Articles | Volume 3, issue 4
https://doi.org/10.5194/cp-3-647-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
https://doi.org/10.5194/cp-3-647-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Climate model boundary conditions for four Cretaceous time slices
J. O. Sewall
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
now at: Department of Geosciences, Virgina Tech, 4044 Derring Hall (0420) Blacksburg, VA 24061, USA
R. S. W. van de Wal
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
K. van der Zwan
Faculty of Geosciences, P.O. Box 80021, 3508 TA Utrecht, The Netherlands
C. van Oosterhout
Shell International Exploration and Production, P.O. Bos 60, 2280 Rijswijk, The Netherlands
H. A. Dijkstra
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
C. R. Scotese
PALEOMAP Project, Department of Earth and Environmental Sciences, Univ. of Texas at Arlington, Texas, 76019, USA
Viewed
Total article views: 5,180 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 04 Jun 2007)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,150 | 2,782 | 248 | 5,180 | 216 | 157 |
- HTML: 2,150
- PDF: 2,782
- XML: 248
- Total: 5,180
- BibTeX: 216
- EndNote: 157
Total article views: 4,359 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 12 Nov 2007)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,866 | 2,279 | 214 | 4,359 | 189 | 148 |
- HTML: 1,866
- PDF: 2,279
- XML: 214
- Total: 4,359
- BibTeX: 189
- EndNote: 148
Total article views: 821 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 04 Jun 2007)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
284 | 503 | 34 | 821 | 27 | 9 |
- HTML: 284
- PDF: 503
- XML: 34
- Total: 821
- BibTeX: 27
- EndNote: 9
Cited
81 citations as recorded by crossref.
- Reconstructing first-order changes in sea level during the Phanerozoic and Neoproterozoic using strontium isotopes D. van der Meer et al. 10.1016/j.gr.2016.11.002
- Evolution of neodymium isotopic signature of seawater during the Late Cretaceous: Implications for intermediate and deep circulation M. Moiroud et al. 10.1016/j.gr.2015.08.005
- Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse J. Ladant & Y. Donnadieu 10.1038/ncomms12771
- Ocean and climate response to North Atlantic seaway changes at the onset of long-term Eocene cooling M. Vahlenkamp et al. 10.1016/j.epsl.2018.06.031
- The Cretaceous physiological adaptation of angiosperms to a declining <i>p</i>CO<sub>2</sub>: a modeling approach emulating paleo-traits J. Bres et al. 10.5194/bg-18-5729-2021
- Bottom water redox dynamics during the Early Cretaceous Weissert Event in ODP Hole 692B (Weddell Sea, Antarctica) reconstructed from the benthic foraminiferal assemblages V. Giraldo-Gómez et al. 10.1016/j.palaeo.2021.110795
- Stripping back the modern to reveal the Cenomanian–Turonian climate and temperature gradient underneath M. Laugié et al. 10.5194/cp-16-953-2020
- Footprints of palaeocurrents in sedimentary sequences of the Cenozoic across the Maurice Ewing Bank B. Najjarifarizhendi & G. Uenzelmann-Neben 10.1016/j.margeo.2021.106525
- Late Cenomanian Plenus Event in the Western Interior Seaway B. Sageman et al. 10.2139/ssrn.4089095
- A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation R. Topper et al. 10.5194/cp-7-277-2011
- Reassessment of the cheirolepidiaceous conifer Frenelopsis teixeirae Alvin et Pais from the Early Cretaceous (Hauterivian) of Portugal and palaeoenvironmental considerations M. Mendes et al. 10.1016/j.revpalbo.2010.03.002
- New grasshoppers (Orthoptera: Elcanidae, Locustopsidae) from the Lower Cretaceous Crato Formation suggest a biome homogeneity in Central Gondwana A. Nel & C. Jouault 10.1080/08912963.2021.2000602
