Articles | Volume 21, issue 11
https://doi.org/10.5194/cp-21-2299-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-2299-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vegetation and climate changes during the Early–Late Pliocene Transition ( ∼ 3.6 Ma) in the Burdur Basin (Southwestern Anatolia): a comparison with the Mediterranean
Mary Robles
CORRESPONDING AUTHOR
Aix-Marseille Univ., CNRS, IRD, INRAE, UM 34 CEREGE, Aix-en-Provence, France
Valérie Andrieu
Aix-Marseille Univ., CNRS, IRD, INRAE, UM 34 CEREGE, Aix-en-Provence, France
Pierre Rochette
Aix-Marseille Univ., CNRS, IRD, INRAE, UM 34 CEREGE, Aix-en-Provence, France
Séverine Fauquette
Univ. Montpellier, CNRS, IRD, UMR 5554 ISEM, Montpellier, France
François Demory
Aix-Marseille Univ., CNRS, IRD, INRAE, UM 34 CEREGE, Aix-en-Provence, France
Oktay Parlak
General Directorate of Mineral Research and Exploration, Ankara, Türkiye
Eliane Charrat
Aix-Marseille Univ., CNRS, IRD, Avignon Univ., IMBE, Aix-en-Provence, France
Belinda Gambin
University of Malta, Institute of Earth Systems, Msida, Malta
Mehmet Cihat Alçiçek
Pamukkale University, Department of Geology, Denizli, Türkiye
Related authors
Léa d'Oliveira, Sébastien Joannin, Guillemette Ménot, Nathalie Combourieu-Nebout, Lucas Dugerdil, Marion Blache, Mary Robles, Assunta Florenzano, Alessia Masi, Anna Maria Mercuri, Laura Sadori, Marie Balasse, and Odile Peyron
Clim. Past, 21, 2331–2359, https://doi.org/10.5194/cp-21-2331-2025, https://doi.org/10.5194/cp-21-2331-2025, 2025
Short summary
Short summary
We studied climate change in the central Mediterranean during the Holocene by analysing 38 pollen records. Several methods were used to obtain reliable results on seasonal temperatures and precipitation. Our results show that, during the Holocene, summer temperatures were colder in the south and warmer in the north, with wetter winters and drier summers, especially in the south. Unlike winter conditions, summer ones did not follow variations in insolation, suggesting other factors.
Liz Charton, Nathalie Combourieu-Nebout, Adele Bertini, Odile Peyron, Mary Robles, Vincent Lebreton, and Marie-Hélène Moncel
EGUsphere, https://doi.org/10.5194/egusphere-2025-5024, https://doi.org/10.5194/egusphere-2025-5024, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
New high-resolution pollen data and pollen-inferred climatic reconstructions from ODP 976 (Alboran Sea) reveal rapid climate oscillations during MIS 6 (187–130 ka BP) in the southwestern Mediterranean. Three main phases show shifts from cool-humid to cold-arid and then wetter conditions, with Heinrich Stadial 11 marking severe cooling and steppe expansion. Neanderthals persisted regionally, though HS11 may have contributed to population decline and the end of Lower Palaeolithic industries.
Amy Cromartie, Cindy De Jonge, Guillemette Ménot, Mary Robles, Lucas Dugerdil, Odile Peyron, Marta Rodrigo-Gámiz, Jon Camuera, Maria Jose Ramos-Roman, Gonzalo Jiménez-Moreno, Claude Colombié, Lilit Sahakyan, and Sébastien Joannin
EGUsphere, https://doi.org/10.5194/egusphere-2025-526, https://doi.org/10.5194/egusphere-2025-526, 2025
Short summary
Short summary
BrGDGT are a molecular biomarker utilized for paleotemperature reconstructions. One issue, however, with utilizing brGDGTs is that the distribution differs in relation to sediment environments (i.e., peat, lake, soil) which change overtime. We utilize the probability estimate outputs from five machine learning algorithms, and a new modern brGDGTs database to track change and apply these models’ to two downcore records utilizing pollen and non-pollen polymorphs to confirm the model’s accuracy.
Mary Robles, Odile Peyron, Guillemette Ménot, Elisabetta Brugiapaglia, Sabine Wulf, Oona Appelt, Marion Blache, Boris Vannière, Lucas Dugerdil, Bruno Paura, Salomé Ansanay-Alex, Amy Cromartie, Laurent Charlet, Stephane Guédron, Jacques-Louis de Beaulieu, and Sébastien Joannin
Clim. Past, 19, 493–515, https://doi.org/10.5194/cp-19-493-2023, https://doi.org/10.5194/cp-19-493-2023, 2023
Short summary
Short summary
Quantitative climate reconstructions based on pollen and brGDGTs reveal, for the Late Glacial, a warm Bølling–Allerød and a marked cold Younger Dryas in Italy, showing no latitudinal differences in terms of temperatures across Italy. In terms of precipitation, no latitudinal differences are recorded during the Bølling–Allerød, whereas 40–42° N appears as a key junction point between wetter conditions in southern Italy and drier conditions in northern Italy during the Younger Dryas.
Léa d'Oliveira, Sébastien Joannin, Guillemette Ménot, Nathalie Combourieu-Nebout, Lucas Dugerdil, Marion Blache, Mary Robles, Assunta Florenzano, Alessia Masi, Anna Maria Mercuri, Laura Sadori, Marie Balasse, and Odile Peyron
Clim. Past, 21, 2331–2359, https://doi.org/10.5194/cp-21-2331-2025, https://doi.org/10.5194/cp-21-2331-2025, 2025
Short summary
Short summary
We studied climate change in the central Mediterranean during the Holocene by analysing 38 pollen records. Several methods were used to obtain reliable results on seasonal temperatures and precipitation. Our results show that, during the Holocene, summer temperatures were colder in the south and warmer in the north, with wetter winters and drier summers, especially in the south. Unlike winter conditions, summer ones did not follow variations in insolation, suggesting other factors.
Liz Charton, Nathalie Combourieu-Nebout, Adele Bertini, Odile Peyron, Mary Robles, Vincent Lebreton, and Marie-Hélène Moncel
EGUsphere, https://doi.org/10.5194/egusphere-2025-5024, https://doi.org/10.5194/egusphere-2025-5024, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
New high-resolution pollen data and pollen-inferred climatic reconstructions from ODP 976 (Alboran Sea) reveal rapid climate oscillations during MIS 6 (187–130 ka BP) in the southwestern Mediterranean. Three main phases show shifts from cool-humid to cold-arid and then wetter conditions, with Heinrich Stadial 11 marking severe cooling and steppe expansion. Neanderthals persisted regionally, though HS11 may have contributed to population decline and the end of Lower Palaeolithic industries.
Amy Cromartie, Cindy De Jonge, Guillemette Ménot, Mary Robles, Lucas Dugerdil, Odile Peyron, Marta Rodrigo-Gámiz, Jon Camuera, Maria Jose Ramos-Roman, Gonzalo Jiménez-Moreno, Claude Colombié, Lilit Sahakyan, and Sébastien Joannin
EGUsphere, https://doi.org/10.5194/egusphere-2025-526, https://doi.org/10.5194/egusphere-2025-526, 2025
Short summary
Short summary
BrGDGT are a molecular biomarker utilized for paleotemperature reconstructions. One issue, however, with utilizing brGDGTs is that the distribution differs in relation to sediment environments (i.e., peat, lake, soil) which change overtime. We utilize the probability estimate outputs from five machine learning algorithms, and a new modern brGDGTs database to track change and apply these models’ to two downcore records utilizing pollen and non-pollen polymorphs to confirm the model’s accuracy.
Mary Robles, Odile Peyron, Guillemette Ménot, Elisabetta Brugiapaglia, Sabine Wulf, Oona Appelt, Marion Blache, Boris Vannière, Lucas Dugerdil, Bruno Paura, Salomé Ansanay-Alex, Amy Cromartie, Laurent Charlet, Stephane Guédron, Jacques-Louis de Beaulieu, and Sébastien Joannin
Clim. Past, 19, 493–515, https://doi.org/10.5194/cp-19-493-2023, https://doi.org/10.5194/cp-19-493-2023, 2023
Short summary
Short summary
Quantitative climate reconstructions based on pollen and brGDGTs reveal, for the Late Glacial, a warm Bølling–Allerød and a marked cold Younger Dryas in Italy, showing no latitudinal differences in terms of temperatures across Italy. In terms of precipitation, no latitudinal differences are recorded during the Bølling–Allerød, whereas 40–42° N appears as a key junction point between wetter conditions in southern Italy and drier conditions in northern Italy during the Younger Dryas.
