Articles | Volume 21, issue 12
https://doi.org/10.5194/cp-21-2501-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-2501-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Insights into the Middle–Late Miocene palaeoceanographic development of Cyprus (eastern Mediterranean) from a new δ18O and δ13C stable isotope composite record
School of GeoSciences, Grant Institute, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
present address: Department of Earth Sciences, University of Geneva, Geneva, 1205, Switzerland
Alastair H. F. Robertson
School of GeoSciences, Grant Institute, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
Dick Kroon
School of GeoSciences, Grant Institute, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
deceased
Cited articles
Adams, C. G., Benson, R. H., Kidd, R. B., Ryan, W. B. F., and Wright, R. C.: The Messinian salinity crisis and evidence of late Miocene eustatic changes in the world ocean, Nature, 269, 383–386, https://doi.org/10.1038/269383a0, 1977.
Anderson, T. F. and Cole, S. A.: The stable isotope geochemistry of marine coccoliths; a preliminary comparison with planktonic foraminifera, J. Foramin. Res., 5, 188–192, https://doi.org/10.2113/GSJFR.5.3.188, 1975.
Artiaga, D., García-Veigas, J., Cendón, D. I., Atalar, C., and Gibert, L.: The Messinian evaporites of the Mesaoria basin (North Cyprus): A discrepancy with the current chronostratigraphic understanding, Palaeogeogr. Palaeocl., 584, 110681, https://doi.org/10.1016/j.palaeo.2021.110681, 2021.
Athanasiou, M., Triantaphyllou, M. V., Dimiza, M. D., Gogou, A., Panagiotopoulos, I., Arabas, A., Skampa, E., Kouli, K., Hatzaki, M., and Tsiolakis, E.: Reconstruction of oceanographic and environmental conditions in the eastern Mediterranean (Kottafi Hill section, Cyprus Island) during the middle Miocene Climate Transition, Revue de Micropaléontologie, 70, 100480, https://doi.org/10.1016/J.REVMIC.2020.100480, 2021.
Aze, T., Ezard, T. H. G., Purvis, A., Coxall, H. K., Stewart, D. R. M., Wade, B. S., and Pearson, P. N.: A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data, Biol. Rev., 86, 900–927, https://doi.org/10.1111/J.1469-185X.2011.00178.X, 2011.
Backman, J. and Shackleton, N. J.: Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Indian and Pacific oceans, Mar. Micropaleontol., 8, 141–170, https://doi.org/10.1016/0377-8398(83)90009-9, 1983.
Backman, J., Raffi, I., Rio, D., Fornaciari, E., and Pälike, H.: Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes, Newsl. Stratigr., 45, 221–244, https://doi.org/10.1127/0078-0421/2012/0022, 2012.
Balmer, E. M.: Interaction of deep and shallow-water sedimentary processes in southwest Cyprus, within the Eastern Mediterranean region, University of Edinburgh, PhD thesis, https://doi.org/10.7488/era/5421, 2024.
Bialik, O. M., Frank, M., Betzler, C., Zammit, R., and Waldmann, N. D.: Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean, Sci. Rep., 9, 8842–8842, https://doi.org/10.1038/s41598-019-45308-7, 2019.
Blow, W. H.: Origin and evolution of the Foraminiferal Genus Orbulina d'Orbigny, Micropaleontology, 2, 57–57, https://doi.org/10.2307/1484492, 1956.
Bown, P. R. and Young, J. R.: Techniques in: Calcareous Nannofossil Biostratigraphy, edited by: Bown, P. R., Paleoceanography, Chapman and Hall, London, 2, 16–28, https://doi.org/10.1007/978-94-011-4902-0_2, 1998
Bulian, F., Kouwenhoven, T. J., Jiménez-Espejo, F. J., Krijgsman, W., Andersen, N., and Sierro, F. J.: Impact of the Mediterranean-Atlantic connectivity and the late Miocene carbon shift on deep-sea communities in the Western Alboran Basin, Palaeogeogr. Palaeocl., 589, 110841, https://doi.org/10.1016/j.palaeo.2022.110841, 2022.
Cannings, T.: Middle-Late Miocene palaeoceanographic development of Cyprus (E. Mediterranean) based on integrated study of δ18O and δ13C stable isotope records, supported by Mg Ca palaeothermometry, nannofossil biostratigraphy, Sr isotopic dating, sedimentology and other geochemical data, unpublished PhD thesis, University of Edinburgh, 412 pp., https://doi.org/10.7488/era/4125, 2024.
Cannings, T., Balmer, E. M., Coletti, G., Ickert, R. B., Kroon, D., Raffi, I., and Robertson, A. H. F.: Microfossil and strontium isotope chronology used to identify the controls of Miocene reefs and related facies in NW Cyprus, J. Geol. Soc. London, 178, https://doi.org/10.1144/jgs2020-081, 2021.
Cannings, T., Robertson, A. H F., and Kroon, D.: δ18O and δ13C stable isotope data from a new composite sediment record, Cyprus (Eastern Mediterranean), PANGAEA [dataset], https://doi.org/10.1594/PANGAEA.987089, 2025.