- New insights into the palaeoenvironmental–palaeoclimatic significance and sedimentary dynamics of carbonate Lagerstätten: The lower Albian of Pietraroja (Southern Italy) R. Graziano et al. 10.1111/sed.13146
- The impact of Early Cretaceous gateway evolution on ocean circulation and organic carbon burial in the emerging South Atlantic and Southern Ocean basins W. Dummann et al. 10.1016/j.epsl.2019.115890
- Cretaceous wildfires and their impact on the Earth system S. Brown et al. 10.1016/j.cretres.2012.02.008
- Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China C. Wang et al. 10.1016/j.palaeo.2012.01.030
- Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata C. Wang et al. 10.1016/j.earscirev.2013.08.016
- Exploring the Impact of Cenomanian Paleogeography and Marine Gateways on Oceanic Oxygen M. Laugié et al. 10.1029/2020PA004202
- Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2 U. Heimhofer et al. 10.1038/s41467-018-06319-6
- Integrated climate model-oxygen isotope evidence for a North American monsoon during the Late Cretaceous H. Fricke et al. 10.1016/j.epsl.2009.10.018
- Chemostratigraphy of the Lower Cretaceous dinosaur-bearing Xiagou and Zhonggou formations, Yujingzi Basin, northwest China M. Suarez et al. 10.1080/02724634.2018.1510412
- Large dry-humid fluctuations in Asia during the Late Cretaceous due to orbital forcing: A modeling study J. Zhang et al. 10.1016/j.palaeo.2019.06.003
- Transition from the Cretaceous ocean to Cenozoic circulation in the western South Atlantic — A twofold reconstruction G. Uenzelmann-Neben et al. 10.1016/j.tecto.2016.05.036
- Cretaceous climate change evidenced in the Senegalese rock record, NW Africa M. Pearson et al. 10.1016/j.jafrearsci.2023.105166
- Astronomically paced changes in deep-water circulation in the western North Atlantic during the middle Eocene M. Vahlenkamp et al. 10.1016/j.epsl.2017.12.016
- Increasing impact of North Atlantic Ocean circulation on sedimentary processes along the passive Galicia Margin (NW Spain) over the past 40 million years J. Haberkern et al. 10.3389/feart.2023.1336422
- Was the Arctic Ocean ice free during the latest Cretaceous? The role of CO2 and gateway configurations I. Niezgodzki et al. 10.1016/j.gloplacha.2019.03.011
- Relationship among paleosol types, depositional settings, and paleoclimates in Tetori group (Lower Cretaceous, central Japan) K. Kuroshima et al. 10.1111/iar.12445
- Elevation of the Gangdese Mountains and Their Impacts on Asian Climate During the Late Cretaceous—a Modeling Study J. Zhang et al. 10.3389/feart.2021.810931
- Possible solutions to several enigmas of Cretaceous climate W. Hay et al. 10.1007/s00531-018-1670-2
- 100 Ma sweat bee nests: Early and rapid co-diversification of crown bees and flowering plants J. Genise et al. 10.1371/journal.pone.0227789
- Atmospheric circulation over Patagonia from the Jurassic to present: a review through proxy data and climatic modelling scenarios R. COMPAGNUCCI 10.1111/j.1095-8312.2011.01655.x
- A new terrestrial plant-rich Fossil-Lagerstätte from the middle Cenomanian (Late Cretaceous) of the Apennine Carbonate Platform (Magliano Vetere, southern Italy): Depositional and palaeoenvironmental settings A. Bartiromo et al. 10.1016/j.sedgeo.2019.04.010
- Late Cretaceous Paleoceanographic Evolution and the Onset of Cooling in the Santonian at Southern High Latitudes (IODP Site U1513, SE Indian Ocean) M. Petrizzo et al. 10.1029/2021PA004353
- Paleogeographic controls on the evolution of Late Cretaceous ocean circulation J. Ladant et al. 10.5194/cp-16-973-2020
- Global biogeography of Albian ammonoids: A network-based approach A. Rojas et al. 10.1130/G38944.1