Amir Kalifi, Philippe Hervé Leloup, Philippe Sorrel, Albert Galy, François Demory, Vincenzo Spina, Bastien Huet, Frédéric Quillévéré, Frédéric Ricciardi, Daniel Michoux, Kilian Lecacheur, Romain Grime, Bernard Pittet, and Jean-Loup Rubino
Solid Earth, 12, 2735–2771, https://doi.org/10.5194/se-12-2735-2021, https://doi.org/10.5194/se-12-2735-2021, 2021
Short summary
Short summary
Molasse deposits, deposited and deformed at the western Alpine front during the Miocene (23 to 5.6 Ma), record the chronology of that deformation. We combine the first precise chronostratigraphy (precision of ∼0.5 Ma) of the Miocene molasse, the reappraisal of the regional structure, and the analysis of growth deformation structures in order to document three tectonic phases and the precise chronology of thrust westward propagation during the second one involving the Belledonne basal thrust.
Cited articles
Alçiçek, H. and Jiménez-Moreno, G.: Late Miocene to Plio-Pleistocene fluvio-lacustrine system in the Karacasu Basin (SW Anatolia, Turkey): Depositional, paleogeographic and paleoclimatic implications, Sedimentary Geology, 291, 62–83, https://doi.org/10.1016/j.sedgeo.2013.03.014, 2013.
Alçiçek, M. C., Mayda, S., and Titov, V. V.: Lower Pleistocene stratigraphy of the Burdur Basin of SW Anatolia, Comptes Rendus Palevol., 12, 1–11, https://doi.org/10.1016/j.crpv.2012.09.005, 2013a.
Alçiçek, M. C., Brogi, A., Capezzuoli, E., Liotta, D., and Meccheri, M.: Superimposed basin formation during Neogene–Quaternary extensional tectonics in SW-Anatolia (Turkey): Insights from the kinematics of the Dinar Fault Zone, Tectonophysics, 608, 713–727, https://doi.org/10.1016/j.tecto.2013.08.008, 2013b.
Alçiçek, M. C., Mayda, S., and Demirel, F. A.: Discussion on Neogene-Quaternary evolution of the Tefenni basin on the Fethiye-Burdur fault zone, SW Anatolia-Turkey, Journal of African Earth Sciences, 134, 794–799, https://doi.org/10.1016/j.jafrearsci.2016.07.024, 2017.
Alçiçek, M. C., Mayda, S., ten Veen, J. H., Boulton, S. J., Neubauer, T. A., Alçiçek, H., Tesakov, A. S., Saraç, G., Hakyemez, H. Y., Göktaş, F., Murray, A. M., Titov, V. V., Jiménez-Moreno, G., Büyükmeriç, Y., Wesselingh, F. P., Bouchal, J. M., Demirel, F. A., Kaya, T. T., Halaçlar, K., Bilgin, M., and van den Hoek Ostende, L. W.: Reconciling the stratigraphy and depositional history of the Lycian orogen-top basins, SW Anatolia, Palaeobio. Palaeoenv., 99, 551–570, https://doi.org/10.1007/s12549-019-00394-3, 2019.
Anadón, P., Utrilla, R., Vázquez, A., Martín-Rubio, M., Rodriguez-Lázaro, J., and Robles, F.: Paleoenvironmental evolution of the Pliocene Villarroya Lake, northern Spain, from stable isotopes and trace-element geochemistry of ostracods and molluscs, J. Paleolimnol., 39, 399–419, https://doi.org/10.1007/s10933-007-9121-2, 2008.
Andersen, S. T.: Identification of wild grass and cereal pollen, Danmarks Geologiske Undersøgelse Årbog, 69–92, https://doi.org/10.22008/gpub/38273, 1979.
Andrieu, V. and Gambin, B.: An illustrated protocol for extracting palynomorphs from Early Pleistocene pollen-poor sediments using LST Fastfloat, Review of Palaeobotany and Palynology, 341, 105372, https://doi.org/10.1016/j.revpalbo.2025.105372, 2025.
Andrieu-Ponel, V., Rochette, P., Demory, F., Alçiçek, H., Boulbes, N., Bourlès, D., Helvacý, C., Lebatard, A.-E., Mayda, S., Michaud, H., Moigne, A.-M., Nomade, S., Perrin, M., Ponel, P., Rambeau, C., Vialet, A., Gambin, B., and Alçiçek, M. C.: Continuous presence of proto-cereals in Anatolia since 2.3 Ma, and their possible co-evolution with large herbivores and hominins, Sci. Rep., 11, 8914, https://doi.org/10.1038/s41598-021-86423-8, 2021.
Athanasiou, M., Bouloubassi, I., Gogou, A., Klein, V., Dimiza, M. D., Parinos, C., Skampa, E., and Triantaphyllou, M. V.: Sea surface temperatures and environmental conditions during the “warm Pliocene” interval (∼ 4.1–3.2 Ma) in the Eastern Mediterranean (Cyprus), Global and Planetary Change, 150, 46–57, https://doi.org/10.1016/j.gloplacha.2017.01.008, 2017.
Basilici, G.: Sedimentary facies in an extensional and deep-lacustrine depositional system: the Pliocene Tiberino Basin, Central Italy, Sedimentary Geology, 109, 73–94, https://doi.org/10.1016/S0037-0738(96)00056-5, 1997.
Bering, D.: The development of the Neogene and Quaternary intram ontane basins within the Pisidic lake d istrict in S. Anatolia, Newsletters on Stratigraphy, 27–32, https://doi.org/10.1127/nos/1/1971/27, 1971.
Bertini, A.: Pliocene to Pleistocene palynoflora and vegetation in Italy: State of the art, Quaternary International, 225, 5–24, https://doi.org/10.1016/j.quaint.2010.04.025, 2010.
Bertoldi, R., Rio, D., and Thunell, R.: Pliocene-pleistocene vegetational and climatic evolution of the south-central mediterranean, Palaeogeography, Palaeoclimatology, Palaeoecology, 72, 263–275, https://doi.org/10.1016/0031-0182(89)90146-6, 1989.
Bessais, E. and Cravatte, J.: Les écosystèmes végétaux Pliocènes de catalogne méridionale. Variations latitudinales dans le domaine nord-ouest méditerranéen, Geobios, 21, 49–63, https://doi.org/10.1016/S0016-6995(88)80031-7, 1988.
Beug, H.-J.: Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, Friedrich Pfeil, München, 542 pp., 2004.
Biltekin, D., Popescu, S.-M., Suc, J.-P., Quézel, P., Jiménez-Moreno, G., Yavuz, N., and Çaðatay, M. N.: Anatolia: A long-time plant refuge area documented by pollen records over the last 23 million years, Review of Palaeobotany and Palynology, 215, 1–22, https://doi.org/10.1016/j.revpalbo.2014.12.004, 2015.
Blavoux, B., Dubar, M., and Daniel, M.: Indices isotopiques (13C et 18O) d'un important refroidissement du climat à la fin du Pliocène (formation lacustre de Puimoisson, Alpes-de-Haute-Provence, France), Comptes Rendus de l'Académie des Sciences – Series IIA – Earth and Planetary Science, 329, 183–188, https://doi.org/10.1016/S1251-8050(99)80233-X, 1999.
Bozkurt, E.: Origin of NE-trending basins in western Turkey, Geodinamica Acta, 16, 61–81, https://doi.org/10.1016/S0985-3111(03)00002-0, 2003.
Brewer, S., Guiot, J., Sánchez-Goñi, M. F., and Klotz, S.: The climate in Europe during the Eemian: a multi-method approach using pollen data, Quaternary Science Reviews, 27, 2303–2315, https://doi.org/10.1016/j.quascirev.2008.08.029, 2008.