Chen, G., Robertson, A. H. F., and Wu, F. Y.: Detrital zircon geochronology and related evidence from clastic sediments in the Kyrenia Range, N Cyprus: Implications for the Mesozoic-Cenozoic erosional history and tectonics of southern Anatolia, Earth-Sci. Rev., 233, https://doi.org/10.1016/J.EARSCIREV.2022.104167, 2022.
Coletti, G., Balmer, E. M., Bialik, O. M., Cannings, T., Kroon, D., Robertson, A. H. F., and Basso, D.: Microfacies evidence for the evolution of Miocene coral-reef environments in Cyprus, Palaeogeogr. Palaeocl., 584, https://doi.org/10.1016/j.palaeo.2021.110670, 2021.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K. G.: Ocean overturning since the late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation, Paleoceanography, 24, https://doi.org/10.1029/2008PA001683, 2009.
Darin, M. H. and Umhoefer, P. J.: Diachronous initiation of Arabia-Eurasia collision from eastern Anatolia to the southeastern Zagros Mountains since middle Eocene time, Int. Geol. Rev., 64, 2653–2681, https://doi.org/10.1080/00206814.2022.2048272, 2022.
Davies, Q. J.: Climatic and tectonic controls on deep water sedimentary cyclicity: evidence from the Miocene to Pleistocene of Cyprus, unpublished PhD thesis, Open University, United Kingdom, https://doi.org/10.21954/ou.ro.0000d558, 2001.
De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., and Pälike, H.: Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y., Geology, 45, 375–378, https://doi.org/10.1130/G38663.1, 2017.
Dickens, G. R. and Owen, R. M.: The Latest Miocene-Early Pliocene biogenic bloom: A revised Indian Ocean perspective, Mar. Geol., 161, 75–91, https://doi.org/10.1016/S0025-3227(99)00057-2, 1999.
Diester-Haass, L., Meyers, P. A., and Bickert, T.: Carbonate crash and biogenic bloom in the late Miocene: Evidence from ODP Sites 1085, 1086, and 1087 in the Cape Basin, southeast Atlantic Ocean, Paleoceanography, 19, https://doi.org/10.1029/2003PA000933, 2004.
Diester-Haass, L., Billups, K., and Emeis, K. C.: In search of the late Miocene-early Pliocene “biogenic bloom” in the Atlantic Ocean (Ocean Drilling Program Sites 982, 925, and 1088), Paleoceanography, 20, https://doi.org/10.1029/2005PA001139, 2005.
Di Stefano, A., Baldassini, N., Raffi, I., Fornaciari, E., Incarbona, A., Negri, A., Bonomo, S., Villa, G., Di Stefano, E., and Rio, D.: Neogene-Quaternary Mediterranean calcareous nannofossil biozonation and biochronology: A review, Stratigraphy, 20, 259–302, https://doi.org/10.29041/strat.20.4.02, 2023.
Elderfield, H.: Strontium isotope stratigraphy, Palaeogeogr. Palaeocl., 57, 71–90, https://doi.org/10.1016/0031-0182(86)90007-6, 1986.
Flecker, R. and Ellam, R. M.: Distinguishing climatic and tectonic signals in the sedimentary successions of marginal basins using Sr isotopes: An example from the Messinian salinity crisis, Eastern Mediterranean, J. Geol. Soc. London, 156, 847–854, https://doi.org/10.1144/GSJGS.156.4.0847, 1999.
Flecker, R. and Ellam, R. M.: Identifying Late Miocene episodes of connection and isolation in the Mediterranean–Paratethyan realm using Sr isotopes, Sediment. Geol., 189–203, https://doi.org/10.1016/J.SEDGEO.2006.03.005, 2006.
Flecker, R., De Villiers, S., and Ellam, R. M.: Modelling the effect of evaporation on the salinity-87Sr 86Sr relationship in modern and ancient marginal-marine systems: The Mediterranean Messinian Salinity Crisis, Earth Planet. Sc. Lett., 203, 221–233, https://doi.org/10.1016/S0012-821X(02)00848-8, 2002.
Flecker, R., Krijgsman, W., Capella, W., de Castro Martíns, C., Dmitrieva, E., Mayser, J. P., Marzocchi, A., Modestu, S., Ochoa, D., Simon, D., Tulbure, M., van den Berg, B., van der Schee, M., de Lange, G., Ellam, R., Govers, R., Gutjahr, M., Hilgen, F., Kouwenhoven, T., Lofi, J., Meijer, P., Sierro, F. J., Bachiri, N., Barhoun, N., Alami, A. C., Chacon, B., Flores, J. A., Gregory, J., Howard, J., Lunt, D., Ochoa, M., Pancost, R., Vincent, S., and Yousfi, M. Z.: Evolution of the Late Miocene Mediterranean–Atlantic gateways and their impact on regional and global environmental change, Earth-Sci. Rev., 150, 365–392, https://doi.org/10.1016/J.EARSCIREV.2015.08.007, 2015.
Flower, B. P. and Kennett, J. P.: Middle Miocene ocean-climate transition: High-resolution oxygen and carbon isotopic records from Deep Sea Drilling Project Site 588A, southwest Pacific, Paleoceanography, 8, 811–843, https://doi.org/10.1029/93PA02196, 1993.