- Tectonic-driven climate change and the diversification of angiosperms A. Chaboureau et al. 10.1073/pnas.1324002111
- Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth S. Batenburg et al. 10.1038/s41467-018-07457-7
- The longtime global climatic consequences modeling of the Chicxulub asteroid impact event V. Parkhomenko 10.1088/1742-6596/2090/1/012110
- Realistic Paleobathymetry of the Cenomanian–Turonian (94 Ma) Boundary Global Ocean A. Goswami et al. 10.3390/geosciences8010021
- Differences Between Present‐Day and Cretaceous Hydrological Cycle Responses to Rising CO2 Concentration T. Higuchi et al. 10.1029/2021GL094341
- A Pronounced Spike in Ocean Productivity Triggered by the Chicxulub Impact J. Brugger et al. 10.1029/2020GL092260
- Evidence for a regional warm bias in the Early Cretaceous TEX86 record S. Steinig et al. 10.1016/j.epsl.2020.116184
- Late Aptian palaeoclimatic turnovers and volcanism: Insights from a shallow-marine and continental succession of the Apennine carbonate platform, southern Italy R. Graziano et al. 10.1016/j.sedgeo.2016.03.021
- Controls on Early Cretaceous South Atlantic Ocean circulation and carbon burial – a climate model–proxy synthesis S. Steinig et al. 10.5194/cp-20-1537-2024
- Late Cretaceous–early Eocene counterclockwise rotation of the Fueguian Andes and evolution of the Patagonia–Antarctic Peninsula system F. Poblete et al. 10.1016/j.tecto.2015.11.025
- Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse H. Hasegawa et al. 10.5194/cp-8-1323-2012
- Andean-scale highlands in the Late Cretaceous Cordillera of the North American western margin J. Sewall & H. Fricke 10.1016/j.epsl.2012.12.002
- The role of ocean gateways on cooling climate on long time scales W. Sijp et al. 10.1016/j.gloplacha.2014.04.004
- Climate as the Great Equalizer of Continental‐Scale Erosion G. Jepson et al. 10.1029/2021GL095008
- Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input I. Ruvalcaba Baroni et al. 10.5194/bg-11-977-2014
- Late Cenomanian Plenus event in the Western Interior Seaway B. Sageman et al. 10.1016/j.cretres.2023.105798
- Temperate rainforests near the South Pole during peak Cretaceous warmth J. Klages et al. 10.1038/s41586-020-2148-5
- Driving mechanisms of organic carbon burial in the Early Cretaceous South Atlantic Cape Basin (DSDP Site 361) W. Dummann et al. 10.5194/cp-17-469-2021
- The Aptian evaporites of the South Atlantic: a climatic paradox? A. Chaboureau et al. 10.5194/cp-8-1047-2012
- Climate and vegetation history of western Portugal inferred from Albian near-shore deposits (Galé Formation, Lusitanian Basin) U. HEIMHOFER et al. 10.1017/S0016756812000118
- The Kupol Epithermal Au-Ag Vein District, Chukotka, Far Eastern Russia B. Thomson et al. 10.5382/econgeo.4957
- Evolution of the Atlantic Intertropical Convergence Zone, and the South American and African Monsoons Over the Past 95‐Myr and Their Impact on the Tropical Rainforests R. Acosta et al. 10.1029/2021PA004383
- Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U–Pb geochronology J. Ramezani et al. 10.1038/s41598-022-19896-w
- The evolution of extant South American tropical biomes C. Jaramillo 10.1111/nph.18931
- The Cretaceous world: plate tectonics, palaeogeography and palaeoclimate C. Scotese et al. 10.1144/SP544-2024-28
- Early Cenomanian “hot greenhouse” revealed by oxygen isotope record of exceptionally well‐preserved foraminifera from Tanzania A. Ando et al. 10.1002/2015PA002854
- Altitude of the East Asian Coastal Mountains and Their Influence on Asian Climate During Early Late Cretaceous J. Zhang et al. 10.1029/2020JD034413
- Climate paleogeography knowledge graph and deep time paleoclimate classifications C. Yu et al. 10.1016/j.gsf.2022.101450
