Articles | Volume 6, issue 4
https://doi.org/10.5194/cp-6-483-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-6-483-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Holocene land-cover reconstructions for studies on land cover-climate feedbacks
M.-J. Gaillard
School of Pure and Applied Sciences, Linnaeus University, 39182 Kalmar, Sweden
S. Sugita
Institute of Ecology, Tallinn University, 10120 Tallinn, Estonia
F. Mazier
GEODE, UMR 5602, University of Toulouse, 5 allée A. Machado, 31058 Toulouse Cedex, France
Department of Earth and Ecosystem Sciences, Lund University, Sölvegatan 12, 223 62 Sweden
A.-K. Trondman
School of Pure and Applied Sciences, Linnaeus University, 39182 Kalmar, Sweden
A. Broström
Department of Earth and Ecosystem Sciences, Lund University, Sölvegatan 12, 223 62 Sweden
T. Hickler
Department of Earth and Ecosystem Sciences, Lund University, Sölvegatan 12, 223 62 Sweden
J. O. Kaplan
ARVE Group, Ecole Polytechnique Fédérale de Lausanne, Station 2, 1015 Lausanne, Switzerland
E. Kjellström
Swedish Meteorological and Hydrological Institute, 60176 Norrköping, Sweden
U. Kokfelt
Department of Earth and Ecosystem Sciences, Lund University, Sölvegatan 12, 223 62 Sweden
P. Kuneš
Institute of Earth Sciences Aarhus University C. F. Møllers Allé 4, 8000 Århus C, Denmark
C. Lemmen
Institute for Coastal Research, GKSS-Forschungszentrum Geesthacht GmbH, 21502 Geesthacht, Germany
P. Miller
Department of Earth and Ecosystem Sciences, Lund University, Sölvegatan 12, 223 62 Sweden
J. Olofsson
Department of Earth and Ecosystem Sciences, Lund University, Sölvegatan 12, 223 62 Sweden
A. Poska
Department of Earth and Ecosystem Sciences, Lund University, Sölvegatan 12, 223 62 Sweden
M. Rundgren
Department of Earth and Ecosystem Sciences, Lund University, Sölvegatan 12, 223 62 Sweden
B. Smith
Department of Earth and Ecosystem Sciences, Lund University, Sölvegatan 12, 223 62 Sweden
G. Strandberg
Swedish Meteorological and Hydrological Institute, 60176 Norrköping, Sweden
R. Fyfe
School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
A. B. Nielsen
Department of Palynology and Climate Dynamics Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
T. Alenius
Institute of Cultural Research, Department of Archaeology, P.O. Box 59, 00014 University of Helsinki, Finland
L. Balakauskas
Department of Geology and Mineralogy, Faculty of Natural Sciences, University of Vilnius, Čiurlionis Street 21/27, 03101 Vilnius, Lituania
L. Barnekow
Department of Earth and Ecosystem Sciences, Lund University, Sölvegatan 12, 223 62 Sweden
H. J. B. Birks
Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway and School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
A. Bjune
Bjerknes Centre for Climate Research, Department of Biology, University of Bergen, Allegatén 41, 5007 Bergen, Norway
L. Björkman
Viscum pollenanalys and miljöhistoria c/o Leif Björkman, Bodavägen 16, 571 42 Nässjö, Sweden
T. Giesecke
Department of Palynology and Climate Dynamics Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
K. Hjelle
Bergen Museum, University of Bergen, P.O. Box 7800, 5020 Bergen
L. Kalnina
Faculty of Geography and Earth Sciences, University of Latvia, Rainis Blvd 19, 1586 Riga, Latvia
M. Kangur
Institute of Ecology, Tallinn University, 10120 Tallinn, Estonia
W. O. van der Knaap
Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
T. Koff
Institute of Ecology, Tallinn University, 10120 Tallinn, Estonia
P. Lagerås
Swedish National Heritage Board, Department of archaeological studies, UV Syd, Odlarevägen 5, 226 60 Lund, Sweden
M. Latałowa
Laboratory of Palaeoecology and Archaeology, University of Gdañsk, Al. Legionów 9, 80441 Gdañsk, Poland
M. Leydet
CEREGE – UMR CNRS 6635, Université Paul Cézanne, Aix- Marseille III , BP 80 Europôle Méditerranéen de l'Arbois, 13 545 Aix-en-Provence Cedex 4, France
J. Lechterbeck
Landesamt für Denkmalpflege, Arbeitsstelle Hemmenhofen, Labor für Archäobotanik, Fischersteig 9, 78343 Hemmenhofen, Germany
M. Lindbladh
Institutionen för sydsvensk skogsvetenskap Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences SLU, Box 49, 230 53 Alnarp, Sweden
B. Odgaard
Institute of Earth Sciences Aarhus University C. F. Møllers Allé 4, 8000 Århus C, Denmark
S. Peglar
Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway and School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
