Articles | Volume 20, issue 2
https://doi.org/10.5194/cp-20-415-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-415-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Astronomically paced climate and carbon cycle feedbacks in the lead-up to the Late Devonian Kellwasser Crisis
Nina M. A. Wichern
CORRESPONDING AUTHOR
Institute of Geology and Palaeontology, University of Münster, Münster, Germany
Or M. Bialik
Institute of Geology and Palaeontology, University of Münster, Münster, Germany
Theresa Nohl
Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, Universität Wien, Vienna, Austria
Lawrence M. E. Percival
Archaeology, Environmental Changes and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
Department of Earth Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
R. Thomas Becker
Institute of Geology and Palaeontology, University of Münster, Münster, Germany
Pim Kaskes
Archaeology, Environmental Changes and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
Laboratoire G-Time, Université Libre de Bruxelles, ULB, Brussels, Belgium
Philippe Claeys
Archaeology, Environmental Changes and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
David De Vleeschouwer
Institute of Geology and Palaeontology, University of Münster, Münster, Germany
Related authors
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Niklas Hohmann, David De Vleeschouwer, Sietske Batenburg, and Emilia Jarochowska
EGUsphere, https://doi.org/10.5194/egusphere-2024-2857, https://doi.org/10.5194/egusphere-2024-2857, 2024
Short summary
Short summary
Age-depth models assign ages to sampling locations (e.g., in drill cores), making them crucial to determined timing and pace of past changes. We present two methods to estimate age-depth models from sedimentological and stratigraphic information, resulting in richer and more empirically realistic age-depth models. As a use case, we determine (1) the timing of the Frasnian-Famennian extinction and (2) examine the duration of PETM, an potential deep time analogue for anthropogenic climate change.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Sarah Wauthy, Jean-Louis Tison, Mana Inoue, Saïda El Amri, Sainan Sun, François Fripiat, Philippe Claeys, and Frank Pattyn
Earth Syst. Sci. Data, 16, 35–58, https://doi.org/10.5194/essd-16-35-2024, https://doi.org/10.5194/essd-16-35-2024, 2024
Short summary
Short summary
The datasets presented are the density, water isotopes, ions, and conductivity measurements, as well as age models and surface mass balance (SMB) from the top 120 m of two ice cores drilled on adjacent ice rises in Dronning Maud Land, dating from the late 18th century. They offer many development possibilities for the interpretation of paleo-profiles and for addressing the mechanisms behind the spatial and temporal variability of SMB and proxies observed at the regional scale in East Antarctica.
David De Vleeschouwer, Theresa Nohl, Christian Schulbert, Or M. Bialik, and Gerald Auer
Sci. Dril., 32, 43–54, https://doi.org/10.5194/sd-32-43-2023, https://doi.org/10.5194/sd-32-43-2023, 2023
Short summary
Short summary
Differences exist in International Ocean Discovery Program (IODP) sediment lithification depending on the coring tool used. Advanced piston corers (APCs) display less pronounced lithification compared to extended core barrels (XCBs) of the same formation. The difference stems from the destruction of early cements between sediment grains and an
acoustic compactioncaused by the piston-core pressure wave. XCB cores provide a more accurate picture of the lithification of the original formation.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Matthias Sinnesael, Alfredo Loi, Marie-Pierre Dabard, Thijs R. A. Vandenbroucke, and Philippe Claeys
Geochronology, 4, 251–267, https://doi.org/10.5194/gchron-4-251-2022, https://doi.org/10.5194/gchron-4-251-2022, 2022
Short summary
Short summary
We used new geochemical measurements to study the expression of astronomical climate cycles recorded in the Ordovician (~ 460 million years ago) geological sections of the Crozon Peninsula (France). This type of geological archive is not often studied in this way, but as they become more important going back in time, a better understanding of their potential astronomical cycles is crucial to advance our knowledge of deep-time climate dynamics and to construct high-resolution timescales.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Stef Vansteenberge, Niels J. de Winter, Matthias Sinnesael, Sophie Verheyden, Steven Goderis, Stijn J. M. Van Malderen, Frank Vanhaecke, and Philippe Claeys
Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, https://doi.org/10.5194/cp-16-141-2020, 2020
Short summary
Short summary
We measured the chemical composition (trace-element concentrations and stable-isotope ratios) of a Belgian speleothem that deposited annual layers. Our sub-annual resolution dataset allows us to investigate how the chemistry of this speleothem recorded changes in the environment and climate in northwestern Europe. We then use this information to reconstruct climate change during the 16th and 17th century on the seasonal scale and demonstrate that environmental change drives speleothem chemistry.