- Tidal dynamics and their influence on the climate system from the Cretaceous to present day T. Weber & M. Thomas 10.1016/j.gloplacha.2017.09.019
- Coastal Mountains Amplified the Impacts of Orbital Forcing on East Asian Climate in the Late Cretaceous J. Zhang et al. 10.1029/2023GL105932
- Effects of global warming and Tibetan Plateau uplift on East Asian climate during the mid-Cretaceous J. Zhang et al. 10.1016/j.palaeo.2023.112007
- A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration Y. Donnadieu et al. 10.1038/ncomms10316
- IPSL-CM5A2 – an Earth system model designed for multi-millennial climate simulations P. Sepulchre et al. 10.5194/gmd-13-3011-2020
- Climatic evolution across oceanic anoxic event 1a derived from terrestrial palynology and clay minerals (Maestrat Basin, Spain) J. CORS et al. 10.1017/S0016756814000557
- Stomatal numbers of Pseudofrenelopsis capillata (Cheirolepidiaceae, Coniferales) in the peri-equatorial late Aptian Crato Formation (Santana group, Araripe Basin, Brazil) and their paleoclimatic and paleoenvironmental significance I. Degani-Schmidt et al. 10.1016/j.jsames.2023.104331
- Ocean chemistry and atmospheric CO2sensitivity to carbon perturbations throughout the Cenozoic M. Stuecker & R. Zeebe 10.1029/2009GL041436
- Biostratigraphy, paleobathymetry and paleobiogeography of Lower Cretaceous benthic foraminifera from Shatsky Rise (ODP Leg 198) in the central Pacific Ocean V. Giraldo-Gómez et al. 10.1016/j.cretres.2022.105283
- Global significance of oxygen and carbon isotope compositions of pedogenic carbonates since the Cretaceous M. Jolivet & P. Boulvais 10.1016/j.gsf.2020.12.012
- The cause of Late Cretaceous cooling: A multimodel-proxy comparison C. Tabor et al. 10.1130/G38363.1
- Toward understanding Cretaceous climate—An updated review W. Hay 10.1007/s11430-016-0095-9
- The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs J. Trabucho Alexandre et al. 10.1029/2010PA001925
- The calcareous nannofossil Sollasites falklandensis (Coccolithophyceae) and its biostratigraphic and palaeoceanographic importance in the Albian of the Austral Basin, Argentina J. Pérez Panera 10.1016/j.cretres.2011.05.001
- Paleoceanographic changes during the Albian–Cenomanian in the Tethys and North Atlantic and the onset of the Cretaceous chalk M. Giorgioni et al. 10.1016/j.gloplacha.2015.01.005
- Cretaceous paleogeography, paleoclimatology, and amniote biogeography of the low and mid-latitude South Atlantic Ocean L. Jacobs et al. 10.2113/gssgfbull.180.4.333
- Middle Miocene tectonic boundary conditions for use in climate models N. Herold et al. 10.1029/2008GC002046
75 citations as recorded by crossref.
- Reconstructing first-order changes in sea level during the Phanerozoic and Neoproterozoic using strontium isotopes D. van der Meer et al. 10.1016/j.gr.2016.11.002
- Evolution of neodymium isotopic signature of seawater during the Late Cretaceous: Implications for intermediate and deep circulation M. Moiroud et al. 10.1016/j.gr.2015.08.005
- Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse J. Ladant & Y. Donnadieu 10.1038/ncomms12771
- Ocean and climate response to North Atlantic seaway changes at the onset of long-term Eocene cooling M. Vahlenkamp et al. 10.1016/j.epsl.2018.06.031
- The Cretaceous physiological adaptation of angiosperms to a declining <i>p</i>CO<sub>2</sub>: a modeling approach emulating paleo-traits J. Bres et al. 10.5194/bg-18-5729-2021
- Bottom water redox dynamics during the Early Cretaceous Weissert Event in ODP Hole 692B (Weddell Sea, Antarctica) reconstructed from the benthic foraminiferal assemblages V. Giraldo-Gómez et al. 10.1016/j.palaeo.2021.110795