Flower, B. P. and Kennett, J. P.: The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling, Palaeogeogr. Palaeocl., 108, 537–555, https://doi.org/10.1016/0031-0182(94)90251-8, 1994.
Follows, E. J.: Patterns of reef sedimentation and diagenesis in the Miocene of Cyprus, Sediment. Geol., 79, 225–253, https://doi.org/10.1016/0037-0738(92)90013-H, 1992.
Follows, E. J. and Robertson, A. H. F.: Sedimentology and structural setting of Miocene reefal limestones in Cyprus, Troodos 1987. Symposium, edited by: Malpas, J., Moore, E.M., Panagiotou, A., Xenophontos, C., Cyprus Geological Survey Department, Nicosia, 207–215, INIST 19716441, 1990.
Follows, E. J., Robertson, A. H. F., and Scoffin, T. P.: Tectonic controls on Miocene reefs and related carbonate facies in Cyprus, Models for carbonate stratigraphy from Miocene reef complexes of Mediterranean regions, edited by: Franseen, E. K., Esteban, M., Ward, W. C., and Rouchy, J.-M., SEPM Society for Sedimentary Geology, 295–315, https://doi.org/10.2110/csp.96.01.0295, 1996.
Foster, G. L., Lear, C. H., and Rae, J. W. B.: The evolution of pCO2, ice volume and climate during the middle Miocene, Earth Planet. Sc. Lett., 341, 243–254, https://doi.org/10.1016/j.epsl.2012.06.007, 2012.
Garcés, M., Krijgsman, W., and Agustí, J.: Chronology of the late Turolian deposits of the Fortuna basin (SE Spain): implications for the Messinian evolution of the eastern Betics, Earth Planet. Sc. Lett., 163, 69–81, https://doi.org/10.1016/S0012-821X(98)00176-9, 1998.
Gass, I. G. and Masson-Smith, D.: The geology and gravity anomalies of the Troodos Massif, Cyprus, Philos. T. Roy. Soc. S.-A, 255, 417–467, 1963.
Hakyemez, Y., Turhan, N., Sonmez, I., and Sumengen, M.: Kuzey Kıbrıs Turk Cumhuriyeti'nin Jeolojisi [Geology of the Turkish Republic of Northern Cyprus], unpublished report of MTA (Maden Tektik ve Arama), Genel Mudurlugu Jeoloji Etutleri Diaresi, Ankara, https://www.researchgate.net/publication/283461780_KUZEY_KIBRIS'IN_TEMEL_JEOLOJIK_OZELLIKLERI_-_MAIN_GEOLOGICAL_CHARACTERISTICS_OF_NORTHERN_CYPRUS (last access: 6 October 2025), 2000.
Harzhauser, M., Kroh, A., Mandic, O., Piller, W. E., Göhlich, U., Reuter, M., and Berning, B.: Biogeographic responses to geodynamics:: A key study all around the Oligo-Miocene Tethyan Seaway, Zool. Anz., 246, 241–256, https://doi.org/10.1016/j.jcz.2007.05.001, 2007.
Henson, F. R. S., Browne, R. V., and McGinty, J.: A synopsis of the stratigraphy and geological history of Cyprus, Quarterly Journal of the Geological Society, 105, 1–41, https://doi.org/10.1144/GSL.JGS.1949.105.01-04.03, 1949.
Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C., Caballero-Gill, R., and Kelly, C. S.: Late Miocene global cooling and the rise of modern ecosystems, Nat. Geosci., 9, 843–847, https://doi.org/10.1038/ngeo2813, 2016.
Herbert, T. D., Dalton, C. A., Liu, Z., Salazar, A., Si, W., and Wilson, D. S.: Tectonic degassing drove global temperature trends since 20 Ma, Science, 377, 116–119, https://doi.org/10.1126/science.abl4353, 2022.
Hodell, D. A., Benson, R. H., Kent, D. V., Boersma, A., and Rakic-El Bied, K.: Magnetostratigraphic, biostratigraphic, and stable isotope stratigraphy of an Upper Miocene drill core from the Salé Briqueterie (northwestern Morocco): A high-resolution chronology for the Messinian stage, Paleoceanography, 9, 835–855, https://doi.org/10.1029/94PA01838, 1994.
Holbourn, A., Kuhnt, W., Schulz, M., and Erlenkeuser, H.: Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion, Nature, 438, 483–487, https://doi.org/10.1038/nature04123, 2005.
Holbourn, A., Kuhnt, W., Schulz, M., Flores, J.-A., and Andersen, N.: Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion, Earth Planet. Sc. Lett., 261, 534–550, https://doi.org/10.1016/j.epsl.2007.07.026, 2007.
Holbourn, A., Kuhnt, W., Clemens, S., Prell, W., and Andersen, N.: Middle to late Miocene stepwise climate cooling: Evidence from a high-resolution deep water isotope curve spanning 8 million years, Paleoceanography, 28, https://doi.org/10.1002/2013PA002538, 2013.
Holbourn, A., Kuhnt, W., Kochhann, K. G. D., Andersen, N., and Sebastian Meier, K. J.: Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum, Geology, 43, 123–126, https://doi.org/10.1130/G36317.1, 2015.