Morgan T. Jones, Lawrence M. E. Percival, Ella W. Stokke, Joost Frieling, Tamsin A. Mather, Lars Riber, Brian A. Schubert, Bo Schultz, Christian Tegner, Sverre Planke, and Henrik H. Svensen
Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, https://doi.org/10.5194/cp-15-217-2019, 2019
Short summary
Short summary
Mercury anomalies in sedimentary rocks are used to assess whether there were periods of elevated volcanism in the geological record. We focus on five sites that cover the Palaeocene–Eocene Thermal Maximum, an extreme global warming event that occurred 55.8 million years ago. We find that sites close to the eruptions from the North Atlantic Igneous Province display significant mercury anomalies across this time interval, suggesting that magmatism played a role in the global warming event.
Niels J. de Winter, Johan Vellekoop, Robin Vorsselmans, Asefeh Golreihan, Jeroen Soete, Sierra V. Petersen, Kyle W. Meyer, Silvio Casadio, Robert P. Speijer, and Philippe Claeys
Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, https://doi.org/10.5194/cp-14-725-2018, 2018
Short summary
Short summary
In this work, we apply a range of methods to measure the geochemical composition of the calcite from fossil shells of Pycnodonte vesicularis (so-called honeycomb oysters). The goal is to investigate how the composition of these shells reflect the environment in which the animals grew. Ultimately, we propose a methodology to check whether the shells of pycnodonte oysters are well-preserved and to reconstruct meaningful information about the seasonal changes in the past climate and environment.
Morgane Philippe, Jean-Louis Tison, Karen Fjøsne, Bryn Hubbard, Helle A. Kjær, Jan T. M. Lenaerts, Reinhard Drews, Simon G. Sheldon, Kevin De Bondt, Philippe Claeys, and Frank Pattyn
The Cryosphere, 10, 2501–2516, https://doi.org/10.5194/tc-10-2501-2016, https://doi.org/10.5194/tc-10-2501-2016, 2016
Short summary
Short summary
The reconstruction of past snow accumulation rates is crucial in the context of recent climate change and sea level rise. We measured ~ 250 years of snow accumulation using a 120 m ice core drilled in coastal East Antarctica, where such long records are very scarce. This study is the first to show an increase in snow accumulation, beginning in the 20th and particularly marked in the last 50 years, thereby confirming model predictions of increased snowfall associated with climate change.
Sietske J. Batenburg, David De Vleeschouwer, Mario Sprovieri, Frederik J. Hilgen, Andrew S. Gale, Brad S. Singer, Christian Koeberl, Rodolfo Coccioni, Philippe Claeys, and Alessandro Montanari
Clim. Past, 12, 1995–2009, https://doi.org/10.5194/cp-12-1995-2016, https://doi.org/10.5194/cp-12-1995-2016, 2016
Short summary
Short summary
The relative contributions of astronomical forcing and tectonics to ocean anoxia in the Cretaceous are unclear. This study establishes the pacing of Late Cretaceous black cherts and shales. We present a 6-million-year astrochronology from the Furlo and Bottaccione sections in Italy that spans the Cenomanian–Turonian transition and OAE2. Together with a new radioisotopic age for the mid-Cenomanian event, we show that astronomical forcing determined the timing of these carbon cycle perturbations.