U. Segerström
Department of Forest Ecology and Management, Faculty of Forestry, Swedish University of Agricultural Sciences SLU, 901 83 Umeå, Sweden
H. von Stedingk
Department of Forest Ecology and Management, Faculty of Forestry, Swedish University of Agricultural Sciences SLU, 901 83 Umeå, Sweden
H. Seppä
Department of Geology, P.O. Box 64, 00014, University of Helsinki, Finland
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Holocene
Internal climate variability and spatial temperature correlations during the past 2000 years
Mid-Holocene climate change over China: model–data discrepancy
The 4.2 ka BP event in the Levant
Climate change and ecosystems dynamics over the last 6000 years in the Middle Atlas, Morocco
The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene– comparison of different transient climate model simulations
Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation
Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: a mid-Holocene case study
Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene
Proxy benchmarks for intercomparison of 8.2 ka simulations
Influence of orbital forcing and solar activity on water isotopes in precipitation during the mid- and late Holocene
Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves
Mechanisms for European summer temperature response to solar forcing over the last millennium
On the importance of paleoclimate modelling for improving predictions of future climate change
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022, https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
Short summary
Natural climate variability plays an important role in the discussion of past and future climate change. Here we study centennial temperature variability and the role of large-scale ocean circulation variability using different climate models, geological reconstructions and temperature observations. Unfortunately, uncertainties in models and geological reconstructions are such that more research is needed before we can describe the characteristics of natural centennial temperature variability.
Yating Lin, Gilles Ramstein, Haibin Wu, Raj Rani, Pascale Braconnot, Masa Kageyama, Qin Li, Yunli Luo, Ran Zhang, and Zhengtang Guo
Clim. Past, 15, 1223–1249, https://doi.org/10.5194/cp-15-1223-2019, https://doi.org/10.5194/cp-15-1223-2019, 2019
Short summary
Short summary
The mid-Holocene has been an excellent target for comparing models and data. This work shows that, over China, all the ocean–atmosphere general circulation models involved in PMIP3 show a very large discrepancy with pollen data reconstruction when comparing annual and seasonal temperature. It demonstrates that to reconcile models and data and to capture the signature of seasonal thermal response, it is necessary to integrate non-linear processes, particularly those related to vegetation changes.
David Kaniewski, Nick Marriner, Rachid Cheddadi, Joël Guiot, and Elise Van Campo
Clim. Past, 14, 1529–1542, https://doi.org/10.5194/cp-14-1529-2018, https://doi.org/10.5194/cp-14-1529-2018, 2018
Short summary
Short summary
Studies have long suggested that a protracted drought phase, termed the 4.2 ka BP event, directly impacted subsistence systems (dry farming agro-production, pastoral nomadism, and fishing) and outlying nomad habitats, forcing rain-fed cereal agriculturalists into habitat-tracking when agro-innovations were not available. Here, we focus on this crucial period to examine whether drought was active in the eastern Mediterranean Old World, especially in the Levant.
Majda Nourelbait, Ali Rhoujjati, Abdelfattah Benkaddour, Matthieu Carré, Frederique Eynaud, Philippe Martinez, and Rachid Cheddadi
Clim. Past, 12, 1029–1042, https://doi.org/10.5194/cp-12-1029-2016, https://doi.org/10.5194/cp-12-1029-2016, 2016
Short summary
Short summary
The present study is related the climate changes and their environmental impacts during the last 6 ky from a fossil record collected in the Middle Atlas, Morocco. We used the reconstruction of three climate variables and geo-chemical elements to evaluate the relationships between all the environmental variables. In summary, this present study confirms the overall climate stability over the last 6 ky and highlights the presence of a short and abrupt climate event at about 5.2 ka cal BP.