Holbourn, A. E., Kuhnt, W., Clemens, S. C., Kochhann, K. G. D., Jöhnck, J., Lübbers, J., and Andersen, N.: Late Miocene climate cooling and intensification of southeast Asian winter monsoon, Nat. Commun., 9, 1584, https://doi.org/10.1038/s41467-018-03950-1, 2018.
Holbourn, A., Kuhnt, W., Clemens, S. C., and Heslop, D.: A ∼ 12 Myr Miocene record of East Asian monsoon variability from the South China Sea, Paleoceanography and Paleoclimatology, 36, https://doi.org/10.1029/2021PA004267, 2021.
Holbourn, A., Kuhnt, W., Kochhann, K. G. D., Matsuzaki, K. M., and Andersen, N.: Middle Miocene climate–carbon cycle dynamics: Keys for understanding future trends on a warmer Earth?, Understanding the Monterey Formation and similar biosiliceous units across space and time, edited by: Aiello, I. W., Barron, J. A., and Ravelo, A. C., Geological Society of America, https://doi.org/10.1130/2022.2556(05), 2022.
Hsü, K. J.: The Messinian salinity crisis – Evidence of Late Miocene eustatic changes in the world ocean, Naturwissenschaften, 65, 151–151, https://doi.org/10.1007/BF00440344, 1978.
Hsü, K. J., Cita, M. B., and Ryan, W. B. F.: 43. The origin of the Mediterranean evaporites, Initial Reports of the Deep Sea Drilling Project, U.S. Government Printing Office, 13, 1203–1231, https://doi.org/10.2973/dsdp.proc.13.143.1973, 1973a.
Hsü, K. J., Ryan, W. B. F., and Cita, M. B.: Late Miocene desiccation of the Mediterranean, Nature, 242, 240–244, https://doi.org/10.1038/242240a0, 1973b.
Hüsing, S. K., Zachariasse, W. J., Van Hinsbergen, D. J. J., Krijgsman, W., Inceöz, M., Harzhauser, M., Mandic, O., and Kroh, A.: Oligocene-Miocene basin evolution in SE Anatolia, Turkey: Constraints on the closure of the eastern Tethys gateway, edited by: van Hinsbergen, D. J. J., Edwards, M. A., and Govers, R., Geol. Soc. Spec. Publ., 311, 107–132, https://doi.org/10.1144/SP311.4, 2009.
Jacobs, E., Weissert, H., Shields, G., and Stille, P.: The Monterey event in the Mediterranean: A record from shelf sediments of Malta, Paleoceanography, 11, https://doi.org/10.1029/96PA02230, 1996.
John, C. M., Mutti, M., and Adatte, T.: Mixed carbonate-siliciclastic record on the North African margin (Malta) – coupling of weathering processes and mid Miocene climate, Geol. Soc. Am. Bull., 115, 217–229, https://doi.org/10.1130/0016-7606(2003)115<0217:Mcsrot>2.0.Co;2, 2003.
Kähler, G. and Stow, D. A. V.: Turbidites and contourites of the Palaeogene Lefkara Formation, southern Cyprus, Sediment. Geol., 115, 215–231, https://doi.org/10.1016/S0037-0738(97)00094-8, 1998.
Karami, M. P., Meijer, P. T., Dijkstra, H. A., and Wortel, M. J. R.: An oceanic box model of the Miocene Mediterranean Sea with emphasis on the effects of closure of the eastern gateway, Paleoceanography, 24, https://doi.org/10.1029/2008PA001679, 2009.
Kasbohm, J. and Schoene, B.: Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum, Sci. Adv., 4, 8223, https://doi.org/10.1126/sciadv.aat8223, 2018.
Keigwin, L. D.: Late Cenozoic Stable Isotope Stratigraphy and Paleoceanography of Dsdp Sites from the East Equatorial and Central North Pacific Ocean, Earth Planet. Sc. Lett., 45, 361–382, https://doi.org/10.1016/0012-821x(79)90137-7, 1979.
Keigwin, L. D. and Shackleton, N. J.: Uppermost Miocene Carbon Isotope Stratigraphy of a Piston Core in the Equatorial Pacific, Nature, 284, 613–614, https://doi.org/10.1038/284613a0, 1980.
Kennett, J. P., Houtz, R. E., and Shackleton, N. J.: Paleotemperature history of the Cenozoic and the initiation of Antarctic Glaciation: Oxygen and Carbon isotope analyses in DSDP Sites 277, 279 and 281, in: Initial Reports of the Deep Sea Drilling Project, 29, U.S. Government Printing Office, 743–756, https://doi.org/10.2973/dsdp.proc.29.117.1975, 1975.
Kennett, J. P., Exon, N. F., Kennett, J. P., and Exon, N. F.: Paleoceanographic evolution of the Tasmanian Seaway and its climatic implications, Geophysical Monograph Series, 151, 345–367, https://doi.org/10.1029/151GM19, 2004.
Kinnaird, T. C., Robertson, A. H. F., and Morris, A.: Timing of uplift of the Troodos Massif (Cyprus) constrained by sedimentary and magnetic polarity evidence, J. Geol. Soc. London, 168, 457–470, https://doi.org/10.1144/0016-76492009-150, 2011.