Matthias Sinnesael, Miroslav Zivanovic, David De Vleeschouwer, Philippe Claeys, and Johan Schoukens
Geosci. Model Dev., 9, 3517–3531, https://doi.org/10.5194/gmd-9-3517-2016, https://doi.org/10.5194/gmd-9-3517-2016, 2016
Short summary
Short summary
Classical spectral analysis often relies on methods based on (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This drawback is circumvented by using a polynomial approach (ACE v.1 model) to estimate instantaneous amplitude and frequency in orbital components. The model is illustrated and validated using a synthetic insolation signal and tested on two case studies: a benthic δ18O record and a magnetic susceptibility record.
Mathieu Martinez, Sergey Kotov, David De Vleeschouwer, Damien Pas, and Heiko Pälike
Clim. Past, 12, 1765–1783, https://doi.org/10.5194/cp-12-1765-2016, https://doi.org/10.5194/cp-12-1765-2016, 2016
Short summary
Short summary
Identification of Milankovitch cycles within the sedimentary record depends on spectral analyses, but these can be biased because there are always slight uncertainties in the sample position within a sedimentary column. Here, we simulate uncertainties in the sample position and show that a tight control on the inter-sample distance together with a density of 6–12 samples per precession cycle are needed to accurately reconstruct the contribution of the orbital forcing on past climate changes.
Stef Vansteenberge, Sophie Verheyden, Hai Cheng, R. Lawrence Edwards, Eddy Keppens, and Philippe Claeys
Clim. Past, 12, 1445–1458, https://doi.org/10.5194/cp-12-1445-2016, https://doi.org/10.5194/cp-12-1445-2016, 2016
Short summary
Short summary
The use of stalagmites for last interglacial continental climate reconstructions in Europe has been successful in the past; however to expand the geographical coverage, additional data from Belgium is presented. It has been shown that stalagmite growth, morphology and stable isotope content reflect regional and local climate conditions, with Eemian optimum climate occurring between 125.3 and 117.3 ka. The start the Weichselian is expressed by a stop of growth caused by a drying climate.
C. Nehme, S. Verheyden, S. R. Noble, A. R. Farrant, D. Sahy, J. Hellstrom, J. J. Delannoy, and P. Claeys
Clim. Past, 11, 1785–1799, https://doi.org/10.5194/cp-11-1785-2015, https://doi.org/10.5194/cp-11-1785-2015, 2015
Short summary
Short summary
The Levant is a key area to study palaeoclimatic responses over G-IG cycles. A precisely dated MIS 5 stalagmite (129–84ka) from Kanaan Cave, Lebanon, with growth rate and isotopic records variations indicate a warm humid phase at the last interglacial (~129-125ka). A shift in δ18O values (125-122ka) is driven by the source effect of the eastern Med. during sapropel 5 (S5). Low growth rates and high δ18O-δ13C values (~122-84ka) mark the onset of glacial inception and transition to drier phase.