A. Dallmeyer, M. Claussen, N. Fischer, K. Haberkorn, S. Wagner, M. Pfeiffer, L. Jin, V. Khon, Y. Wang, and U. Herzschuh
Clim. Past, 11, 305–326, https://doi.org/10.5194/cp-11-305-2015, https://doi.org/10.5194/cp-11-305-2015, 2015
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
A. Mairesse, H. Goosse, P. Mathiot, H. Wanner, and S. Dubinkina
Clim. Past, 9, 2741–2757, https://doi.org/10.5194/cp-9-2741-2013, https://doi.org/10.5194/cp-9-2741-2013, 2013
J. C. Hargreaves, J. D. Annan, R. Ohgaito, A. Paul, and A. Abe-Ouchi
Clim. Past, 9, 811–823, https://doi.org/10.5194/cp-9-811-2013, https://doi.org/10.5194/cp-9-811-2013, 2013
C. Morrill, D. M. Anderson, B. A. Bauer, R. Buckner, E. P. Gille, W. S. Gross, M. Hartman, and A. Shah
Clim. Past, 9, 423–432, https://doi.org/10.5194/cp-9-423-2013, https://doi.org/10.5194/cp-9-423-2013, 2013
S. Dietrich, M. Werner, T. Spangehl, and G. Lohmann
Clim. Past, 9, 13–26, https://doi.org/10.5194/cp-9-13-2013, https://doi.org/10.5194/cp-9-13-2013, 2013
A. Wackerbarth, P. M. Langebroek, M. Werner, G. Lohmann, S. Riechelmann, A. Borsato, and A. Mangini
Clim. Past, 8, 1781–1799, https://doi.org/10.5194/cp-8-1781-2012, https://doi.org/10.5194/cp-8-1781-2012, 2012
D. Swingedouw, L. Terray, J. Servonnat, and J. Guiot
Clim. Past, 8, 1487–1495, https://doi.org/10.5194/cp-8-1487-2012, https://doi.org/10.5194/cp-8-1487-2012, 2012
J. C. Hargreaves and J. D. Annan
Clim. Past, 5, 803–814, https://doi.org/10.5194/cp-5-803-2009, https://doi.org/10.5194/cp-5-803-2009, 2009
Cited articles
Andersen, S. T.: The Relative Pollen Productivity and Pollen Representation of North European Trees, and Correction Factors for Tree Pollen Spectra Determined by Surface Pollen Analyses from Forests, Geological Survey of Denmark, II Series, C. A. Reitzels, Kovenhavn, 96 pp., 1970.
Anderson, J., Bugmann, H., Dearing, J. A., and Gaillard, M.-J.: Linking palaeoenvironmental data and models to understand the past and to predict the future, Trends. Ecol. Evol., 21, 696–704, 2006.
Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., and Mirin, A.: Combined climate and carbon-cycle effects of large-scale deforestation, in: Proceedings of the National Academy of Sciences, USA, 2007, 104, 6550–6555, 2007.
Betts, R.: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo, Nature, 408, 187–190, 2000.
Björse, G., Bradshaw, R. H. W., and Michelson, D. B.: Calibration of regional pollen data to construct maps of former forest types in southern Sweden, J. Paleolimnol., 16, 67–78, 1996
Bradshaw, R. H. W.: Modern pollen representation factors for woods in South-West England, J. Ecol., 69, 45–70, 1981.
Broström, A., Sugita, S., and Gaillard, M.-J.: Pollen productivity estimates for the reconstruction of past vegetation cover in the cultural landscape of southern Sweden, Holocene, 14, 368–381, 2004.
Broström, A., Nielsen, A.B., Gaillard, M.-J., Hjelle, K., Mazier, F., Binney, H., Bunting, J., Fyfe, R., Meltsov, V., Poska, A., Räsänen, S., Soepboer, W., von Stedingk, H., Suutari, H., and Sugita, S.: Pollen productivity estimates – the key to landscape reconstructions, Veget. Hist. Archaeobot., 17, 461–478, 2008.
Brovkin, V., Claussen, M., Driesschaert E., Fichefet, T, Kicklighter D., Loutre, M. F., Matthews H. D., Ramankutty, N., Schaeffer M., and Sokolov, A.: Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity, Clim. Dynam., 26, 587–600, 2006.