Kocsis, L., Vennemann, T. W., Fontignie, D., Baumgartner, C., Montanari, A., and Jelen, B.: Oceanographic and climatic evolution of the Miocene Mediterranean deduced from Nd, Sr, C, and O isotope compositions of marine fossils and sediments, Paleoceanography, 23, Pa4211, https://doi.org/10.1029/2007pa001540, 2008.
Kouwenhoven, T. J., Seidenkrantz, M. S., and Van Der Zwaan, G. J.: Deep-water changes: The near-synchronous disappearance of a group of benthic foraminifera from the Late Miocene Mediterranean, Palaeogeogr. Palaeocl., 152, 259–281, https://doi.org/10.1016/S0031-0182(99)00065-6, 1999.
Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., and Wilson, D. S.: Chronology, causes and progression of the Messinian salinity crisis, Nature, 400, 652–655, https://doi.org/10.1038/23231, 1999a.
Krijgsman, W., Langereis, C. G., Zachariasse, W. J., Boccaletti, M., Moratti, G., Gelati, R., Iaccarino, S., Papani, G., and Villa, G.: Late Neogene evolution of the Taza–Guercif Basin (Rifian Corridor, Morocco) and implications for the Messinian salinity crisis, Mar. Geol., 153, 147–160, https://doi.org/10.1016/S0025-3227(98)00084-X, 1999b.
Krijgsman, W., Blanc-Valleron, M. M., Flecker, R., Hilgen, F. J., Kouwenhoven, T. J., Merle, D., Orszag-Sperber, F., and Rouchy, J. M.: The onset of the Messinian salinity crisis in the Eastern Mediterranean (Pissouri Basin, Cyprus), Earth Planet. Sc. Lett., 194, 299–310, https://doi.org/10.1016/S0012-821X(01)00574-X, 2002.
Lapierre, H.: Les formations sédimentaires et éruptives des nappes de Mamonia et leurs rélations avec le massif de Troodos (Chypre), PhD thesis, Université de Nancy, 1972.
Lear, C. H., Rosenthal, Y., and Wright, J. D.: The closing of a seaway: Ocean water masses and global climate change, Earth Planet. Sc. Lett., 210, 425–436, https://doi.org/10.1016/S0012-821X(03)00164-X, 2003.
Lord, A. R., Panayides, I., Urquhart, E., Xenophontos, C., and Malpas, J.: A biochronostratigraphical framework for the Late Cretaceous–Recent circum-Troodos sedimentary sequence, Cyprus, edited by: Panayides, I., Xenophontos, C., and Malpas, J., Proceedings of the Third International Conference on the Geology of the Eastern Mediterranean, Geological Survey Department, Nicosia, p. 297, 2000.
Lübbers, J., Kuhnt, W., Holbourn, A. E., Bolton, C. T., Gray, E., Usui, Y., Kochhann, K. G. D., Beil, S., and Andersen, N.: The Middle to Late Miocene “Carbonate Crash” in the Equatorial Indian Ocean, Paleoceanography and Paleoclimatology, 34, https://doi.org/10.1029/2018PA003482, 2019.
Lyle, M., Dadey, K. A., and Farrell, J. W.: 42. The Late Miocene (11–8 Ma) Eastern Pacific Carbonate Crash: evidence for reorganization of deep-water Circulation by the closure of the Panama Gateway, Proceedings of the ocean Drilling Program, Scientific Results, 138, 821–838, 1995.
Lyle, M., Drury, A. J., Tian, J., Wilkens, R., and Westerhold, T.: Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity, Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, 2019.
Mantis, M.: Upper Cretaceous-Tertiary foraminiferal zones in Cyprus, Science Research Centre of Cyprus, Epetiris, 3, 227–241, 1970.
Mantis, M.: Some Planktonic Foraminifera from South Cyprus, unpublished Masters thesis, University College London, 1972.
Manzi, V., Lugli, S., Roveri, M., Dela Pierre, F., Gennari, R., Lozar, F., Natalicchio, M., Schreiber, B. C., Taviani, M., and Turco, E.: The Messinian salinity crisis in Cyprus: a further step towards a new stratigraphic framework for Eastern Mediterranean, Basin Res,, 28, 207–236, https://doi.org/10.1111/bre.12107, 2016.
McArthur, J. M. and Howarth, R. J.: Sr-isotope stratigraphy, in: Geological Timescale 2004, edited by: Gradstein, F. M., Ogg, J. G., and Smith, A. G., Cambridge University Press, Cambridge, 589–589, https://doi.org/10.1017/CBO9780511536045, 2004.
McArthur, J. M., Howarth, R. J., and Bailey, T. R.: Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age, J. Geol., 109, 155–170, https://doi.org/10.1086/319243, 2001.
McCay, G. A., Robertson, A. H. F., Kroon, D., Raffi, I., Ellam, R. M., and Necdet, M.: Stratigraphy of Cretaceous to Lower Pliocene sediments in the northern part of Cyprus based on comparative 87Sr 86Sr isotopic, nannofossil and planktonic foraminiferal dating, Geol. Mag., 150, 333–359, https://doi.org/10.1017/S0016756812000465, 2013.