Brierley, C. M., Fedorov, A. V., Liu, Z., Herbert, T. D., Lawrence, K. T., and LaRiviere, J. P.: Greatly Expanded Tropical Warm Pool and Weakened Hadley Circulation in the Early Pliocene, Science, 323, 1714–1718, https://doi.org/10.1126/science.1167625, 2009.
Brown, T. A., Jones, M. K., Powell, W., and Allaby, R. G.: The complex origins of domesticated crops in the Fertile Crescent, Trends in Ecology & Evolution, 24, 103–109, https://doi.org/10.1016/j.tree.2008.09.008, 2009.
Charton, L., Combourieu-Nebout, N., Bertini, A., Lebreton, V., Peyron, O., Robles, M., Sassoon, D., and Moncel, M.-H.: Vegetation and climate changes during the Middle to Upper Palaeolithic transition in the southwestern Mediterranean: What happened to the last Neanderthals during Heinrich stadial 4?, Quaternary Science Reviews, 359, 109345, https://doi.org/10.1016/j.quascirev.2025.109345, 2025.
Chevalier, M., Davis, B. A. S., Heiri, O., Seppä, H., Chase, B. M., Gajewski, K., Lacourse, T., Telford, R. J., Finsinger, W., Guiot, J., Kühl, N., Maezumi, S. Y., Tipton, J. R., Carter, V. A., Brussel, T., Phelps, L. N., Dawson, A., Zanon, M., Vallé, F., Nolan, C., Mauri, A., de Vernal, A., Izumi, K., Holmström, L., Marsicek, J., Goring, S., Sommer, P. S., Chaput, M., and Kupriyanov, D.: Pollen-based climate reconstruction techniques for late Quaternary studies, Earth-Science Reviews, 210, 103384, https://doi.org/10.1016/j.earscirev.2020.103384, 2020.
Çolak, M. A., Öztaþ, B., Özgencil, Ý. K., Soyluer, M., Korkmaz, M., Ramírez-García, A., Metin, M., Yýlmaz, G., Ertuðrul, S., Tavþanoðlu, Ü. N., Amorim, C. A., Özen, C., Apaydýn Yaðcý, M., Yaðcý, A., Pacheco, J. P., Özkan, K., Beklioðlu, M., Jeppesen, E., and Akyürek, Z.: Increased Water Abstraction and Climate Change Have Substantial Effect on Morphometry, Salinity, and Biotic Communities in Lakes: Examples from the Semi-Arid Burdur Basin (Turkey), Water, 14, 1241, https://doi.org/10.3390/w14081241, 2022.
Colleoni, F., Masina, S., Negri, A., and Marzocchi, A.: Plio–Pleistocene high–low latitude climate interplay: A Mediterranean point of view, Earth and Planetary Science Letters, 319–320, 35–44, https://doi.org/10.1016/j.epsl.2011.12.020, 2012.
Combourieu-Nebout, N., Bertini, A., Russo-Ermolli, E., Peyron, O., Klotz, S., Montade, V., Fauquette, S., Allen, J., Fusco, F., Goring, S., Huntley, B., Joannin, S., Lebreton, V., Magri, D., Martinetto, E., Orain, R., and Sadori, L.: Climate changes in the central Mediterranean and Italian vegetation dynamics since the Pliocene, Review of Palaeobotany and Palynology, 218, 127–147, https://doi.org/10.1016/j.revpalbo.2015.03.001, 2015.
Connor, S. E., Thomas, I., Kvavadze, E. V., Arabuli, G. J., Avakov, G. S., and Sagona, A.: A survey of modern pollen and vegetation along an altitudinal transect in southern Georgia, Caucasus region, Review of Palaeobotany and Palynology, 129, 229–250, https://doi.org/10.1016/j.revpalbo.2004.02.003, 2004.
Cravatte, J. and Suc, J.-P.: Climatic evolution of North-Western Mediterranean area during Pliocene and Early Pleistocene by pollen-analysis and forams of drill Autan 1. Chronostratigraphic correlations, Pollen et Spores, 23, 247–258, 1981.
Cugny, C., Mazier, F., and Galop, D.: Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity, Veget. Hist. Archaeobot., 19, 391–408, https://doi.org/10.1007/s00334-010-0242-6, 2010.
Davies, C. P. and Fall, P. L.: Modern Pollen Precipitation from an Elevational Transect in Central Jordan and Its Relationship to Vegetation, Journal of Biogeography, 28, 1195–1210, 2001.
Davis, P. H., Cullen, J., and Coode, M. J. E. (Eds.): Introduction, in: Flora of Turkey and the East Aegean Islands, 1, Edinburgh University Press, 1–26, 1965.
Davraz, A., Sener, E., and Sener, S.: Evaluation of climate and human effects on the hydrology and water quality of Burdur Lake, Turkey, Journal of African Earth Sciences, 158, 103569, https://doi.org/10.1016/j.jafrearsci.2019.103569, 2019.
De Schepper, S., Gibbard, P. L., Salzmann, U., and Ehlers, J.: A global synthesis of the marine and terrestrial evidence for glaciation during the Pliocene Epoch, Earth-Science Reviews, 135, 83–102, https://doi.org/10.1016/j.earscirev.2014.04.003, 2014.
Demirel, F. A. and Mayda, S.: A new Early Pleistocene mammalian fauna from Burdur Basin, SW Turkey, Rus. J. Theriol., 13, 55–63, https://doi.org/10.15298/rusjtheriol.13.2.01, 2014.
Derviþoðlu, A., Yaðmur, N., Fýratlý, E., Musaoðlu, N., and Tanýk, A.: Spatio-Temporal Assessment of the Shrinking Lake Burdur, Turkey, Ijegeo, 9, 169–176, https://doi.org/10.30897/ijegeo.1078781, 2022.
Diniz, F.: Etude palynologique du bassin pliocène de Rio Maior (Portugal), Paléobiologie continentale, 14, 259–267, 1984.
Djamali, M., de Beaulieu, J.-L., Campagne, P., Andrieu-Ponel, V., Ponel, P., Leroy, S. A. G., and Akhani, H.: Modern pollen rain–vegetation relationships along a forest–steppe transect in the Golestan National Park, NE Iran, Review of Palaeobotany and Palynology, 153, 272–281, https://doi.org/10.1016/j.revpalbo.2008.08.005, 2009.
d'Oliveira, L., Dugerdil, L., Ménot, G., Evin, A., Muller, S. D., Ansanay-Alex, S., Azuara, J., Bonnet, C., Bremond, L., Shah, M., and Peyron, O.: Reconstructing 15 000 years of southern France temperatures from coupled pollen and molecular (branched glycerol dialkyl glycerol tetraether) markers (Canroute, Massif Central), Clim. Past, 19, 2127–2156, https://doi.org/10.5194/cp-19-2127-2023, 2023.
Dugerdil, L., Joannin, S., Peyron, O., Jouffroy-Bapicot, I., Vannière, B., Boldgiv, B., Unkelbach, J., Behling, H., and Ménot, G.: Climate reconstructions based on GDGT and pollen surface datasets from Mongolia and Baikal area: calibrations and applicability to extremely cold–dry environments over the Late Holocene, Clim. Past, 17, 1199–1226, https://doi.org/10.5194/cp-17-1199-2021, 2021a.
Dugerdil, L., Ménot, G., Peyron, O., Jouffroy-Bapicot, I., Ansanay-Alex, S., Antheaume, I., Behling, H., Boldgiv, B., Develle, A.-L., Grossi, V., Magail, J., Makou, M., Robles, M., Unkelbach, J., Vannière, B., and Joannin, S.: Late Holocene Mongolian climate and environment reconstructions from brGDGTs, NPPs and pollen transfer functions for Lake Ayrag: Paleoclimate implications for Arid Central Asia, Quaternary Science Reviews, 273, 107235, https://doi.org/10.1016/j.quascirev.2021.107235, 2021b.
El-Moslimany, A. P.: Ecological significance of common nonarboreal pollen: examples from drylands of the Middle East, Review of Palaeobotany and Palynology, 64, 343–350, https://doi.org/10.1016/0034-6667(90)90150-H, 1990.
