Belyea, L. R. and Malmer, N.: Carbon sequestration in peatland: patterns and mechanisms of response to climate change, Global Change Biol., 10, 1043–1052, 2004.
Berger, A. L.: Long-term variations of daily insolation and {Q}uaternary climatic changes, J. Atmos. Sci., 35, 2362–2367, 1978.
Broecker, W. S. and Clark, E.: Holocene atmospheric CO
2 increase as viewed from the seafloor, Global Biogeochem. Cy., 17, 1052, https://doi.org/10.1029/2002GB001985, 2003.
Broecker, W. S., Clark, E., McCorkle, D. C., Peng, T.-H., Hajdas, I., and Bonani, G.: Evidence for a reduction in carbonate ion content of the deep sea during the course of the {H}olocene, Paleoceanography, 14, 744–752, 1999.
Broecker, W. S., Lynch-Stieglitz, J., Clark, E., Hajdas, I., and Bonani, G.: What caused the atmosphere's CO
2 content to rise during the last 8000 years?, Geochem. Geophy. Geosy., 2, 1062, https://doi.org/10.1029/2001GC000177, 2001.
Brovkin, V., Bendtsen, J., Claussen, M., Ganopolski, A., Kubatzki, C., Petoukhov, V., and Andreev, A.: Carbon cycle, {V}egetation and {C}limate {D}ynamics in the {H}olocene: {E}xperiments with the {CLIMBER}-2 {M}odel, Global Biogeochem. Cy., 16, 1139, https://doi.org/10.1029/2001GB001662, 2002.
Brovkin, V., Kim, J., Hofmann, M., and Schneider, R.: A lowering effect of reconstructed Holocene changes in sea surface temperature on the atmospheric CO
2 concentration, Global Biogeochem. Cy., 22, GB1016, https://doi.org/10.1029/2006GB002885, 2008.
Charman, D.: Peatlands and Environmental Change, John Wiley and Sons, Chichester, UK, 312 pp, 2002.
Claussen, M., Mysak, L. A., Weaver, A. J., et al.: Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models, Clim. Dyn., 18, 579–586, 2002.
Denman, K. L., Brasseur, G., Chidthaisong, A., et al.: Couplings Between Changes in the Climate System and Biogeochemistry, chap, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 7, 499–588, 2007.
Dyke, A. S. and Prest, V. K.: Late {W}isconsinan and {H}olocene retreat of the {L}aurentide {I}ce {S}heet, Geological Survey Canada, map 1702A, 1:500 0000, 1986.
Dyke, A. S. and Prest, V. K.: Late {W}isconsinan and {H}olocene history of the {L}aurentide ice sheet, Geogr. Phys. Quatern., 41, 237–264, 1987.
Falloon, P., Smith, P., Colemand, K., and Marshall, S.: Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted Carbon Model, Soil Biol. Biochem., 30, 1207–1211, 1998.
Fluckiger, J., Monnin, E., Stauffer, B., Schwander, J., Stocker, T. F., Chappellaz, J., Raynaud, D., and Barnola, J.-M.: High-resolution Holocene N
2O ice core record and its relationship with CH
4 and C$O_2$, Global Biogeochem. Cy., 16, 1010, https://doi.org/10.1029/2001GB001417, 2002.
Frolking, S. and Roulet, N. T.: Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions, Glob. Change. Biol., 13, 1079–1088, 2007.
Frolking, S., Roulet, N. T., and Fuglestvedt, J.: How northern peatlands influence the Earth's radiative budget: Sustained methane emission versus sustained carbon sequestration, J. Geophys. Res., 111, G01 008, https://doi.org/10.1029/2005JG000091, 2006.
Gajewski, K., Viau, A., Sawada, M., Atkinson, D., and Wilson, S.: Sphagnum peatland distribution in {N}orth {A}merica and {E}urasia during the past 21 000 years, Global Biogeochem. Cy., 15, 297–310, 2001.
Gorham, E.: The development of peat lands, Q. Rev. Biol., 32, 154–166, 1957.
Gorham, E.: Northern peatlands: {R}ole in carbon cycle and probable response to climatic warming, Ecol. Appl., 1, 182–195, 1991.