Miller, K. G., Wright, J. D., and Fairbanks, R. G.: Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion, J. Geophys. Res.-Sol. Ea., 96, 6829–6848, https://doi.org/10.1029/90JB02015, 1991a.
Miller, K. G., Feigenson, M. D., Wright, J. D., and Clement, B. M.: Miocene isotope reference section, Deep Sea Drilling Project Site 608: An evaluation of isotope and biostratigraphic resolution, Paleoceanography, 6, 33–52, https://doi.org/10.1029/90PA01941, 1991b.
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F.: The Phanerozoic record of global sea-level change, Science, 310, 5752, https://doi.org/10.1126/science.1116412, 2005.
Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., Wright, J. D., John Schmelz, W., Kopp, R. E., Mountain, G. S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records, Sci. Adv., 6, eaaz1346, https://doi.org/10.1126/sciadv.aaz1346, 2020.
Modestou, S. E., Leutert, T. J., Fernandez, A., Lear, C. H., and Meckler, A. N.: Warm middle Miocene Indian Ocean bottom water temperatures: comparison of clumped isotope and Mg Ca based estimates, Paleoceanography and Paleoclimatology, 2, https://doi.org/10.1029/2020PA003927, 2020.
Moores, E. M. and Vine, F. J.: The Troodos Massif, Cyprus and other ophiolites as oceanic crust: evaluation and implications, Philos. T. Roy. Soc. S.-A, 268, 443–467, 1971.
Morse, T. J.: Biostratigraphical constraints (calcareous nannofossils) on the Late Cretaceous to Late Miocene evolution of SW Cyprus, unpublished PhD thesis, University of Durham, 1996.
Necdet, M.: Kuzey Kıbrıs Jips Yatakları (Formation of Northern Cyprus gypsum), unpublished PhD thesis, Çukurova University, 2002.
Ng, Z. L., Hernández-Molina, F. J., Duarte, D., Sierro, F. J., Ledesma, S., Rogerson, M., Llave, E., Roque, C., and Manar, M. A.: Latest Miocene restriction of the Mediterranean Outflow Water: a perspective from the Gulf of Cádiz, Geo-Mar. Lett., 41, 1–17, https://doi.org/10.1007/s00367-021-00693-9, 2021.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh Program performs time-series analysis, Eos, Transactions American Geophysical Union, 77, https://doi.org/10.1029/96EO00259, 1996.
Payne, A. S. and Robertson, A. H. F.: Neogene supra-subduction zone extension in the Polis graben system, west Cyprus, J. Geol. Soc. London, 152, 613–628, https://doi.org/10.1144/gsjgs.152.4.0613, 1995.
Pearson, P. N. and Palmer, M. R.: Atmospheric carbon dioxide concentrations over the past 60 million years, Nature, 406, 695–699, https://doi.org/10.1038/35021000, 2000.
Pearson, P. N., Shackleton, N. J., and Hall, M. A.: Stable isotopic evidence for the sympatric divergence of Globigerinoides trilobus and Orbulina universa (planktonic foraminifera), J. Geol. Soc. London, 154, 295–302, https://doi.org/10.1144/gsjgs.154.2.0295, 1997.
Penttila, A.: Refining the timing of uplift in the northern margin of the Troodos Massif (Cyprus): Evidence from the Miocene sedimentary record, unpublished undergraduate maters thesis, University of Edinburgh, 2014.
Reghellin, D., Coxall, H. K., Dickens, G. R., and Backman, J.: Carbon and oxygen isotopes of bulk carbonate in sediment deposited beneath the eastern equatorial Pacific over the last 8 million years, Paleoceanography, 30, 1261–1286, https://doi.org/10.1002/2015PA002825, 2015.
Reidel, S.: Igneous Rock Associations 15. The Columbia River Basalt Group: A Flood Basalt Province in the Pacific Northwest, USA, Geosci. Can., 42, 151–168, 2015.
Robertson, A. H. F.: Pelagic chalks and calciturbidites from the Lower Tertiary of the Troodos Massif, Cyprus, J. Sediment. Petrol., 46, 1007–1016, https://doi.org/10.1306/212f70bd-2b24-11d7-8648000102c1865d, 1976.
Robertson, A. H. F.: Tertiary uplift history of the Troodos massif, Cyprus, Bull. Geol. Soc. Am., 88, 1763–1772, https://doi.org/10.1130/0016-7606(1977)88<1763:TUHOTT>2.0.CO;2, 1977.
Robertson, A. H. F.: Tectonic evolution of Cyprus, Ophiolites and Oceanic Lithosphere. Proceedings of the International Symposium, edited by: Malpas, J., Moores, E. M., Panayiotou, A., and Xenophontos, C., Cyprus Geological Survey Department, Nicosia, Cyprus, 235–250, 1990.
Robertson, A. H. F.: Late Miocene paleoenvironments and tectonic setting of the southern margin of Cyprus and the Eratosthenes Seamount, Proceedings of the Ocean Drilling Program: Scientific Results, 160, 453–464, https://doi.org/10.2973/odp.proc.sr.160.037.1998, 1998.
Robertson, A. H. F. and Hudson, J. D.: Cyprus umbers: Chemical precipitates on a Tethyan ocean ridge, Earth Planet. Sc. Lett., 18, 93–101, https://doi.org/10.1016/0012-821X(73)90039-3, 1973.