Ezquerro, L., Muñoz, A., Liesa, C. L., Simón, J. L., and Luzón, A.: Late Neogene to Early Quaternary climate evolution in southwestern Europe from a continental perspective, Global and Planetary Change, 211, 103788, https://doi.org/10.1016/j.gloplacha.2022.103788, 2022.
Fauquette, S., Guiot, J., and Suc, J.-P.: A method for climatic reconstruction of the Mediterranean Pliocene using pollen data, Palaeogeography, Palaeoclimatology, Palaeoecology, 144, 183–201, https://doi.org/10.1016/S0031-0182(98)00083-2, 1998a.
Fauquette, S., Quézel, P., Guiot, J., and Suc, J.-P.: Signification bioclimatique de taxons-guides du Pliocène méditerranéen, Geobios, 31, 151–169, https://doi.org/10.1016/S0016-6995(98)80035-1, 1998b.
Fauquette, S., Suc, J.-P., Guiot, J., Diniz, F., Feddi, N., Zheng, Z., Bessais, E., and Drivaliari, A.: Climate and biomes in the West Mediterranean area during the Pliocene, Palaeogeography, Palaeoclimatology, Palaeoecology, 152, 15–36, https://doi.org/10.1016/S0031-0182(99)00031-0, 1999.
Fauquette, S., Suc, J.-P., Bertini, A., Popescu, S.-M., Warny, S., Bachiri Taoufiq, N., Perez Villa, M.-J., Chikhi, H., Feddi, N., Subally, D., Clauzon, G., and Ferrier, J.: How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region, Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 281–301, https://doi.org/10.1016/j.palaeo.2006.03.029, 2006.
Fauquette, S., Suc, J. P., Jimenez-Moreno, G., Micheels, A., Jost, A., Favre, E., Bachiri, N., Bertini, T. A., Clet-Pellerin, M., Diniz, F., Farjanel, G., Feddi, N., and Zheng, Z.: Latitudinal climatic gradients in the Western European and Mediterranean regions from the Mid-Miocene (c. 15 Ma) to the Mid-Pliocene (c. 3.5 Ma) as quantified from pollen data, in: Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, edited by: Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N., The Geological Society of London on behalf of The Micropalaeontological Society, 481–502, https://doi.org/10.1144/TMS002.22, 2007.
Feddi, N., Fauquette, S., and Suc, J.-P.: Histoire plio-pléistocène des écosystèmes végétaux de Méditerranée sud-occidentale: apport de l'analyse pollinique de deux sondages en mer d'Alboran, Geobios, 44, 57–69, https://doi.org/10.1016/j.geobios.2010.03.007, 2011.
Fedorov, A. V., Brierley, C. M., Lawrence, K. T., Liu, Z., Dekens, P. S., and Ravelo, A. C.: Patterns and mechanisms of early Pliocene warmth, Nature, 496, 43–49, https://doi.org/10.1038/nature12003, 2013.
Feng, R., Bhattacharya, T., Otto-Bliesner, B. L., Brady, E. C., Haywood, A. M., Tindall, J. C., Hunter, S. J., Abe-Ouchi, A., Chan, W.-L., Kageyama, M., Contoux, C., Guo, C., Li, X., Lohmann, G., Stepanek, C., Tan, N., Zhang, Q., Zhang, Z., Han, Z., Williams, C. J. R., Lunt, D. J., Dowsett, H. J., Chandan, D., and Peltier, W. R.: Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks, Nat. Commun., 13, 1306, https://doi.org/10.1038/s41467-022-28814-7, 2022.
Ge, Y., Li, Y., Bunting, M. J., Li, B., Li, Z., and Wang, J.: Relation between modern pollen rain, vegetation and climate in northern China: Implications for quantitative vegetation reconstruction in a steppe environment, Sci. Total Environ., 586, 25–41, https://doi.org/10.1016/j.scitotenv.2017.02.027, 2017.
Gostyñska, J., Pankiewicz, R., Romanowska-Duda, Z., and Messyasz, B.: Overview of Allelopathic Potential of Lemna minor L. Obtained from a Shallow Eutrophic Lake, Molecules, 27, 3428, https://doi.org/10.3390/molecules27113428, 2022.
Gradstein, F. M. and Ogg, J. G.: Chapter 2 – The Chronostratigraphic Scale, in: Geologic Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, 21–32, https://doi.org/10.1016/B978-0-12-824360-2.00002-4, 2020.
Grant, G. R., Naish, T. R., Dunbar, G. B., Stocchi, P., Kominz, M. A., Kamp, P. J. J., Tapia, C. A., McKay, R. M., Levy, R. H., and Patterson, M. O.: The amplitude and origin of sea-level variability during the Pliocene epoch, Nature, 574, 237–241, https://doi.org/10.1038/s41586-019-1619-z, 2019.
Grimm, E. C.: Coniss: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares, Computers & Geosciences, 13, 13–35, https://doi.org/10.1016/0098-3004(87)90022-7, 1987.
Guiot, J.: Methodology of the last climatic cycle reconstruction in France from pollen data, Palaeogeography, Palaeoclimatology, Palaeoecology, 80, 49–69, https://doi.org/10.1016/0031-0182(90)90033-4, 1990.
Gürel, A. and Yýldýz, A.: Diatom communities, lithofacies characteristics and paleoenvironmental interpretation of Pliocene diatomite deposits in the Ihlara–Selime plain (Aksaray, Central Anatolia, Turkey), Journal of Asian Earth Sciences, 30, 170–180, https://doi.org/10.1016/j.jseaes.2006.07.015, 2007.
Haywood, A. M., Dowsett, H. J., Valdes, P. J., Lunt, D. J., Francis, J. E., and Sellwood, B. W.: Introduction. Pliocene climate, processes and problems, Phil. Trans. R. Soc. A., 367, 3–17, https://doi.org/10.1098/rsta.2008.0205, 2009.
Haywood, A. M., Hill, D. J., Dolan, A. M., Otto-Bliesner, B. L., Bragg, F., Chan, W.-L., Chandler, M. A., Contoux, C., Dowsett, H. J., Jost, A., Kamae, Y., Lohmann, G., Lunt, D. J., Abe-Ouchi, A., Pickering, S. J., Ramstein, G., Rosenbloom, N. A., Salzmann, U., Sohl, L., Stepanek, C., Ueda, H., Yan, Q., and Zhang, Z.: Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project, Clim. Past, 9, 191–209, https://doi.org/10.5194/cp-9-191-2013, 2013.
Haywood, A. M., Dowsett, H. J., and Dolan, A. M.: Integrating geological archives and climate models for the mid-Pliocene warm period, Nat. Commun., 7, 10646, https://doi.org/10.1038/ncomms10646, 2016.
Haywood, A. M., Tindall, J. C., Dowsett, H. J., Dolan, A. M., Foley, K. M., Hunter, S. J., Hill, D. J., Chan, W.-L., Abe-Ouchi, A., Stepanek, C., Lohmann, G., Chandan, D., Peltier, W. R., Tan, N., Contoux, C., Ramstein, G., Li, X., Zhang, Z., Guo, C., Nisancioglu, K. H., Zhang, Q., Li, Q., Kamae, Y., Chandler, M. A., Sohl, L. E., Otto-Bliesner, B. L., Feng, R., Brady, E. C., von der Heydt, A. S., Baatsen, M. L. J., and Lunt, D. J.: The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity, Clim. Past, 16, 2095–2123, https://doi.org/10.5194/cp-16-2095-2020, 2020.
Herbert, T. D., Ng, G., and Cleaveland Peterson, L.: Evolution of Mediterranean sea surface temperatures 3.5–1.5 Ma: Regional and hemispheric influences, Earth and Planetary Science Letters, 409, 307–318, https://doi.org/10.1016/j.epsl.2014.10.006, 2015.
Herzschuh, U., Tarasov, P., Wünnemann, B., and Hartmann, K.: Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data, Palaeogeography, Palaeoclimatology, Palaeoecology, 211, 1–17, https://doi.org/10.1016/j.palaeo.2004.04.001, 2004.
Hijmans, R. J., Phillips, S., Elith, J. L., and J.: dismo: Species Distribution Modeling, CRAN [code], https://doi.org/10.32614/CRAN.package.dismo, 2021.
