Archer, D., and Rahmstorf, S.: Lowering of glacial atmospheric CO
2 in response to changes in ocean circulation and marine biogeochemistry, Paleoceanography, 22, PA4202, https://doi.org/10.1029/2006PA001380, 2007.
Chikamoto, M., Matsumoto, K., and Ridgewell, A.: Response of deep-sea CaCO
3 sedimentation to Atlantic meridional overturning circulation shutdown, J. Geophys. Res., 113, G03017, https://doi.org/10.1029/2007JG000669, 2008.
Crusius, J., Pedersen, T., Kienast, S., and Keigwin, L.: Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bolling-Allerod interval (14.7–12.9 ka), Geology, 32, 633–636, 2004.
De La Rocha, C.: Opal-based isotopic proxies of paleoenvironmental conditions, Global Biogeochem. Cy., 20, GB4S09, https://doi.org/10.1029/2005GB002664, 2006.
Deutsch, C., Sigman, D., Thunell, R., Meckler, A., and Haug, G.: Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget, Global Biogeochem. Cy., 18, GB4012, https://doi.org/10.1029/2003GB002189, 2004.
Doney, S., Glover, D., and Najjar, R.: A new coupled, one-dimensional biological-physical model for the upper ocean: Applications to the JGOFS Bermuda Atlantic Time-series Study (BA TS) site, Deep-Sea Res. Pt. II, 43, 591–624, 1996.
Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo, D., and Kallel, N.: Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation, Paleoceanography, 3, 343–360, 1988.
Edwards, N. R. and Marsh, R.: Uncertainties due to transport-parameter sensitivity in an efficient 3-d ocean-climate model, Clim. Dynam., 3, 67–94, 2005.
Elsig, J.: New insights into the global carbon cycle from measurements of CO
2 stable isotopes: methodological improvements and interpretation of a new EPICA Dome C ice core δ
13C record, Ph.D. thesis, Climate and Environmental Physics, Physics Institute, University of Bern, 2009.
Elsig, J., Schmitt, J., Leuenberger, D., Schneider, R., Eyer, M., Leuenberger, M., Joos, F., Fischer, H., and Stocker, T.: Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core, Nature, 461, 507–510, 2009.
Falkowski, P.: Evolution of the nitrogen cycle and its influence on the biological sequestration of CO
2 in the ocean, Nature, 387, 272–275, 1997.
Feely, R., Sabine, C., Lee, K., Berelson, W., Kleypas, J., Fabry, V., and Millero, F.: Impact of Anthropogenic CO
2 on the CaCO
3 System in the Oceans, Science, 305, 362–366, https://doi.org/10.1126/science.1097329, 2004.
Fischer, H., Schmitt, J., Lüthi, D., Stocker, T., Tschumi, T., Parekh, P., Joos, F., Köhler, P., Völker, C., Gersonde, R., Barbante, C., Floch, M. L., Raynaud, D., Barnola, J.-M., and Wolff, E.: The role of Southern Ocean processes on orbital and millennial CO
2 variations – a synthesis, Quaternary Sci. Rev., 29, 193–205, 2010.
Francois, R., Altabet, M., Yu, E., Sigman, D., Bacon, M., Frank, M., Bohrmann, G., Bareille, G., and Labeyrie, L.: Contribution of S}outhern {O}cean surface-water stratification to low atmospheric {CO
2 concentrations during the last glacial period, Nature, 389, 929–935, 1997.
Freeman, K. H. and Hayes, J. M.: Fractionation of carbon isotopes by phytoplankton and estimates of ancient {CO}
2 levels, Global Biogeochem. Cy., 6, 185–198, 1992.
Galbraith, E., Jaccard, S., Pedersen, T., Sigman, D., Haug, G., Cook, M., Southon, J., and Francois, R.: Carbon dioxide release from the North Pacific abyss during the last deglaciation, Nature, 449, 890–893, 2007.
Gehlen, M., Bopp, L., Emprin, N., Aumont, O., Heinze, C., and Ragueneau, O.: Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model, Biogeosciences, 3, 521–537, https://doi.org/10.5194/bg-3-521-2006, 2006.
Heinze, C., Maier-Reimer, E., Winguth, A., and Archer, D.: A global oceanic sediment model for long-term climate studies, Global Biogeochem. Cy., 13, 221–250, 1999.
Heinze, C., Hupe, A., Maier-Reimer, E., Dittert, N., and Ragueneau, O.: Sensitivity of the marine biospheric Si cycle for biogeochemical parameter variations, Global Biogeochem. Cy., 17, 1086, https://doi.org/10.1029/2002GB001943, 2003.