Gorham, E.: The biogeochemistry of northern peatlands and its possible response to global warming, in: Biotic Feedbacks in the Global Climatic System: Will the Warming Speed the Warming?, edited by: Woodwell, G. and MacKenzie, F., Oxford Univ. Press, New York, 169–187, 1995.
Gorham, E., Lehman, C., Dyke, A., Janssens, J., and Dyke, L.: Temporal and spatial aspects of peatland initiation following deglaciation in North America, Quaternary Sci. Rev., 26, 300–311, https://doi.org/10.1016/j.quascirev.2006.08.008, 2007.
Huybrechts, P.: Sea-level changes at the LGM from ice-dynamic reconstructions of the {G}reenland and {An}tarctic ice sheets during the glacial cycles, Quaternary Sci. Rev., 21, 203–231, 2002.
Indermühle, A., Stocker, T. F., Joos, F., Fischer, H., Smith, H. J., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., and Stauffer, B.: Holocene carbon-cycle dynamics based on CO
2 trapped in ice at {T}aylor {D}ome, {A}ntarctica, Nature, 398, 121–126, 1999.
Joos, F., Gerber, S., Prentice, I. C., Otto-Bliesner, B. L., and Valdes, P. J.: Transient simulation of {H}olocene atmospheric carbon dioxide and terrestrial carbon since the {L}ast {G}lacial {M}aximum, Global Biogeochem. Cy., 18, GB2002, https://doi.org/10.1029/2003GB002156, 2004.
Kaplan, J. O., Prentice, I. C., Knorr, W., and Valdes, P. J.: Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum, Geophys. Res. Lett., 29, 2074, https://doi.org/10.1029/2002GL015230, 2002.
Korhola, A., Tolonen, K., Turunen, J., and Jungner, H.: Estimating long-term carbon accumulation rates in boreal peatlands by radiocarbon dating, Radiocarbon, 37, 575–584, 1995.
Kremenetski, K. V., Velichko, A. A., Borisova, O. K., MacDonald, G. M., Smith, L. C., Frey, K. E., and Orlova, L. A.: Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and late quaternary history, Quaternary Sci. Rev., 22, 703–723, 2003.
Levitus, S.: Climatological {A}tlas of the {W}orld {O}cean, Tech. rep., NOAA Professional Paper 13, US Government Printing Office, Washington, DC, 1982.
Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet, N., Rydin, H., and Schaepman-Strub, G.: Peatlands and the carbon cycle: from local processes to global implications - a synthesis, Biogeosciences, 5, 1475–1491, 2008.
Lüthi, D., Floch, M. L., Bereiter, B., et al.: High-resolution carbon dioxide concentration record 650000–800000 years before present, Nature, 453, 379–382, https://doi.org/10.1038/nature06949, 2008.
MacDonald, G. M., Beilman, D. W., Kremenetski, K. V., Sheng, Y., Smith, L. C., and Velichko, A. A.: Rapid early development of circumarctic peatlands and atmospheric CH
4 and CO
2 variations, Science, 314, 285–288, 2006.
Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T. F., Raynaud, D., and Barnola, J.: Atmospheric CO
2 concentrations over the Last Glacial Termination, Science, 291, 112–114, 2001.
Mysak, L. A.: Glacial inceptions: Past and future, Atmos Ocean, 46, 317–341, 2008.
Renssen, H., Brovkin, V., Fichefet, T., and Goose, H.: Simulation of the Holocene climate evolution in Northern Africa: The termination of the African Humid Period, Quatern. Int., 150, 95–102, https://doi.org/10.1016/j.quaint.2005.01.001, 2006.
Roulet, N. T.: Peatlands, carbon storage, greenhouse gases, and the Kyoto protocol: prospects and significance for Canada, Wetlands, 20, 605–615, 2000.
Roulet, N. T., Lafleurs, P. M., Richard, P. J. H., Moore, T. R., Humphreys, E. R., and Bubier, J.: Contemporary carbon balance and late Holocene carbon accumulation in a norther peatland, Glob. Change Biol., 13, 397–411, 2007.
Ruddiman, W.: The challenge of modeling interglacial CO
2 and CH
4 trends, Quaternary Sci. Rev., 27, 445–448, 2008.
Ruddiman, W. F.: The anthropogenic greenhouse era began thousands of years ago, Climatic Change, 61, 261–293, 2003.