- Stripping back the modern to reveal the Cenomanian–Turonian climate and temperature gradient underneath M. Laugié et al. 10.5194/cp-16-953-2020
- Footprints of palaeocurrents in sedimentary sequences of the Cenozoic across the Maurice Ewing Bank B. Najjarifarizhendi & G. Uenzelmann-Neben 10.1016/j.margeo.2021.106525
- Late Cenomanian Plenus Event in the Western Interior Seaway B. Sageman et al. 10.2139/ssrn.4089095
- A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation R. Topper et al. 10.5194/cp-7-277-2011
- Reassessment of the cheirolepidiaceous conifer Frenelopsis teixeirae Alvin et Pais from the Early Cretaceous (Hauterivian) of Portugal and palaeoenvironmental considerations M. Mendes et al. 10.1016/j.revpalbo.2010.03.002
- New grasshoppers (Orthoptera: Elcanidae, Locustopsidae) from the Lower Cretaceous Crato Formation suggest a biome homogeneity in Central Gondwana A. Nel & C. Jouault 10.1080/08912963.2021.2000602
- New insights into the palaeoenvironmental–palaeoclimatic significance and sedimentary dynamics of carbonate Lagerstätten: The lower Albian of Pietraroja (Southern Italy) R. Graziano et al. 10.1111/sed.13146
- The impact of Early Cretaceous gateway evolution on ocean circulation and organic carbon burial in the emerging South Atlantic and Southern Ocean basins W. Dummann et al. 10.1016/j.epsl.2019.115890
- Cretaceous wildfires and their impact on the Earth system S. Brown et al. 10.1016/j.cretres.2012.02.008
- Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China C. Wang et al. 10.1016/j.palaeo.2012.01.030
- Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata C. Wang et al. 10.1016/j.earscirev.2013.08.016
- Exploring the Impact of Cenomanian Paleogeography and Marine Gateways on Oceanic Oxygen M. Laugié et al. 10.1029/2020PA004202
- Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2 U. Heimhofer et al. 10.1038/s41467-018-06319-6
- Integrated climate model-oxygen isotope evidence for a North American monsoon during the Late Cretaceous H. Fricke et al. 10.1016/j.epsl.2009.10.018
- Chemostratigraphy of the Lower Cretaceous dinosaur-bearing Xiagou and Zhonggou formations, Yujingzi Basin, northwest China M. Suarez et al. 10.1080/02724634.2018.1510412
- Large dry-humid fluctuations in Asia during the Late Cretaceous due to orbital forcing: A modeling study J. Zhang et al. 10.1016/j.palaeo.2019.06.003
- Transition from the Cretaceous ocean to Cenozoic circulation in the western South Atlantic — A twofold reconstruction G. Uenzelmann-Neben et al. 10.1016/j.tecto.2016.05.036
- Cretaceous climate change evidenced in the Senegalese rock record, NW Africa M. Pearson et al. 10.1016/j.jafrearsci.2023.105166
- Astronomically paced changes in deep-water circulation in the western North Atlantic during the middle Eocene M. Vahlenkamp et al. 10.1016/j.epsl.2017.12.016
- Increasing impact of North Atlantic Ocean circulation on sedimentary processes along the passive Galicia Margin (NW Spain) over the past 40 million years J. Haberkern et al. 10.3389/feart.2023.1336422
- Was the Arctic Ocean ice free during the latest Cretaceous? The role of CO2 and gateway configurations I. Niezgodzki et al. 10.1016/j.gloplacha.2019.03.011
- Relationship among paleosol types, depositional settings, and paleoclimates in Tetori group (Lower Cretaceous, central Japan) K. Kuroshima et al. 10.1111/iar.12445
- Elevation of the Gangdese Mountains and Their Impacts on Asian Climate During the Late Cretaceous—a Modeling Study J. Zhang et al. 10.3389/feart.2021.810931
- Possible solutions to several enigmas of Cretaceous climate W. Hay et al. 10.1007/s00531-018-1670-2