Hilgen, F. J., Lourens, L. J., Van Dam, J. A., Beu, A. G., Boyes, A. F., Cooper, R. A., Krijgsman, W., Ogg, J. G., Piller, W. E., and Wilson, D. S.: Chapter 29 - The Neogene Period, in: The Geologic Time Scale, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Boston, 923–978, https://doi.org/10.1016/B978-0-444-59425-9.00029-9, 2012.
Horowitz, A.: Palynological evidence for the Quaternary rates of accumulation along the Dead Sea Rift, and structural implications, Tectonophysics, 164, 63–71, https://doi.org/10.1016/0040-1951(89)90234-5, 1989.
IPCC: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896, 2021.
IPCC: Climate Change 2023: Synthesis Report, Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero., J., Geneva, Switzerland, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Jankovská, V. and Komárek, J.: Indicative value ofPediastrum and other coccal green algae in palaeoecology, Folia Geobot., 35, 59–82, https://doi.org/10.1007/BF02803087, 2000.
Jiménez-Moreno, G. and Suc, J.-P.: Middle Miocene latitudinal climatic gradient in Western Europe: Evidence from pollen records, Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 208–225, https://doi.org/10.1016/j.palaeo.2007.03.040, 2007.
Jiménez-Moreno, G., Popescu, S.-M., Ivanov, D., and Suc, J.-P.: Neogene flora, vegetation and climate dynamics in southeastern Europe and the northeastern Mediterranean, in: Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, vol. 2, edited by: Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N., Geological Society of London, https://doi.org/10.1144/TMS002.23, 2007.
Jiménez-Moreno, G., Fauquette, S., and Suc, J.-P.: Vegetation, climate and palaeoaltitude reconstructions of the Eastern Alps during the Miocene based on pollen records from Austria, Central Europe, Journal of Biogeography, 35, 1638–1649, https://doi.org/10.1111/j.1365-2699.2008.01911.x, 2008.
Jiménez-Moreno, G., Fauquette, S., and Suc, J.-P.: Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data, Review of Palaeobotany and Palynology, 162, 403–415, https://doi.org/10.1016/j.revpalbo.2009.08.001, 2010.
Jiménez-Moreno, G., Alçiçek, H., Alçiçek, M. C., Ostende, L. van den H., and Wesselingh, F. P.: Vegetation and climate changes during the late Pliocene and early Pleistocene in SW Anatolia, Turkey, Quaternary Research, 84, 448–456, https://doi.org/10.1016/j.yqres.2015.09.005, 2015.
Jiménez-Moreno, G., Anderson, R. S., Ramos-Román, M. J., Camuera, J., Mesa-Fernández, J. M., García-Alix, A., Jiménez-Espejo, F. J., Carrión, J. S., and López-Avilés, A.: The Holocene Cedrus pollen record from Sierra Nevada (S Spain), a proxy for climate change in N Africa, Quaternary Science Reviews, 242, 106468, https://doi.org/10.1016/j.quascirev.2020.106468, 2020.
Joly, C., Barillé, L., Barreau, M., Mancheron, A., and Visset, L.: Grain and annulus diameter as criteria for distinguishing pollen grains of cereals from wild grasses, Review of Palaeobotany and Palynology, 146, 221–233, https://doi.org/10.1016/j.revpalbo.2007.04.003, 2007.
Juggins, S.: Analysis of Quaternary Science Data, R package version 0.9-26, Comprehensive R Archive Network (CRAN) [code], https://doi.org/10.32614/CRAN.package.rioja, 2020.
Karaman, E.: Burdur dolayýnýn genel stratigrafisi, Akdeniz Üniversitesi Isparta Mühendislik Fakültesi Dergisi, 2, 23–36, 1986.
Karas, C., Nürnberg, D., Bahr, A., Groeneveld, J., Herrle, J. O., Tiedemann, R., and deMenocal, P. B.: Pliocene oceanic seaways and global climate, Sci. Rep., 7, 39842, https://doi.org/10.1038/srep39842, 2017.
Kaymakçı, N., Langereis, C., Özkaptan, M., Özacar, A. A., Gülyüz, E., Uzel, B., and Sözbilir, H.: Paleomagnetic evidence for upper plate response to a STEP fault, SW Anatolia, Earth and Planetary Science Letters, 498, 101–115, https://doi.org/10.1016/j.epsl.2018.06.022, 2018.
Kayseri-Özer, M. S., Karadenizli, L., Akgün, F., Oyal, N., Saraç, G., Þen, Þ., Tunoðlu, C., and Tuncer, A.: Palaeoclimatic and palaeoenvironmental interpretations of the Late Oligocene, Late Miocene–Early Pliocene in the Çankýrý-Çorum Basin, Palaeogeography, Palaeoclimatology, Palaeoecology, 467, 16–36, https://doi.org/10.1016/j.palaeo.2016.05.022, 2017.
Komárek, J. and Marvan, P.: Morphological Differences in Natural Populations of the Genus Botryococcus (Chlorophyceae), Archiv für Protistenkunde, 141, 65–100, https://doi.org/10.1016/S0003-9365(11)80049-7, 1992.
Komárek, J. I. and Jankovská, V.: Review of the Green Algal Genus Pediastrum; Implication for Pollen-analytical Research, Schweizerbart Science Publishers, 1–127, 2001.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the Köppen-Geiger climate classification updated, Metz, 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Koutsodendris, A., Allstädt, F. J., Kern, O. A., Kousis, I., Schwarz, F., Vannacci, M., Woutersen, A., Appel, E., Berke, M. A., Fang, X., Friedrich, O., Hoorn, C., Salzmann, U., and Pross, J.: Late Pliocene vegetation turnover on the NE Tibetan Plateau (Central Asia) triggered by early Northern Hemisphere glaciation, Global and Planetary Change, 180, 117–125, https://doi.org/10.1016/j.gloplacha.2019.06.001, 2019.
Kristiansen, J. and Škaloud, P.: Chrysophyta, in: Handbook of the Protists, edited by: Archibald, J. M., Simpson, A. G. B., and Slamovits, C. H., Springer International Publishing, Cham, 331–366, https://doi.org/10.1007/978-3-319-28149-0_43, 2017.
Kuzucuoðlu, C.: The Physical Geography of Turkey: An Outline, in: Landscapes and Landforms of Turkey, edited by: Kuzucuoðlu, C., Çiner, A., and Kazancý, N., Springer International Publishing, Cham, 7–15, https://doi.org/10.1007/978-3-030-03515-0_2, 2019.
Lê, S., Josse, J., and Husson, F.: FactoMineR: An R Package for Multivariate Analysis, Journal of Statistical Software, 25, 1–18, https://doi.org/10.18637/jss.v025.i01, 2008.
Lee, C. M., Van Geel, B., and Gosling, W. D.: On the Use of Spores of Coprophilous Fungi Preserved in Sediments to Indicate Past Herbivore Presence, Quaternary, 5, 30, https://doi.org/10.3390/quat5030030, 2022.
Lefevre, C., Bellon, H., and Poisson, A.: Présence de leucitites dans le volcanisme pliocène de la région d'Isparta (Taurides occidentales, Turquie), C.-r. séances Acad. sci., Sér. 2 Méc.-phys. chim. sci. univers sci. terre, 297, 367–372, 1983.
Li, Y., Xu, Q., Yang, X., Chen, H., and Lu, X.: Pollen-vegetation relationship and pollen preservation on the Northeastern Qinghai-Tibetan Plateau, Grana, 44, 160–171, https://doi.org/10.1080/00173130500230608, 2005.
Li, Y., Bunting, M. J., Xu, Q., Jiang, S., Ding, W., and Hun, L.: Pollen–vegetation–climate relationships in some desert and desert-steppe communities in northern China, The Holocene, 21, 997–1010, https://doi.org/10.1177/0959683611400202, 2011.
Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R news, 2, 5 pp., ISSN 1609-3631, 2002.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic ä18O records, Paleoceanography, 20, https://doi.org/10.1029/2004PA001071, 2005.
Lytle, D. E. and Wahl, E. R.: Palaeoenvironmental reconstructions using the modern analogue technique: the effects of sample size and decision rules, The Holocene, 15, 554–566, https://doi.org/10.1191/0959683605hl830rp, 2005.