Hodell, D., Venz, K., Charles, C., and Ninnemann, U.: Pleistocene vertical carbon isotope and carbonate gradients in the {S}outh {A}tlantic sector of the {S}outhern {O}cean, Geochem., Geophy., Geosy., 4(1), 1004, https://doi.org/10.1029/2002GC000367, 2003.
Hughen, K. S., Lehman, J. S., Overpeck, J., Marchal, O., Herring, C., and Turnbull, J.:
14C Activity and Global Carbon Cycle Changes over the Past 50'000 Years, Science, 303, 202–207, 2004.
Ito, T. and Follows, M.: Preformed phosphate, soft tissue pump and atmospheric CO
2, J. Mar. Res., 63(4), 813-839, https://doi.org/10.1357/0022240054663231, 2005.
Jaccard, S., Haug, G., Sigman, D., Pedersen, T., Thierstein, H., and Röhl, U.: Glacial/Interglacial Changes in Subarctic North Pacific Stratification, Science, 308, 1003–1006, 2005.
Jaccard, S., Galbraith, E., Sigman, D., Haug, G., Francois, R., Pedersen, T., Dulski, P., and Thierstein, H.: Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool, Earth Planet. Sc. Lett., 277, 156–165, 2009.
Jin, X., Gruber, N., Dunne, J., Sarmiento, J., and Armstrong, R.: Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO
3, and opal from global nutrient and alkalinity distributions, Global Biogeochem. Cy., 20, GB2015, https://doi.org/10.1029/2005GB002532, 2006.
Joos, F., Gerber, S., Prentice, I., Otto-Bliesner, B., and Valdes, P.: Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum, Global Biogeochem. Cy., 18, GB2002, https://doi.org/10.1029/2003GB002156, 2004.
Keigwin, L.: Glacial-Age Hydrography of the Far Northwest Pacific Ocean, Paleoceanography, 13, 323–339, 1998.
Keigwin, L. and Schlegel, M.: Ocean ventilation and sedimentation since the glacial maximum at 3 km in the western North Atlantic, Geochem. Geophy. Geosy., 3(6), 1034, https://doi.org/10.1029/2001GC000283, 2002.
Knox, F. and McElroy, M.: Changes in atmospheric CO
2 – Influence of the marine biota at high-latitude, J. Geophys. Res., 89, 4629–4637, 1984.
Kohfeld, K. E., Le Quéré, C., Harrison, S. P., and Anderson, R. F.: Role of marine biology in glacial-interglacial CO
2 cycles, Science, 308, 74–78, 2005.
Köhler, P., Fischer, H., Munhoven, G., and Zeebe, R.: Quantitative interpretation of atmospheric carbon records over the last glacial termination, Global Biogeochem. Cy., 19(4), GB4020, https://doi.org/10.1029/2004GB002345, 2005.
Köhler, P., Fischer, H., Schmitt, J., and Munhoven, G.: On the application and interpretation of Keeling plots in paleo climate research - deciphering δ
13C of atmospheric CO
2 measured in ice cores, Biogeosciences, 3, 539–556, https://doi.org/10.5194/bg-3-539-2006, 2006a.
Köhler, P., Muscheler, R., and Fischer, H.: A model-based interpretation of low-frequency changes in the carbon cycle during the last 120,000 years and its implications for the reconstruction of atmospheric Δ
14C, Geochem., Geophy., Geosy., 7, Q11N06, https://doi.org/10.1029/2005GC001228, 2006b.
Levitus, S. and Boyer, T.: World Ocean Atlas 1994 Volume 4: Temperature, NOAA Atlas NESDIS, US Department of Commerce, Washington, DC, 117 pp., 1994.
Levitus, S., Burgett, R., and Boyer, T.: World Ocean Atlas 1994 Volume 3: Salinity, NOAA Atlas NESDIS, US Department of Commerce, Washington, DC, 99 pp., 1994.
Lourantou, A., Lavric, J., Köhler, P., Barnola, J.-M., Paillard, D., Michel, E., Raynaud, D., and Chappellaz, J.: Constraint of the CO
2 rise by new atmospheric carbon isotopic measurements during the last deglaciation, Global Biogeochem. Cy., 24(2), GB2015, https://doi.org/10.1029/2009GB003545, 2010.
Lüthi, D., Floch, M. L., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker, T.: High-resolution carbon dioxide concentration record 650,000–800,000 years before present, Nature, 453, 379–382, 2008.
Maier-Reimer, E., Kriest, I., Segschneider, J., and Wetzel, P.: The {HAM}burg {O}cean {C}arbon {C}ycle Model {HAMOCC}5.1 – Technical Description Release 1.1, Tech. rep., Max Planck Institue for Meteorology, Hamburg, Germany, 2005.