Ruddiman, W. F.: On "The Holocene CO
2 rise: Anthropogenic or natural?", EOS, 87, 352, 2006.
Ruddiman, W. F.: The early anthropogenic hypothesis: Challenges and responses, Rev. Geophys., 45, RG4001, 2007.
Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S., Painter, T. H., Parton, W. J., and Townsend, A. R.: Climatic, edaphic and biotic controls over carbon and turnover of carbon in soils, Global Biogechem. Cy., 8, 279–293, 1994.
Smith, L., MacDonald, G., Velichko, A., Beilman, D., Borisova, O., Frey, K., Kremenetski, K., and Sheng, Y.: Siberian peatlands a net carbon sink and global methane source since the early Holocene, Science, 303, 353–356, 2004.
Turunen, J., Tomppo, E., Tolonen, K., and Reinikainen, A.: Estimating carbon accumulation rates of undrained mires in {Finland: A}pplication to boreal and subarctic regions, Holocene, 12, 69–80, 2002.
Wang, Y.: Simulation of the climate, ocean, vegetation and terrestrial carbon cycle in the Holocene, Ph.D. thesis, McGill University, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6, available as Centre for Climate and Global Change Research ($C^2GCR$), Report No. 2005-3, 2005.
Wang, Y. and Mysak, L. A.: Response of the ocean, climate and terrestrial carbon cycle to Holocene freshwater discharge after 8 kyr BP, Geophys. Res. Lett., 32, L15 705, https://doi.org/10.1029/2005GL023344, 2005d.
Wang, Y., Mysak, L. A., and Roulet, N. T.: Holocene climate and carbon cycle dynamics: E}xperiments with the "green" {McGill Paleoclimate Model, Global Biogechem. Cy., 19, GB3022, https://doi.org/10.1029/2005GB002484, 2005c.
Wang, Y., Mysak, L. A., Wang, Z., and Brovkin, V.: The Greening of the McGill Paleoclimate Model. Part I: Improved Land Surface Scheme with Vegetation Dynamics, Clim. Dyn., 24, 469–480, https://doi.org/10.1007/s00382-004-0515-9, 2005a.
Wang, Y., Mysak, L. A., Wang, Z., and Brovkin, V.: The Greening of the McGill Paleoclimate Model. Part II: Simulation of Holocene Millennial-Scale Natural Climate Changes, Clim. Dyn., 24, 481–496, https://doi.org/10.1007/s00382-004-0516-8, 2005b.
Wang, Z. and Mysak, L. A.: A simple coupled atmosphere-ocean-sea ice-land surface model for climate and paleoclimate studies, J. Climate, 13, 1150–1172, 2000.
Wang, Z. and Mysak, L. A.: Glacial abrupt climate changes and Dansgaard-Oeschger Oscillations in a coupled climate model, Paleoceanography, 21, PA2001, https://doi.org/10.1029/2005PA001238, 2006.
Wang, Z., Cochelin, A.-S. B., Mysak, L. A., and Wang, Y.: Simulation of the La}st {G}lacial {In}ception with the {Green McGill Paleoclimate Model, Geophys. Res. Lett., 32, L12 705, https://doi.org/10.1029/2005GL023047, 2005.
Wright, D. G. and Stocker, T. F.: A zonally averaged ocean model for the thermohaline circulation. {I}: {M}odel development and flow dynamics, J. Phys. Oceanogr., 21, 1713–1724, 1991.
Yu, Z.: Holocene carbon accumulation of fen peatlands in Boreal Western Canada: A complex ecossytem response to climate variation and disturbance, Ecosystems, 9, 1278–1288, 2006.
Yu, Z., Campbell, I. D., Campbell, C., Vitt, D. H., Bond, G. C., and Apps, M. J.: Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales, The Holocene, 13, 801–808, 2003.
Yu, Z. C., Beilman, D. W., and Jones, M.C.: Sensitivity of northern peatland carbon dynamics to Holocene climate change, in: Carbon Cycling in Northern Peatlands, edited by: Baird, A. J., Belyea, L. R., Comas, X., Reeve, A. S., and Slater, L. D., Geophysical Monograph 184, American Geophysical Union, Washington D.C., USA, 55–69, https://doi.org/10.1029/2008GM000822 2009.