Ma, Y., Liu, K., Sang, Y., Wang, W., Sun, A., and Feng, Z.: A Survey of Modern Pollen and Vegetation along a South-North Transect in Mongolia, Journal of Biogeography, 35, 1512–1532, 2008.
Magri, D. and Parra, I.: Late Quaternary western Mediterranean pollen records and African winds, Earth and Planetary Science Letters, 200, 401–408, https://doi.org/10.1016/S0012-821X(02)00619-2, 2002.
Malhi, Y., Lander, T., Roux, E. le, Stevens, N., Macias-Fauria, M., Wedding, L., Girardin, C., Kristensen, J. Å., Sandom, C. J., Evans, T. D., Svenning, J.-C., and Canney, S.: The role of large wild animals in climate change mitigation and adaptation, Current Biology, 32, R181–R196, https://doi.org/10.1016/j.cub.2022.01.041, 2022.
Manzaneda, A. J., Rey, P. J., Bastida, J. M., Weiss-Lehman, C., Raskin, E., and Mitchell-Olds, T.: Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae), New Phytologist, 193, 797–805, https://doi.org/10.1111/j.1469-8137.2011.03988.x, 2012.
Maslin, M. A., Li, X. S., Loutre, M.-F., and Berger, A.: The contribution of orbital forcing to the progressive intensification of Northern Hemisphere glaciation, Quaternary Science Reviews, 17, 411–426, https://doi.org/10.1016/S0277-3791(97)00047-4, 1998.
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., Gonzalez Rouco, J. F., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X., and Timmermann, A.: Information from paleoclimate archives, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 383–464, https://doi.org/10.1017/CBO9781107415324.013, 2013.
Matthiessen, J. and Brenner, W.: Chlorococcalalgen und Dinoflagellaten-Zysten in rezenten Sedimenten des Greifswalder Boddens (südliche Ostsee), Senckenbergiana Maritima, 27, 33–48, 1996.
Medail, F. and Quézel, P.: Hot-Spots Analysis for Conservation of Plant Biodiversity in the Mediterranean Basin, Annals of the Missouri Botanical Garden, 84, 112–127, https://doi.org/10.2307/2399957, 1997.
Miller, K. G., Wright, J. D., Browning, J. V., Kulpecz, A., Kominz, M., Naish, T. R., Cramer, B. S., Rosenthal, Y., Peltier, W. R., and Sosdian, S.: High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation, Geology, 40, 407–410, https://doi.org/10.1130/G32869.1, 2012.
Mudelsee, M. and Raymo, M. E.: Slow dynamics of the Northern Hemisphere glaciation, Paleoceanography, 20, https://doi.org/10.1029/2005PA001153, 2005.
Muller, S. D., Daoud-Bouattour, A., Fauquette, S., Bottollier-Curtet, M., Rifai, N., Robles, M., Saber, E.-R., El Madihi, M., Moukrim, S., and Rhazi, L.: Holocene history of peatland communities of central Rif (Northern Morocco), Geobios, S0016699522000018, https://doi.org/10.1016/j.geobios.2021.12.001, 2022.
Muñoz, A., Ojeda, J., and Sánchez-Valverde, B.: Sunspot-like and ENSO/NAO-like periodicities in lacustrinelaminated sediments of the Pliocene Villarroya Basin (La Rioja,Spain), Journal of Paleolimnology, 27, 453–463, 2002.
Özkaptan, M., Kaymakci, N., Langereis, C. G., Gülyüz, E., Arda Özacar, A., Uzel, B., and Sözbilir, H.: Age and kinematics of the Burdur Basin: Inferences for the existence of the Fethiye Burdur Fault Zone in SW Anatolia (Turkey), Tectonophysics, 744, 256–274, https://doi.org/10.1016/j.tecto.2018.07.009, 2018.
Pagani, M., Liu, Z., LaRiviere, J., and Ravelo, A. C.: High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations, Nature Geosci., 3, 27–30, https://doi.org/10.1038/ngeo724, 2010.
Panitz, S., Salzmann, U., Risebrobakken, B., De Schepper, S., and Pound, M. J.: Climate variability and long-term expansion of peatlands in Arctic Norway during the late Pliocene (ODP Site 642, Norwegian Sea), Clim. Past, 12, 1043–1060, https://doi.org/10.5194/cp-12-1043-2016, 2016.
Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P., Reille, M., de Beaulieu, J.-L., Bottema, S., and Andrieu, V.: Climatic Reconstruction in Europe for 18,000 YR B.P. from Pollen Data, Quat. Res., 49, 183–196, https://doi.org/10.1006/qres.1997.1961, 1998.
Peyron, O., Bégeot, C., Brewer, S., Heiri, O., Magny, M., Millet, L., Ruffaldi, P., Van Campo, E., and Yu, G.: Late-Glacial climatic changes in Eastern France (Lake Lautrey) from pollen, lake-levels, and chironomids, Quat. Res., 64, 197–211, https://doi.org/10.1016/j.yqres.2005.01.006, 2005.
Peyron, O., Goring, S., Dormoy, I., Kotthoff, U., Pross, J., de Beaulieu, J.-L., Drescher-Schneider, R., Vannière, B., and Magny, M.: Holocene seasonality changes in the central Mediterranean region reconstructed from the pollen sequences of Lake Accesa (Italy) and Tenaghi Philippon (Greece), The Holocene, 21, 131–146, https://doi.org/10.1177/0959683610384162, 2011.
Peyron, O., Magny, M., Goring, S., Joannin, S., de Beaulieu, J.-L., Brugiapaglia, E., Sadori, L., Garfi, G., Kouli, K., Ioakim, C., and Combourieu-Nebout, N.: Contrasting patterns of climatic changes during the Holocene across the Italian Peninsula reconstructed from pollen data, Clim. Past, 9, 1233–1252, https://doi.org/10.5194/cp-9-1233-2013, 2013.
Peyron, O., Combourieu-Nebout, N., Brayshaw, D., Goring, S., Andrieu-Ponel, V., Desprat, S., Fletcher, W., Gambin, B., Ioakim, C., Joannin, S., Kotthoff, U., Kouli, K., Montade, V., Pross, J., Sadori, L., and Magny, M.: Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model–data comparison, Clim. Past, 13, 249–265, https://doi.org/10.5194/cp-13-249-2017, 2017.
Pils, G.: Flowers of Turkey: A photo guide, Pemberley Natural History Books, Austria, 448 pp., 2006.
Plancq, J., Grossi, V., Pittet, B., Huguet, C., Rosell-Melé, A., and Mattioli, E.: Multi-proxy constraints on sapropel formation during the late Pliocene of central Mediterranean (southwest Sicily), Earth and Planetary Science Letters, 420, 30–44, https://doi.org/10.1016/j.epsl.2015.03.031, 2015.
Platevoet, B., Scaillet, S., Guillou, H., Blamart, D., Nomade, S., Massault, M., Poisson, A., Elitok, Ö., Özgür, N., Yagmurlu, F., and Yilmaz, K.: Pleistocene eruptive chronology of the Gölcük volcano, Isparta Angle, Turkey, Chronologie des épisodes volcaniques pléistocènes du volcan Gölcük, Angle d'Isparta, Turquie, Quaternaire. Revue de l'Association française pour l'étude du Quaternaire, 147–156, https://doi.org/10.4000/quaternaire.3092, 2008.
Popescu, S.-M.: Late Miocene and early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (Leg 42B), Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 64–77, https://doi.org/10.1016/j.palaeo.2006.03.018, 2006.
Popescu, S.-M., Biltekin, D., Winter, H., Suc, J.-P., Melinte-Dobrinescu, M. C., Klotz, S., Rabineau, M., Combourieu-Nebout, N., Clauzon, G., and Deaconu, F.: Pliocene and Lower Pleistocene vegetation and climate changes at the European scale: Long pollen records and climatostratigraphy, Quaternary International, 219, 152–167, https://doi.org/10.1016/j.quaint.2010.03.013, 2010.
Prasad, A. M., Iverson, L. R., and Liaw, A.: Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction, Ecosystems, 9, 181–199, https://doi.org/10.1007/s10021-005-0054-1, 2006.