Campos, C. P., Muylaert, M. S., and Rosa, L. P.: Historical CO2 emission and concentrations due to land use change of croplands and pastures by country, Sci. Total. Environ., 346, 149–155, 2005.
Claussen, M., Brovkin, V., Calov, R., Ganopolski, A., and Kubatzki, C.: Did humankind prevent a holocene glaciation? Comment on Ruddiman's hypothesis of a pre-historic anthropocene, Climatic Change, 69, 409–417, 2005.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184–187, 2000.
Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford, C., and Jones, C. D.: Amazonian forest dieback under climate-carbon cycle projections for the 21st century, Theor. Appl. Climatol., 78, 137–156, 2004.
Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C.: Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models, Glob. Change Biol., 7, 357–373, 2001.
Dearing, J. A.: Climate-human-environment interactions: resolving our past, Clim. Past, 2, 187–203, https://doi.org/10.5194/cp-2-187-2006, 2006.
Denman, K. L. and Brasseur, G.: Couplings between changes in the climate system and biogeochemistry, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, , edited by: Solomon, S., Qin, D., Manning, M., et al., Cambridge University Press, Cambridge, 499–587, 2007.
DeFries, R. S., Field, C. B., Fung, I., Collatz, G. J., and Bounoua, L.: Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity, Global. Biogeochem. Cy., 13, 803–815, 1999.
Dekker, S. C., Rietkerk, M., and Bierkens, M. F. P.: Coupling microscale vegetation-soil water and macroscale vegetation-precipitation feedbacks in semiarid ecosystems, Global Change Biol., 13, 671–678, 2007.
Duffin, K. and Bunting, M. J.: Relative pollen productivity and fall speed estimates for southern African savanna taxa, Veg. Hist. Archaeobot., 17, 507–525, 2008.
Foley, J. A., Costa, M. H., Delire, C., Ramankutty, N., and Snyder, P.: Green surprise? How terrestrial ecosystems could affect earth's climate, Front. Ecol. Environ., 1, 38–44, 2003.
Friedlingstein, P., Dufresne, J.-L., Cox, P. M., and Rayner, P.: How positive is the feedback between climate change and the carbon cycle?, Tellus, 55B, 692–700, 2003.
Fyfe, R. M., de Beaulieu, J.-L., Binney, H., Bradshaw, R. H. W, Brewer, S., Le Flao, A., Finsinger, W., Gaillard, M.-J., Giesecke, T., Gil-Romera G., Grimm, E.C., Huntley, B., Kuneš, P., Kühl, N., Leydet, M., Lotter, A.F., Tarasov, P.E., and Tonkov, S.: The European Pollen Database: past efforts and current activities, Veg. Hist. Archaeobot., 18, 417–424, 2007.
Gaillard, M.-J.: Detecting Human impact in the pollen record, in: Encyclopedia of Quaternary Science, edited by: Elias, S. A., Elsevier, University of London, 2570–2595, 2007.
Gaillard, M.-J., Dutoit, T., Hjelle, K., Koff, T., and O'Connell, M.: European cultural landscapes: insights into origins and development, in: Cultural Landscapes of Europe, edited by: Krzywinski, K., O'Connell, M., and Küster, H., Aschenbeck Media, Bremen, 35–46, 2009.
Gaillard, M.-J., Sugita, S., Bunting, M. J., Dearing, J. A., and Bittmann, F.: Human impact on terrestrial ecosystems, pollen calibration and quantitative reconstruction of past land-cover, Veg. Hist. Archaeobot., 17, 415–418, 2008.
Hellman, S., Bunting, M. J., and Gaillard, M.-J.: Relevant Source Area of Pollen in patchy cultural landscapes and signals of anthropogenic landscape disturbance in the pollen record: A simulation approach, Rev. Palaeobot. Palynol., 153, 245–258, 2009.
Hellman, S., Gaillard, M.-J., Broström, A., and Sugita, S.: The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes – validation in southern Sweden, J. Quaternary Sci., 23, 21–42, 2008a.
Hellman, S., Gaillard, M.-J., Broström, A., and Sugita, S.: Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: a case study in southern Sweden using the REVEALS model, Veg. Hist. Archaeobot., 17, 445–459, 2008b.