Marchitto, T., Lehman, S., Ortiz, J., Flückiger, J., and van Geen, A.: Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO
2 rise, Science, 316, 1456–1459, 2007.
Margalef, R.: Life-forms of phytoplankton as survival alternatives in an unstable environment, Oceanol. Acta, 1, 493–509, 1978.
Marinov, I., Gnanadesikan, A., Sarmiento, J. L., Toggweiler, J. R., Follows, M., and Mignone, B. K.: Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric
p{CO}
2, Global Biogeochem. Cy. 22(3), GB3007, https://doi.org/10.1029/2007GB002958, 2008.
Martin, J.: Glacial-Interglacial CO
2 change: The iron hypothesis, Paleoceanography, 5, 1–13, 1990.
Martin, J. and Fitzwater, S.: Iron deficiency limits phytoplankton growth in the north-east {P}acific subarctic, Nature, 331, 341–343, 1988.
Matsumoto, K., Sarmiento, J., and Brzezinski, M.: Silicic acid leakage from the {S}outhern {O}cean: a possible explanation for glacial atmospheric
p{CO}
2, Global Biogeochem. Cy., 16(3), 1031–1054, https://doi.org/10.1029/2001GB001442, 2002.
Matsumoto, K., Hashioka, T., and Yamananka, Y.: Effect of temperature-dependent organic carbon decay on atmospheric
p{CO}
2, J. Geophys. Res., 112, G02007, https://doi.org/10.1029/2006JG000187, 2007.
McManus, J., Francois, R., Gherardi, J.-M., Keigwin, L., and Brown-Leger, S.: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes, Nature, 428, 834–837, 2004.
Mehrbach, C., Culberson, C., Hawley, J., and Pytkowicz, R.: Measurement of the apparent dissociation constant of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, 1973.
Menviel, L., Timmermann, A., Mouchet, A., and Timm, O.: Climate and marine carbon cycle response to changes in the strength of the southern hemispheric westerlies, Paleoceanography, 23(4), PA4201, https://doi.org/10.1029/2008PA001604, 2008.
Millero, F.: Thermodynamics of the carbon dioxide system in the oceans, Geochim. Cosmochim. Acta, 59, 661–677, 1995.
Millimann, J. and Droxler, A.: Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss, Geol. Rundsch., 85, 496–504, 1996.
Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T., Raynaud, D., and Barnola, J.: Atmospheric CO
2 concentrations over the Last Glacial Termination, Science, 291, 112–114, 2001.
Mook, W. G.:
13{C} in atmospheric {CO}
2, Neth. J. Sea Res., 20, 211–223, 1988.
Mucci, A.: The solubility of calcite and aragonite in seawater at various salinities, temperatures, and on atmosphere total pressure, Am. J. Sci., 283, 780–799, 1983.
Müller, S., Joos, F., Edwards, N., and Stocker, T.: Water mass distribution and ventilation time scales in a cost-efficient, three-dimensional ocean model, J. Climate, 19, 5479–5499, 2006.
Muscheler, R., Beer, J., Wagner, G., Laj, C., Kissel, C., Raisbeck, G., Yiou, F., and Kubik, P.: Changes in the carbon cycle during the last deglaciation as indicated by the comparison of
10Be and
14C records, Earth Planet. Sc. Lett., 238, 325–340, 2004.
Najjar, R. G., Orr, J., Sabine, C. L., and Joos, F.: Biotic-{HOWTO}, I}nternal {OCMIP {R}eport, Tech. rep., LSCE/CEA Saclay, Gif-sur-Yvette, France, 15 pp., 1999.
Ninnemann, U. and Charles, C.: Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability, Earth Planet. Sc. Lett., 201, 383–396, 2002.
Orr, J., Najjar, R. G., Sabine, C. L., and Joos, F.: Abiotic-{HOWTO}, I}nternal {OCMIP {R}eport, Tech. rep., LSCE/CEA Saclay, Gif-sur-Yvette, France, 25 pp., 1999.
Parekh, P., Joos, F., and Müller, S.: A modeling assessment of the interplay between aeolian iron fluxes and iron-binding ligands in controlling carbon dioxide fluctuations during Antarctic warm events, Paleoceanography, 23(4), PA4202, https://doi.org/10.1029/2007PA001531, 2008.
Peacock, S., Lane, E., and Restrepo, J.: A possible sequence of events for the generalized glacial-interglacial cycle, Global Biogeochem. Cy., 20(2), GB2010, https://doi.org/10.1029/2005GB002448, 2006.
Primeau, F.: Characterizing Transport between the Surface Mixed Layer and the Ocean Interior with a Forward and Adjoint Global Ocean Transport Model, J. Phys. Oceanogr., 35, 545–564, 2005.