Price, S. P. and Scott, B.: Pliocene Burdur basin, SW Turkey: tectonics, seismicity and sedimentation, Journal of the Geological Society, 148, 345–354, https://doi.org/10.1144/gsjgs.148.2.0345, 1991.
Quézel, P. and Médail, F.: Ecologie et biogéographie des foréts du bassin méditerranéen, Elsevier, 571 pp., 2003.
Ramezani, E.: Pollen–vegetation relationships in the central Caspian (Hyrcanian) forests of northern Iran, Review of Palaeobotany and Palynology, 12, https://doi.org/10.1016/j.revpalbo.2012.10.004, 2013.
Raymo, M. E., Grant, B., Horowitz, M., and Rau, G. H.: Mid-Pliocene warmth: stronger greenhouse and stronger conveyor, Marine Micropaleontology, 27, 313–326, https://doi.org/10.1016/0377-8398(95)00048-8, 1996.
Reille, M.: Reille, Maurice, 1995. Pollen et spores d'Europe et d'Afrique du Nord, Supplément 1,Éditions du Laboratoire de botanique historique et palynologie, Marseille, 327 p., 800 FF./Reille, Maurice, 1998. Pollen et spores d'Europe et d'Afrique du Nord, Supplément 2. Éditions du Laboratoire de botanique historique et palynologie, Marseille, 530 p., 1600 FF., gpq, 52, https://doi.org/10.7202/004885ar, 1998.
Robles, M., Peyron, O., Brugiapaglia, E., Ménot, G., Dugerdil, L., Ollivier, V., Ansanay-Alex, S., Develle, A.-L., Tozalakyan, P., Meliksetian, K., Sahakyan, K., Sahakyan, L., Perello, B., Badalyan, R., Colombié, C., and Joannin, S.: Impact of climate changes on vegetation and human societies during the Holocene in the South Caucasus (Vanevan, Armenia): A multiproxy approach including pollen, NPPs and brGDGTs, Quaternary Science Reviews, 277, 107297, https://doi.org/10.1016/j.quascirev.2021.107297, 2022.
Robles, M., Peyron, O., Ménot, G., Brugiapaglia, E., Wulf, S., Appelt, O., Blache, M., Vannière, B., Dugerdil, L., Paura, B., Ansanay-Alex, S., Cromartie, A., Charlet, L., Guédron, S., de Beaulieu, J.-L., and Joannin, S.: Climate changes during the Late Glacial in southern Europe: new insights based on pollen and brGDGTs of Lake Matese in Italy, Clim. Past, 19, 493–515, https://doi.org/10.5194/cp-19-493-2023, 2023.
Salonen, J. S., Seppä, H., Luoto, M., Bjune, A. E., and Birks, H. J. B.: A North European pollen–climate calibration set: analysing the climatic responses of a biological proxy using novel regression tree methods, Quaternary Science Reviews, 45, 95–110, https://doi.org/10.1016/j.quascirev.2012.05.003, 2012.
Salonen, J. S., Korpela, M., Williams, J. W., and Luoto, M.: Machine-learning based reconstructions of primary and secondary climate variables from North American and European fossil pollen data, Sci. Rep., 9, 15805, https://doi.org/10.1038/s41598-019-52293-4, 2019.
Salonen, J. S., Kuosmanen, N., Alsos, I. G., Heintzman, P. D., Rijal, D. P., Schenk, F., Bogren, F., Luoto, M., Philip, A., Piilo, S., Trasune, L., Väliranta, M., and Helmens, K. F.: Uncovering Holocene climate fluctuations and ancient conifer populations: Insights from a high-resolution multi-proxy record from Northern Finland, Global and Planetary Change, 237, 104462, https://doi.org/10.1016/j.gloplacha.2024.104462, 2024.
Salzmann, U., Haywood, A. M., Lunt, D. J., Valdes, P. J., and Hill, D. J.: A new global biome reconstruction and data-model comparison for the Middle Pliocene, Global Ecology and Biogeography, 17, 432–447, https://doi.org/10.1111/j.1466-8238.2008.00381.x, 2008.
Salzmann, U., Dolan, A. M., Haywood, A. M., Chan, W.-L., Voss, J., Hill, D. J., Abe-Ouchi, A., Otto-Bliesner, B., Bragg, F. J., Chandler, M. A., Contoux, C., Dowsett, H. J., Jost, A., Kamae, Y., Lohmann, G., Lunt, D. J., Pickering, S. J., Pound, M. J., Ramstein, G., Rosenbloom, N. A., Sohl, L., Stepanek, C., Ueda, H., and Zhang, Z.: Challenges in quantifying Pliocene terrestrial warming revealed by data–model discord, Nature Clim. Change, 3, 969–974, https://doi.org/10.1038/nclimate2008, 2013.
Saraç, G.: Vertebrate fossil localities of Turkey, Scientific Report No. 10609, Mineral Research and Exploration Directorate of Turkey (MTA), Ankara, 208 pp., 2003.
Sassoon, D., Combourieu-Nebout, N., Peyron, O., Bertini, A., Toti, F., Lebreton, V., and Moncel, M.-H.: Pollen-based climatic reconstructions for the interglacial analogues of MIS 1 (MIS 19, 11, and 5) in the southwestern Mediterranean: insights from ODP Site 976, Clim. Past, 21, 489–515, https://doi.org/10.5194/cp-21-489-2025, 2025.
Schwarz, F., Salzmann, U., Cheng, F., Ni, J., Nie, J., Patchett, M. R., Li, X., Li, L., Woodward, J., and Garzione, C.: High altitude Pliocene to Pleistocene vegetation and climate change of the Kunlun Pass Basin, NE Tibetan Plateau, Global and Planetary Change, 223, 104078, https://doi.org/10.1016/j.gloplacha.2023.104078, 2023.
Shatilova, I. I.: The palynological base of stratigraphical subdivision of late cainozoic deposits of the Western Transcaucasus, Review of Palaeobotany and Palynology, 48, 409–414, https://doi.org/10.1016/0034-6667(86)90077-1, 1986.
Sickenberg, O. and Tobien, H.: New Neogene and lower Quaternary vertebrate faunas in Turkey, Newsletters on Stratigraphy, 51–61, https://doi.org/10.1127/nos/1/1971/51, 1971.
Smol, J. P.: Chrysophycean microfossils in paleolimnological studies, Palaeogeography, Palaeoclimatology, Palaeoecology, 62, 287–297, https://doi.org/10.1016/0031-0182(88)90058-2, 1988.
Spengler, R. N., Petraglia, M., Roberts, P., Ashastina, K., Kistler, L., Mueller, N. G., and Boivin, N.: Exaptation Traits for Megafaunal Mutualisms as a Factor in Plant Domestication, Front. Plant Sci., 12, https://doi.org/10.3389/fpls.2021.649394, 2021.
Suc, J.-P.: Origin and evolution of the Mediterranean vegetation and climate in Europe, Nature, 307, 429–432, https://doi.org/10.1038/307429a0, 1984.
Suc, J.-P. and Cravatte, J.: Etude palynologique du Pliocène de Catalogne (Nord-Est de l'Espagne): apports à la connaissance de l'histoire climatique de la Méditerranée occidentale et implications chronostratigraphiques, Paléobiologie continentale, 13, 1–31, 1982.
Suc, J. P., Bertini, A., Combourieu-Nebout, N., Diniz, F., Leroy, S., Russo-Ermolli, E., Zheng, Z., Bessais, E., and Ferrier, J.: Structure of West Mediterranean vegetation and climate since 5.3 ma, Acta Zoologica Cracoviensia, 38, 1995.
Suc, J.-P., Popescu, S.-M., Fauquette, S., Bessedik, M., Jiménez-Moreno, G., Taoufiq, N. B., Zheng, Z., Medail, F., and Klotz, S.: Reconstruction of Mediterranean flora, vegetation and climate for the last 23 million years based on an extensive pollen dataset, Ecologia mediterranea, 44, 53, https://doi.org/10.3406/ecmed.2018.2044, 2018.
Tagliasacchi, E., Özer, M. S. K., and Altay, T.: Environmental, vegetational and climatic investigations during the Plio-Pleistocene in SW-Anatolia: A case study from the fluvio-lacustrine deposits in Uþak-Karahallý area, Palaeobio. Palaeoenv., 104, 29–51, https://doi.org/10.1007/s12549-023-00590-2, 2024a.