Holmqvist, B. H. and Bradshaw, R. H. W.: Classification of large pollen data sets using unsupervised neural networks, Ecol. Model., in review, 2010.
Houghton, R. A.: Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000, Tellus, 55B, 378–390, 2003.
IPCC: Climate Change 2007 – Impacts, Adaptation and Vulnerability Working Group II contribution to the Fourth Assessment Report of the IPCC Intergovernmental Panel on Climate Change. Cambridge University Press, 986 pp., 2007.
Jones, C. G., Ullerstig, A., Willén, U., and Hansson, U.: The Rossby Centre Regional Atmospheric Model (RCA): Part I: Model climatology and performance characteristics for the present climate over Europe, Ambio, 33, 199–210, 2004.
Kaplan, J., Krumhardt, K., and Zimmermann, N.: The prehistoric and preindustrial deforestation of Europe, Quaternary Sci. Rev., 28, 3016–3034, 2009.
Kjellström, E., Döscher, R., and Meier, H. E. M.: Atmospheric response to different sea surface temperatures in the Baltic Sea: Coupled versus uncoupled regional climate model experiments, Nordic Hydrology, 36, 397–409, 2005.
Kjellström, E., Nikulin, G., Hansson, U., Strandberg, G., and Ullerstig, A.: 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations, Tellus A, in review, 2010a.
Kjellström, E., Brandefelt, J., Näslund, J. O., Smith, B., Strandberg, G., Voelker, A. H. L., and Wohlfarth, B.: Simulated climate conditions in Fennoscandia during a MIS3 stadial, Boreas, in review, 2010b.
Klein Goldewijk, K.: Estimating global land use change over the past 300 years: The HYDE Database, Global Biogeochem. Cy., 15, 417–433, 2001.
Klein Goldewijk, K., Bouwman, A. F., and van Drecht, G.: Mapping contemporary global cropland and grassland distributions on a 5 by 5 minute resolution, Journal of Land Use Science, 2, 167–190, 2007.
Klein Goldewijk, K., Beusen, A., and Janssen, P.: Long term dynamic modeling of global population and built-up area in a spatially explicit way, HYDE 3 .1, The Holocene, 20, 565–573, 2010.
Krumhardt, K. M., Lemmen, C., and Kaplan, J. O. A.: Global dataset of human population and urbanization over the Holocene, in preparation, 2010.
Krzywinski, K., O'Connell, M., and Küster, H. (Eds.): Cultural Landscapes of Europe, Aschenbeck Media, Bremen, 218 pp., 2009.
Kuneš, P., Abraham, V., Kovářík, O., Kopeck\'y, M., and PALYCZ contributors: Czech Quaternary Palynological Database (PALYCZ): review and basic statistics of the data, Preslia, 8, 209–238, 2009.
Kutzbach, J. E., Bartlein, P. J., Foley, J. A., Harrison, S. P., Hostetler, S. W., Liu, Z., Prentice, I. C., and Webb, T. III.: Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: a case study at 6000 Years B.P., Global Biogeochem. Cy., 10, 727–736, 1996.
Lemmen, C.: World distribution of land cover changes during Pre- and Protohistoric Times and estimation of induced carbon releases, Géomorphologie: relief, processus, Géomorphologie, 4, 303–312, 2009.
Lewthwaite, J. W. and Sherratt, A.: Chronological Atlas, in: Encyclopedia of Archeology, edited by: Sherratt, A., Cambridge University Press, Cambridge, 437–452, 1980.
Lindbladh, M., Bradshaw, R., and Holmqvist, B. H.: Pattern and process in south Swedish forests during the last 3000-years sensed at stand and regional scales, J. Ecol., 88, 113–128, 2000.
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., and Zhao, Z.-C: Global climate projections, in: Climate Change 2007, The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., et al., Cambridge University Press, Cambridge, 747–845, 2007.
Mazier, F., Kuneš, P., Sugita, S., Trondman, A.-K., Broström, A., and Gaillard M.-J.: Pollen- inferred quantitative reconstructions of Holocene land-cover in NW Europe for the evaluation of past climate-vegetation feedbacks – Evaluation of the REVEALS-based reconstruction using the Czech Republic database, EGU General Assembly 2010, Geophys. Res. Abstr., 12, EGU2010-4248, 2010.