- 100 Ma sweat bee nests: Early and rapid co-diversification of crown bees and flowering plants J. Genise et al. 10.1371/journal.pone.0227789
- Atmospheric circulation over Patagonia from the Jurassic to present: a review through proxy data and climatic modelling scenarios R. COMPAGNUCCI 10.1111/j.1095-8312.2011.01655.x
- A new terrestrial plant-rich Fossil-Lagerstätte from the middle Cenomanian (Late Cretaceous) of the Apennine Carbonate Platform (Magliano Vetere, southern Italy): Depositional and palaeoenvironmental settings A. Bartiromo et al. 10.1016/j.sedgeo.2019.04.010
- Late Cretaceous Paleoceanographic Evolution and the Onset of Cooling in the Santonian at Southern High Latitudes (IODP Site U1513, SE Indian Ocean) M. Petrizzo et al. 10.1029/2021PA004353
- Paleogeographic controls on the evolution of Late Cretaceous ocean circulation J. Ladant et al. 10.5194/cp-16-973-2020
- Global biogeography of Albian ammonoids: A network-based approach A. Rojas et al. 10.1130/G38944.1
- Tectonic-driven climate change and the diversification of angiosperms A. Chaboureau et al. 10.1073/pnas.1324002111
- Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth S. Batenburg et al. 10.1038/s41467-018-07457-7
- The longtime global climatic consequences modeling of the Chicxulub asteroid impact event V. Parkhomenko 10.1088/1742-6596/2090/1/012110
- Realistic Paleobathymetry of the Cenomanian–Turonian (94 Ma) Boundary Global Ocean A. Goswami et al. 10.3390/geosciences8010021
- Differences Between Present‐Day and Cretaceous Hydrological Cycle Responses to Rising CO2 Concentration T. Higuchi et al. 10.1029/2021GL094341
- A Pronounced Spike in Ocean Productivity Triggered by the Chicxulub Impact J. Brugger et al. 10.1029/2020GL092260
- Evidence for a regional warm bias in the Early Cretaceous TEX86 record S. Steinig et al. 10.1016/j.epsl.2020.116184
- Late Aptian palaeoclimatic turnovers and volcanism: Insights from a shallow-marine and continental succession of the Apennine carbonate platform, southern Italy R. Graziano et al. 10.1016/j.sedgeo.2016.03.021
- Controls on Early Cretaceous South Atlantic Ocean circulation and carbon burial – a climate model–proxy synthesis S. Steinig et al. 10.5194/cp-20-1537-2024
- Late Cretaceous–early Eocene counterclockwise rotation of the Fueguian Andes and evolution of the Patagonia–Antarctic Peninsula system F. Poblete et al. 10.1016/j.tecto.2015.11.025
- Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse H. Hasegawa et al. 10.5194/cp-8-1323-2012
- Andean-scale highlands in the Late Cretaceous Cordillera of the North American western margin J. Sewall & H. Fricke 10.1016/j.epsl.2012.12.002
- The role of ocean gateways on cooling climate on long time scales W. Sijp et al. 10.1016/j.gloplacha.2014.04.004
- Climate as the Great Equalizer of Continental‐Scale Erosion G. Jepson et al. 10.1029/2021GL095008
- Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input I. Ruvalcaba Baroni et al. 10.5194/bg-11-977-2014
- Late Cenomanian Plenus event in the Western Interior Seaway B. Sageman et al. 10.1016/j.cretres.2023.105798
- Temperate rainforests near the South Pole during peak Cretaceous warmth J. Klages et al. 10.1038/s41586-020-2148-5
- Driving mechanisms of organic carbon burial in the Early Cretaceous South Atlantic Cape Basin (DSDP Site 361) W. Dummann et al. 10.5194/cp-17-469-2021
- The Aptian evaporites of the South Atlantic: a climatic paradox? A. Chaboureau et al. 10.5194/cp-8-1047-2012
- Climate and vegetation history of western Portugal inferred from Albian near-shore deposits (Galé Formation, Lusitanian Basin) U. HEIMHOFER et al. 10.1017/S0016756812000118
- The Kupol Epithermal Au-Ag Vein District, Chukotka, Far Eastern Russia B. Thomson et al. 10.5382/econgeo.4957