Tagliasacchi, E., Özer, M. S. K., and Altay, T.: Environmental, vegetational and climatic investigations during the Plio-Pleistocene in SW-Anatolia: A case study from the fluvio-lacustrine deposits in Uþak-Karahallý area, Palaeobio. Palaeoenv., 104, 29–51, https://doi.org/10.1007/s12549-023-00590-2, 2024b.
ten Veen, J. H., Boulton, S. J., and Alçiçek, M. C.: From palaeotectonics to neotectonics in the Neotethys realm: The importance of kinematic decoupling and inherited structural grain in SW Anatolia (Turkey), Tectonophysics, 473, 261–281, https://doi.org/10.1016/j.tecto.2008.09.030, 2009.
ter Braak, C. J. F. and van Dam, H.: Inferring pH from diatoms: a comparison of old and new calibration methods, Hydrobiologia, 178, 209–223, https://doi.org/10.1007/BF00006028, 1989.
ter Braak, C. J. F. and Juggins, S.: Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages, Hydrologia, 269, 485–502, https://doi.org/10.1007/978-94-017-3622-0_49, 1993.
Tolotti, M., Thies, H., Cantonati, M., Hansen, C. M. E., and Thaler, B.: Flagellate algae (Chrysophyceae, Dinophyceae, Cryptophyceae) in 48 high mountain lakes of the Northern and Southern slope of the Eastern Alps: biodiversity, taxa distribution and their driving variables, Hydrobiologia, 502, 331–348, https://doi.org/10.1023/B:HYDR.0000004291.03882.f7, 2003.
Tuncer, A., Karayigit, A. I., Oskay, R. G., Tunoðlu, C., Kayseri-Özer, M. S., Gümüþ, B. A., Bulut, Y., and Akbulut, A.: A multi-proxy record of palaeoenvironmental and palaeoclimatic conditions during Plio-Pleistocene peat accumulation in the eastern flank of the Isparta Angle: A case study from the Þarkikaraaðaç coalfield (Isparta, SW Central Anatolia), International Journal of Coal Geology, 265, 104149, https://doi.org/10.1016/j.coal.2022.104149, 2023.
Tweddle, J. C., Edwards, K. J., and Fieller, N. R. J.: Multivariate statistical and other approaches for the separation of cereal from wild Poaceae pollen using a large Holocene dataset, Veget. Hist. Archaeobot., 14, 15–30, https://doi.org/10.1007/s00334-005-0064-0, 2005.
Vaks, A., Woodhead, J., Bar-Matthews, M., Ayalon, A., Cliff, R. A., Zilberman, T., Matthews, A., and Frumkin, A.: Pliocene–Pleistocene climate of the northern margin of Saharan–Arabian Desert recorded in speleothems from the Negev Desert, Israel, Earth and Planetary Science Letters, 368, 88–100, https://doi.org/10.1016/j.epsl.2013.02.027, 2013.
Van Baak, C. G. C., Mandic, O., Lazar, I., Stoica, M., and Krijgsman, W.: The Slanicul de Buzau section, a unit stratotype for the Romanian stage of the Dacian Basin (Plio-Pleistocene, Eastern Paratethys), Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 594–613, https://doi.org/10.1016/j.palaeo.2015.09.022, 2015.
Van Geel, B.: Non-Pollen Palynomorphs, in: Tracking Environmental Change Using Lake Sediments, vol. 3, edited by: Smol, J. P., Birks, H. J. B., Last, W. M., Bradley, R. S., and Alverson, K., Springer Netherlands, Dordrecht, 99–119, https://doi.org/10.1007/0-306-47668-1_6, 2002.
Wake, L. V. and Hillen, L. W.: Study of a “bloom” of the oil-rich alga Botryococcus braunii in the Darwin River Reservoir, Biotechnology and Bioengineering, 22, 1637–1656, https://doi.org/10.1002/bit.260220808, 1980.
Wang, P., Tian, J., and Lourens, L. J.: Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records, Earth and Planetary Science Letters, 290, 319–330, https://doi.org/10.1016/j.epsl.2009.12.028, 2010.
Wei, H. and Zhao, Y.: Surface pollen and its relationships with modern vegetation and climate in the Tianshan Mountains, northwestern China, Veget. Hist. Archaeobot., 25, 19–27, https://doi.org/10.1007/s00334-015-0530-2, 2016.
Wei, H., Ma, H., Zheng, Z., Pan, A., and Huang, K.: Modern pollen assemblages of surface samples and their relationships to vegetation and climate in the northeastern Qinghai-Tibetan Plateau, China, Review of Palaeobotany and Palynology, 163, 237–246, https://doi.org/10.1016/j.revpalbo.2010.10.011, 2011.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1387, https://doi.org/10.1126/science.aba6853, 2020.
Willcox, G., Buxo, R., and Herveux, L.: Late Pleistocene and early Holocene climate and the beginnings of cultivation in northern Syria, The Holocene, 19, 151–158, https://doi.org/10.1177/0959683608098961, 2009.
Xiao, S., Li, S., Wang, X., Chen, L., and Su, T.: Cedrus distribution change: past, present, and future, Ecological Indicators, 142, 109159, https://doi.org/10.1016/j.ecolind.2022.109159, 2022.
Xu, Q., Li, Y., Tian, F., Cao, X., and Yang, X.: Pollen assemblages of tauber traps and surface soil samples in steppe areas of China and their relationships with vegetation and climate, Review of Palaeobotany and Palynology, 153, 86–101, https://doi.org/10.1016/j.revpalbo.2008.07.003, 2009.
Yavuz, N., Saraç, G., Ünay, E., and de Bruijn, H.: Palynological Analysis of Neogene Mammal Sites of Turkey – Vegetational and Climatic Implications, Yerbilimleri, 32, 105–120, 2011.
Zhang, Y.-J., Duo, L., Pang, Y.-Z., Felde, V. A., Birks, H. H., and Birks, H. J. B.: Modern pollen assemblages and their relationships to vegetation and climate in the Lhasa Valley, Tibetan Plateau, China, Quaternary International, 467, 210–221, https://doi.org/10.1016/j.quaint.2018.01.040, 2018.
Zhao, Y. and Herzschuh, U.: Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau, Veget. Hist. Archaeobot., 18, 245–260, https://doi.org/10.1007/s00334-008-0201-7, 2009.
Zhao, Y., Yu, Z., and Chen, F.: Spatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China, Quaternary International, 194, 6–18, https://doi.org/10.1016/j.quaint.2007.12.002, 2009.
Zhao, Y., Li, Y., Zhang, Z., Fan, B., Zhu, Y., and Zhao, H.: Relationship between modern pollen assemblages and vegetation in the Bashang typical steppe region of North China, Ecological Indicators, 135, 108581, https://doi.org/10.1016/j.ecolind.2022.108581, 2022.
Zheng, Z., Huang, K., Xu, Q., Lu, H., Cheddadi, R., Luo, Y., Beaudouin, C., Luo, C., Zheng, Y., Li, C., Wei, J., and Du, C.: Comparison of climatic threshold of geographical distribution between dominant plants and surface pollen in China, Sci. China Ser. D-Earth Sci., 51, 1107–1120, https://doi.org/10.1007/s11430-008-0080-x, 2008.
Zheng, Z., Wei, J., Huang, K., Xu, Q., Tarasov, P., Luo, C., Beaudouin, C., Deng, Y., Zheng, Y., Luo, Y., Nakagawa, T., Li, C., Yang, S., Peng, H., and Cheddadi, R.: East Asian pollen database: modern pollen distribution and its quantitative relationship with vegetation and climate, Journal of Biogeography, 14, https://doi.org/10.1111/jbi.12361, 2014.
Short summary
This study aims to characterize the vegetation and lake dynamics based on pollen and Non-Pollen Palynomorph (NPP) proxies, to quantitatively reconstruct climate changes using a multimethod approach and to morphologically characterize the large pollen grains of Poaceae (Cerealia-type).
This study aims to characterize the vegetation and lake dynamics based on pollen and Non-Pollen...