McEvedy, C. and Jones, R.: Atlas of world population history, Puffin Books, Harmondsworth, Middlesex, London, England, 368 pp., 1978.
McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo, J. M., Moore III, B., Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L. J., and Wittenberg, U.: Carbon balance of the terrestrial biosphere in the twentieth century: Analysis of CO2, climate and land use effects with four process-based ecosystem models, Global Biogeochem. Cy., 15, 183–206, 2001.
Nevle, R. J. and Bird, D. K.: Effects of syn-pandemic fire reduction and reforestation in the tropical Americas on atmospheric CO2 during European conquest, Palaeogeogr. Paleocl., 264, 25–38, 2008.
Olofsson, J. and Hickler, T.: Effects of human land-use on the global carbon cycle during the last 6,000 years, Veg. Hist. Archaeobot., 17, 605–615, 2008.
Pongratz, J., Reick, C., Raddatz, T., and Claussen M.: A reconstruction of global agricultural areas and land cover for the last millennium, Global Biogeochem. Cy., 22, GB3018, https://doi.org/10.1029/2007GB003153, 2008.
Prentice, I. C.: Pollen representation, source area, and basin size: Toward a unified theory of pollen analysis, Quaternary Res., 23, 76–86, 1985.
Prentice, I. C.: Records of vegetation in time and space: the principles of pollen analysis, in: Vegetation history, edited by: Huntley, B. and Webb, T. III, Kluwer Academic Publishers, Dordrecht, Netherlands, 17–42, 1988.
Prentice, I. C., Jolly, D., and BIOME 6000 Participants: Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa, J. Biogeogr., 27, 507–519, 2000.
Prentice, I. C., Bondeau, A., Cramer, W., Harrison, S. P., Hickler, T., Lucht, W., Sitch, S., Smith, B., and Sykes, M. T.: Dynamic global vegetation modelling: quantifying terrestrial ecosystem responses to large-scale environmental change, in: Terrestrial Ecosystems in a Changing World, edited by: Canadell, J. G., Pataki, D. E. and Pitelka, L. F., Springer Verlag, Berlin, 175–192, 2007.
Räisänen, J., Hansson, U., Ullerstig, A.,Döscher, R., Graham, L.P., Jones, C., Meier, M., Samuelsson, P., and Willén, U: GCM driven simulations of recent and future climate with the Rossby Centre coupled atmosphere – Baltic Sea regional climate model RCAO, Reports Meteorology and Climatology 101, Norrköping, Sweden, SMHI, 2003.
Räisänen, J., Hansson, U., Ullerstieg, A., Döscher, R., Graham, L. P., Jones, C., Meier, H. E. M., Samuelsson, P., and Willén, U.: European climate in the late 21st century: regional simulations with two driving global models and two forcing scenarios, Clim. Dynam., 22, 13–31, 2004.
Ramankutty, N. and Foley, J. A.: Estimating historical changes in global land cover: Croplands from 1700 to 1992, Glob. Biogeochem. Cy., 13, 997–1027, 1999.
Ruddiman, W. F.: The Anthropogenic Greenhouse Era Began Thousands of Years Ago, Climatic Change, 61, 261–293, 2003.
Ruddiman, W. F.: The early anthropogenic hypothesis a year later, Climatic Change, 69, 427–434, 2005.
Rummukainen, M., Räisäinen, J., Ullerstig, A., Bringfelt, B., Hansson, U., and Willén, U.: Reports Meteorology and Climatology 83, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden, 76 pp., 1998.
Rummukainen, M., Räisänen, J., Bringfelt, B., Ullerstig, A., Omstedt, A., Willén, U., Hansson, U., and Jones, C.: A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations, Clim. Dynam., 17, 339–359, 2001.
Samuelsson, P., Gollvik, S., Hansson, U., Jones, C., Kjellström, E., Nikulin, G., Ullerstig, A., Willén, U., and Wyser, K.: The Rossby Centre Regional Climate Model RCA3: Model description and performance, Tellus A, in review, 2010.
Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G., Berry, J. A., Collatz, G. J., Denning, A. S., Mooney, H. A., Nobre, C. A., Nobre, C. A., Sato, N., Field, C. B., and Henderson-Sellers, A.: Modeling the Exchange of Energy, Water, and Carbon between Continents and the Atmosphere, Science, 275, 502–509, 1997.