- Evolution of the Atlantic Intertropical Convergence Zone, and the South American and African Monsoons Over the Past 95‐Myr and Their Impact on the Tropical Rainforests R. Acosta et al. 10.1029/2021PA004383
- Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U–Pb geochronology J. Ramezani et al. 10.1038/s41598-022-19896-w
- The evolution of extant South American tropical biomes C. Jaramillo 10.1111/nph.18931
- The Cretaceous world: plate tectonics, palaeogeography and palaeoclimate C. Scotese et al. 10.1144/SP544-2024-28
- Early Cenomanian “hot greenhouse” revealed by oxygen isotope record of exceptionally well‐preserved foraminifera from Tanzania A. Ando et al. 10.1002/2015PA002854
- Altitude of the East Asian Coastal Mountains and Their Influence on Asian Climate During Early Late Cretaceous J. Zhang et al. 10.1029/2020JD034413
- Climate paleogeography knowledge graph and deep time paleoclimate classifications C. Yu et al. 10.1016/j.gsf.2022.101450
- Tidal dynamics and their influence on the climate system from the Cretaceous to present day T. Weber & M. Thomas 10.1016/j.gloplacha.2017.09.019
- Coastal Mountains Amplified the Impacts of Orbital Forcing on East Asian Climate in the Late Cretaceous J. Zhang et al. 10.1029/2023GL105932
- Effects of global warming and Tibetan Plateau uplift on East Asian climate during the mid-Cretaceous J. Zhang et al. 10.1016/j.palaeo.2023.112007
- A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration Y. Donnadieu et al. 10.1038/ncomms10316
- IPSL-CM5A2 – an Earth system model designed for multi-millennial climate simulations P. Sepulchre et al. 10.5194/gmd-13-3011-2020
- Climatic evolution across oceanic anoxic event 1a derived from terrestrial palynology and clay minerals (Maestrat Basin, Spain) J. CORS et al. 10.1017/S0016756814000557
- Stomatal numbers of Pseudofrenelopsis capillata (Cheirolepidiaceae, Coniferales) in the peri-equatorial late Aptian Crato Formation (Santana group, Araripe Basin, Brazil) and their paleoclimatic and paleoenvironmental significance I. Degani-Schmidt et al. 10.1016/j.jsames.2023.104331
- Ocean chemistry and atmospheric CO2sensitivity to carbon perturbations throughout the Cenozoic M. Stuecker & R. Zeebe 10.1029/2009GL041436
- Biostratigraphy, paleobathymetry and paleobiogeography of Lower Cretaceous benthic foraminifera from Shatsky Rise (ODP Leg 198) in the central Pacific Ocean V. Giraldo-Gómez et al. 10.1016/j.cretres.2022.105283
- Global significance of oxygen and carbon isotope compositions of pedogenic carbonates since the Cretaceous M. Jolivet & P. Boulvais 10.1016/j.gsf.2020.12.012
- The cause of Late Cretaceous cooling: A multimodel-proxy comparison C. Tabor et al. 10.1130/G38363.1
6 citations as recorded by crossref.
- Toward understanding Cretaceous climate—An updated review W. Hay 10.1007/s11430-016-0095-9
- The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs J. Trabucho Alexandre et al. 10.1029/2010PA001925
- The calcareous nannofossil Sollasites falklandensis (Coccolithophyceae) and its biostratigraphic and palaeoceanographic importance in the Albian of the Austral Basin, Argentina J. Pérez Panera 10.1016/j.cretres.2011.05.001
- Paleoceanographic changes during the Albian–Cenomanian in the Tethys and North Atlantic and the onset of the Cretaceous chalk M. Giorgioni et al. 10.1016/j.gloplacha.2015.01.005
- Cretaceous paleogeography, paleoclimatology, and amniote biogeography of the low and mid-latitude South Atlantic Ocean L. Jacobs et al. 10.2113/gssgfbull.180.4.333
- Middle Miocene tectonic boundary conditions for use in climate models N. Herold et al. 10.1029/2008GC002046
Saved (preprint)
Latest update: 13 Dec 2024