Ridgwell, A., Watson, A., and Archer, D.: Modeling the response of the oceanic Si inventory to perturbation, and consequences for atmospheric CO
2, Global Biogeochem. Cy., 16(4), 1071–1097, https://doi.org/10.1029/2002GB001877, 2002.
Ridgwell, A., Watson, A., Maslin, M., and Kaplan, J.: Implications of coral reef buildup for the controls on atmospheric CO
2 since the Last Glacial Maximum, Paleoceanography, 18(4), 1083–1093, https://doi.org/10.1029/2003PA000893, 2003.
Schmittner, A., Brooke, E., and Ahn, J.: Ocean Circulation: Mechanisms and Impacts, vol. 173, chap. Impact of the ocean's overturning circulation on atmospheric CO
2, AGU Geophysical Monograph Series, 209–246, 2007.
Severinghaus, J. and Brook, E.: Abrupt Climate Change at the End of the Last Glacial Period Inferred from Trapped Air in Polar Ice, Science, 286, 930–934, 1999.
Shackleton, N.: Carbon-13 in uvigerina: Tropical rainforest history and the equatorial {P}acific carbonate dissolution cycles, in: The Fate of Fossil Fuel CO
2 in the Ocean, edited by: Andersen, N. and Malahoff, A., Plenum, New York, 401–428, 1977.
Siegenthaler, U. and Muennich, K. O.: Carbon-13/carbon-12 fractionation during carbon dioxide transfer from air to sea, {SCORE} 16: {C}arbon {C}ycle {M}odelling, edited by: Bolin, B., Wiley, Chichester, 249–257, 1981.
Siegenthaler, U. and Oeschger, H.: Biospheric {CO}
2 emissions during the past 200 years reconstructed by deconvolution of ice core data, Tellus B, 39, 140–154, 1987.
Skinner, L., Fallon, S., Waelbroeck, C., Michel, E., and Barker, S.: Ventilation of the Deep Southern Ocean and Deglacial CO
2 Rise, Science, 328, 1147–1151, https://doi.org/10.1126/science.1183627, 2010.
Smith, H., Fischer, H., Wahlen, M., Mastroianni, D., Beck, D., and Beck, B.: Dual modes of the carbon cycle since the Last Glacial Maximum, Nature, 400, 248–250, 1999.
Spence, P., Saenko, O., Eby, M., and Weaver, A.: The Southern Ocean Overturning: Parameterized versus Permitted Eddies, J. Phys. Oceanogr., 39, 1634–1651, 2009.
Spero, H. and Lea, D.: The Cause of Carbon Isotope Minimum Events on Glacial Terminations, Science, 296, 522–525, 2002.
Stenni, B., Masson-Delmotte, V., Johnsen, S., Jouzel, J., Longinelli, A., Monnin, E., Rothlisberger, R., and Selmo, E.: An Oceanic Cold Reversal During the Last Deglaciation, Science, 293, 2074–2077, https://doi.org/10.1126/science.1059702, 2001.
Toggweiler, J. R., Russell, J., and Carson, S.: Midlatitude westerlies, atmospheric CO
2, and climate change during ice ages, Paleoceanography, 21(2), PA2005, https://doi.org/10.1029/2005PA001154, 2006.
Treguer, P., Nelson, D., DeMaster, A., Leynart, A., and Queguiner, B.: The silica balance in the world ocean: A reestimate, Science, 268, 375–379, 1995.
Tschumi, T.: Modeling the ocean's contribution to past and future changes in the global carbon cycle, Ph.D. thesis, Climate and Environmental Physics, Physics Institute, University of Bern, 2009.
Tschumi, T., Joos, F., and Parekh, P.: How important are Southern Hemisphere wind changes for low glacial carbon dioxide? A model study, Paleoceanography, 23(4), PA4208, https://doi.org/10.1029/2008PA001592, 2008.
Ullman, W. and Aller, R.: Diffusion coefficients in nearshore marine environments, Limnol. Oceanogr., 27, 552–556, 1982.
Volk, T. and Hoffert, M.: Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean driven atmospheric
pCO
2 changes, vol. 32 of Geophys. Monogr. Ser., edited by: Sundquist, E. T. and Broecker, W. S., AGU, Washington, DC, 99–110, 1985.
Wallmann, K.: Phosphorous imbalance in the global ocean?, Global Biogeochem. Cy., 24(4), GB4030, https://doi.org/10.1029/2009GB003643, 2010.
Zeng, N.: Glacial-Interglacial Atmospheric CO
2 Change – The Glacial Burial Hypothesis, Adv. Atmos. Sci., 20, 677–693, 2003.