Robertson, A. H. F. and Parlak, O.: Eocene contractional deformation in the NW corner of the Arabian plate and its relation to Arabia-Eurasia collision in SE Türkiye, Int. Geol. Rev., 67, 717–753, https://doi.org/10.1080/00206814.2024.2400696, 2024.
Robertson, A. H. F. and Woodcock, N. H.: Mamonia Complex, southwest Cyprus: Evolution and emplacement of a Mesozoic continental margin, Bull. Geol. Soc. Am., 90, 651–665, https://doi.org/10.1130/0016-7606(1979)90<651:MCSCEA>2.0.CO;2, 1979.
Robertson, A. H. F. and Woodcock, N. H.: The role of the Kyrenia Range Lineament, Cyprus, in the geological evolution of the eastern Mediterranean area, Philos. T. Roy. Soc. S.-A, 317, 141–177, https://doi.org/10.1098/RSTA.1986.0030, 1986.
Robertson, A. H. F. and Xenophontos, C.: Development of concepts concerning the Troodos ophiolite and adjacent units in Cyprus, edited by: Prichard, H. M., Alabaster, T., Harris, N. B., and Neary, C. R., Geol. Soc. Spec. Pub., 76, 85–120, https://doi.org/10.1144/GSL.SP.1993.076.01.05, 1993.
Robertson, A. H. F., Clift, P. D., Degnan, P. J., and Jones, G.: Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys, Palaeogeogr. Palaeocl., 87, 289–343, https://doi.org/10.1016/0031-0182(91)90140-M, 1991.
Robertson, A. H. F., Parlak, O., and Ustaömer, T.: Overview of the Palaeozoic-Neogene evolution of Neotethys in the Eastern Mediterranean region (Southern Turkey, Cyprus, Syria), Petrol. Geosci., 18, 381–404, https://doi.org/10.1144/petgeo2011-091, 2012.
Robertson, A. H. F., McCay, G. A., Taslı, K., and Yıldırım, A.: Eocene development of the northerly active continental margin of the Southern Neotethys in the Kyrenia Range, north Cyprus, Geol. Mag., 151, 692–731, https://doi.org/10.1017/S0016756813000563, 2014.
Robertson, A. H. F., Boulton, S. J., Tasli, K., Yildirim, N., Inan, N., Yildiz, A., and Parlak, O.: Late Cretaceous–Miocene sedimentary development of the Arabian continental margin in SE Turkey (Adıyaman region): Implications for regional palaeogeography and the closure history of Southern Neotethys, J. Asian Earth Sci., 115, 571–616, https://doi.org/10.1016/J.JSEAES.2015.01.025, 2016.
Robertson, A. H. F., Necdet, M., Raffi, I., and Chen, G.: Early Messinian manganese deposition in NE Cyprus related to cyclical redox changes in a silled hemipelagic basin prior to the Mediterranean salinity crisis, Sediment. Geol., 385, 126–148, https://doi.org/10.1016/J.SEDGEO.2019.03.009, 2019.
Robertson, A. H. F., Parlak, O., and Tasli, K.: Testing alternative tectonic models for the Permian-Pleistocene tectonic development of the Kyrenia Range, N Cyprus: Implications for E Mediterranean Tethyan palaeogeography, Gondwana Res., 132, 343–379, https://doi.org/10.1016/j.gr.2024.05.003, 2024.
Rouchy, J. M. and Caruso, A.: The Messinian salinity crisis in the Mediterranean basin: A reassessment of the data and an integrated scenario, Sediment. Geol., 188, 35–67, https://doi.org/10.1016/j.sedgeo.2006.02.005, 2006.
Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., Sierro, F. J., Bertini, A., Camerlenghi, A., De Lange, G., Govers, R., Hilgen, F. J., Hübscher, C., Meijer, P. T., and Stoica, M.: The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences, Mar. Geol., 352, 25–58, https://doi.org/10.1016/j.margeo.2014.02.002, 2014.
Sosdian, S. M. and Lear, C. H.: Initiation of the Western Pacific Warm Pool at the Middle Miocene Climate Transition?, Paleoceanography and Paleoclimatology, 35, e2020PA003920, https://doi.org/10.1029/2020pa003920, 2020.
Sosdian, S. M., Babila, T. L., Greenop, R., Foster, G. L., and Lear, C. H.: Ocean carbon storage across the middle Miocene: a new interpretation for the Monterey Event, Nat. Commun., 11, 134, https://doi.org/10.1038/s41467-019-13792-0, 2020.
Spezzaferri, S., Kucera, M., Pearson, P. N., Wade, B. S., Rappo, S., Poole, C. R., Morard, R., and Stalder, C.: Fossil and genetic evidence for the polyphyletic nature of the planktonic foraminifera “Globigerinoides”, and description of the new genus Trilobatus, PLOS ONE, 10, e0128108, https://doi.org/10.1371/JOURNAL.PONE.0128108, 2015.