Seppä, H., Alenius, T., Muukonen, P., Giesecke, T., Miller, P. A., and Ojala, A. E. K.: Calibrated pollen accumulation rates as a basis for quantitative tree biomass reconstructions, The Holocene, 19, 209–220, 2009.
Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob. Change Biol., 9, 161–185, 2003.
Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation dynamics in modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space, Global Ecol. Biogeogr., 10, 621–637, 2001.
Soepboer W., Sugita, S., and Lotter A.: Regional vegetation-cover changes on the Swiss Plateau during the past two millennia: A pollen-based reconstruction using the REVEALS model, Quaternary Sci. Rev., 29, 472–483, 2010.
Strandberg, G., Brandefelt, J., Kjellström E., and Smith, B.: High resolution regional simulation of Last Glacial Maximum climate in Europe, Tellus A, in review, 2010.
Sugita, S.: Pollen representation of vegetation in quaternary sediments: theory and method in patchy vegetation, J. Ecol., 82, 881–897, 1994.
Sugita, S.: Theory of quantitative reconstruction of vegetation I: Pollen from large lakes REVEALS regional vegetation composition, Holocene, 17, 229–241, 2007a.
Sugita, S.: Theory of quantitative reconstruction of vegetation II: all you need is LOVE, Holocene, 17, 243–257, 2007b.
Sugita, S., Gaillard, M.-J., and Broström, A.: Landscape openness and pollen records: a simulation approach, Holocene, 9, 409–421, 1999.
Sugita, S., Gaillard, M.-J., Hellman, S., and Broström, A.: Model-based reconstruction of vegetation and landscape using fossil pollen, in: Layers of Perception, Kolloquien zur Vor- und Frühgeschichte Vol. 10, Bonn, Germany, 385–391, 2008.
Sugita, S., Parshall, T., Calcote, R., and Walker, K.: Testing Landscape Reconstruction Algorithm for spatially-explicit reconstruction of vegetation in northern Michigan and Wisconsin, submitted to Quaternary Res., accepted, 2010.
Tarasov,, P., Williams, J. W., Andreev, A., Nakagawa, T., Bezrukova, E., Herzschuh, U., Igarashi, Y., Müller, S., Werner, K., and Zheng, Z.: Satellite- and pollen-based quantitative woody cover reconstructions for northern Asia: Verification and application to late Quaternary pollen data, Earth. Planet. Sc. Lett., 264, 284–298, 2007.
Trondman A.-K., Gaillard, M.-J, Mazier, F., Sugita, S., Alenius, T., Bjune, A., Kangur, M., Latalowa, M., and Leydet, M.: Pollen-inferred quantitative reconstructions of Holocene land-cover in NW Europe for the evaluation of past climate-vegetation feedbacks – methods and first maps of the cover of plant functional types at 6000, 3000, 600, 200 and 0 BP, EGU General Assembly 2010, Geophys. Res. Abstr., 12, EGU2010-0, 2010.
van der Linden, P. and Mitchell, J. F. B.: ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK, 160 pp., 2009.
Vitousek, P. M., Mooney, H. A., Lubchenco, J., and Melillo, J. M.: Human domination of Earth's ecosystems, Science, 277, 494–499, 1997.
Williams, J. W., Gonzales, L. M., and Kaplan, J. O.: Leaf area index for northern and eastern North America at the Last Glacial Maximum: a data-model comparison, Global Ecol. Biogeogr., 17, 122–134, 2008.
Wirtz, K. and Lemmen, C.: A global dynamic model for the Neolithic transition. Climatic Change, 59–3, 333–367, 2003.
Wirtz, K. W., Bernhardt, K., Lohmann, G., and Lemmen, C.: Mid-Holocene regional reorganization of climate variability, Clim. Past Discuss., 5, 287–326, https://doi.org/10.5194/cpd-5-287-2009, 2009.
Wolf, A. Callaghan, T. V., and Larson, K: Future changes in vegetation and ecosystem function of the Barents Region, Climatic Change, 87, 51–73, 2008.
Wramneby, A., Smith, B., and Samuelsson, P.: Hotspots of vegetation-climate feedbacks under future greenhouse forcing in Europe, iLEAPS Newsletter, 7, 26–27, 2009.