Steinthorsdottir, M., Coxall, H. K., de Boer, A. M., Huber, M., Barbolini, N., Bradshaw, C. D., Burls, N. J., Feakins, S. J., Gasson, E., Henderiks, J., Holbourn, A. E., Kiel, S., Kohn, M. J., Knorr, G., Kürschner, W. M., Lear, C. H., Liebrand, D., Lunt, D. J., Mörs, T., Pearson, P. N., Pound, M. J., Stoll, H., and Strömberg, C. A. E.: The Miocene: The future of the past, Paleoceanography and Paleoclimatology, 36, e2020PA004037, https://doi.org/10.1029/2020PA004037, 2021.
Super, J. R., Thomas, E., Pagani, M., Huber, M., O'Brien, C. L., and Hull, P. M.: Miocene Evolution of North Atlantic Sea Surface Temperature, Paleoceanography and Paleoclimatology, 35, e2019PA003748, https://doi.org/10.1029/2019pa003748, 2020.
Tanner, T., Hernández-Almeida, I., Drury, A. J., Guitián, J., and Stoll, H.: Decreasing Atmospheric CO2 During the Late Miocene Cooling, Paleoceanography and Paleoclimatology, 35, e2020PA003925, https://doi.org/10.1029/2020PA003925, 2020.
Torfstein, A. and Steinberg, J.: The Oligo–Miocene closure of the Tethys Ocean and evolution of the proto-Mediterranean Sea, Sci. Rep., 10, 13817, https://doi.org/10.1038/s41598-020-70652-4, 2020.
Tzanova, A., Herbert, T. D., and Peterson, L.: Cooling Mediterranean Sea surface temperatures during the Late Miocene provide a climate context for evolutionary transitions in Africa and Eurasia, Earth Planet. Sc. Lett., 419, 71–80, https://doi.org/10.1016/j.epsl.2015.03.016, 2015.
Varol, B. and Atalar, C.: Messinian evaporites in the Mesaoria Basin, North Cyprus: facies and environmental interpretations, Carbonate. Evaporite., 32, 349–365, https://doi.org/10.1007/s13146-016-0311-8, 2017.
Vincent, E. and Berger, W. H.: Carbon dioxide and polar cooling in the Miocene: the Monterey hypothesis, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, 32, 455–468, https://doi.org/10.1029/gm032p0455, 1985.
Vincent, E., Killingley, J. S., and Berger, W. H.: The Magnetic Epoch-6 carbon shift: A change in the ocean's 13C 12C ratio 6.2 million years ago, Mar. Micropaleontol., 5, 185–203, https://doi.org/10.1016/0377-8398(80)90010-9, 1980.
Wade, B. S. and Bown, P. R.: Calcareous nannofossils in extreme environments: The Messinian Salinity Crisis, Polemi Basin, Cyprus, Palaeogeogr. Palaeocl., 233, 271–286, https://doi.org/10.1016/j.palaeo.2005.10.007, 2006.
Weijermars, R.: Neogene tectonics in the Western Mediterranean may have caused the Messinian salinity crisis and an associated glacial event, Tectonophysics, 148, 211–219, https://doi.org/10.1016/0040-1951(88)90129-1, 1988.
Westerhold, T., Bickert, T., and Röhl, U.: Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): new constrains on Miocene climate variability and sea-level fluctuations, Palaeogeogr. Palaeocl., 217, 205–222, https://doi.org/10.1016/J.PALAEO.2004.12.001, 2005.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1388, https://doi.org/10.1126/science.aba6853, 2020.
Woodruff, F. and Savin, S. M.: δ13C values of Miocene Pacific benthic foraminifera: Correlations with sea level and biological productivity, Geology, 13, 119–122, https://doi.org/10.1130/0091-7613(1985)13<119:CVOMPB>2.0.CO;2, 1985.
Woodruff, F. and Savin, S. M.: Mid-Miocene isotope stratigraphy in the deep sea: High-resolution correlations, paleoclimatic cycles, and sediment preservation, Paleoceanography, 6, 755–806, https://doi.org/10.1029/91PA02561, 1991.
You, Y.: Climate-model evaluation of the contribution of sea-surface temperature and carbon dioxide to the Middle Miocene Climate Optimum as a possible analogue of future climate change, Aust. J. Earth Sci., 57, 207–219, https://doi.org/10.1080/08120090903521671, 2010.
You, Y., Huber, M., Müller, R. D., Poulsen, C. J., and Ribbe, J.: Simulation of the Middle Miocene Climate Optimum, Geophys. Res. Lett., 36, 4702, https://doi.org/10.1029/2008GL036571, 2009.
Zachos, J. C., Pagani, H., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, https://doi.org/10.1038/nature06588, 2008.
Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M., and DeConto, R.: A 40-million-year history of atmospheric CO2, Philos. T. Roy. Soc. A, 371, 20130096, https://doi.org/10.1098/rsta.2013.0096, 2013.
Short summary
Using sediment samples from Cyprus, we investigated climate and ocean changes during the Miocene (~23–5 million years ago). Our new record reveals the effects of global climate changes, such as a warming event linked to high CO2 levels. Later, tectonic events controlled eastern Mediterranean conditions by limiting connectivity with the open ocean. With the first record of its kind for this region, we show how climate and geological processes both affect oceans.
Using sediment samples from Cyprus, we investigated climate and ocean changes during the Miocene...