M. Van Rampelbergh, S. Verheyden, M. Allan, Y. Quinif, H. Cheng, L. R. Edwards, E. Keppens, and P. Claeys
Clim. Past, 11, 789–802, https://doi.org/10.5194/cp-11-789-2015, https://doi.org/10.5194/cp-11-789-2015, 2015
M. Van Rampelbergh, S. Verheyden, M Allan, Y. Quinif, E. Keppens, and P. Claeys
Clim. Past, 10, 1871–1885, https://doi.org/10.5194/cp-10-1871-2014, https://doi.org/10.5194/cp-10-1871-2014, 2014
Related subject area
Subject: Feedback and Forcing | Archive: Marine Archives | Timescale: Milankovitch
Environmental changes during the onset of the Late Pliensbachian Event (Early Jurassic) in the Cardigan Bay Basin, Wales
Climate, cryosphere and carbon cycle controls on Southeast Atlantic orbital-scale carbonate deposition since the Oligocene (30–0 Ma)
Low-latitude climate variability in the Heinrich frequency band of the Late Cretaceous greenhouse world
On the Milankovitch sensitivity of the Quaternary deep-sea record
Persistent influence of ice sheet melting on high northern latitude climate during the early Last Interglacial
Teuntje P. Hollaar, Stephen P. Hesselbo, Jean-François Deconinck, Magret Damaschke, Clemens V. Ullmann, Mengjie Jiang, and Claire M. Belcher
Clim. Past, 19, 979–997, https://doi.org/10.5194/cp-19-979-2023, https://doi.org/10.5194/cp-19-979-2023, 2023
Short summary
Short summary
Palaeoclimatological reconstructions aid our understanding of current and future climate change. In the Pliensbachian (Early Jurassic) a climatic cooling event occurred globally. We show that this cooling event has a significant impact on the depositional environment of the Cardigan Bay basin but that the 405 kyr eccentricity cycle remained the dominant control on terrestrial and marine depositional processes.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
N. J. de Winter, C. Zeeden, and F. J. Hilgen
Clim. Past, 10, 1001–1015, https://doi.org/10.5194/cp-10-1001-2014, https://doi.org/10.5194/cp-10-1001-2014, 2014
W. H. Berger
Clim. Past, 9, 2003–2011, https://doi.org/10.5194/cp-9-2003-2013, https://doi.org/10.5194/cp-9-2003-2013, 2013
A. Govin, P. Braconnot, E. Capron, E. Cortijo, J.-C. Duplessy, E. Jansen, L. Labeyrie, A. Landais, O. Marti, E. Michel, E. Mosquet, B. Risebrobakken, D. Swingedouw, and C. Waelbroeck
Clim. Past, 8, 483–507, https://doi.org/10.5194/cp-8-483-2012, https://doi.org/10.5194/cp-8-483-2012, 2012
Cited articles
Ait-Itto, F.-Z., Martinez, M., Deconinck, J.-F., and Bodin, S.: Astronomical calibration of the OAE1b from the Col de Pré-Guittard section (Aptian–Albian), Vocontian Basin, France, Cretaceous Res., 150, 105618, https://doi.org/10.1016/j.cretres.2023.105618, 2023.
Alekseeva, T., Kabanov, P., Alekseev, A., Kalinin, P., and Alekseeva, V.: Characteristics of early Earth's critical zone based on middle–late Devonian paleosol properties (Voronezh high, Russia), Clays Clay Miner., 64, 677–694, https://doi.org/10.1346/CCMN.2016.064044, 2016.
Algeo, T. J. and Scheckler, S. E.: Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events, Philos. T. R. Soc. B, 353, 113–130, https://doi.org/10.1098/rstb.1998.0195, 1998.
Algeo, T. J., Berner, R. A., Maynard, J. B., and Scheckler, S. E.: Late Devonian oceanic anoxic events and biotic crises: “rooted” in the evolution of vascular land plants?, GSA Today, 5, 45–66, 1995.
Algeo, T. J., Scheckler, S. E., and Maynard, J. B.: 12. Effects of the Middle to Late Devonian Spread of Vascular Land Plants on Weathering Regimes, Marine Biotas, and Global Climate, in: Plants Invade the Land, edited by: Gensel, P. G. and Edwards, D., Columbia University Press, 213–236, https://doi.org/10.7312/gens11160-013, 2001.
Averbuch, O., Tribovillard, N., Devleeschouwer, X., Riquier, L., Mistiaen, B., and Van Vliet-Lanoe, B.: Mountain building-enhanced continental weathering and organic carbon burial as major causes for climatic cooling at the Frasnian-Famennian boundary (c. 376 Ma)?, Terra Nova, 17, 25–34, https://doi.org/10.1111/j.1365-3121.2004.00580.x, 2005.
Balter, V., Renaud, S., Girard, C., and Joachimski, M. M.: Record of climate-driven morphological changes in 376 Ma Devonian fossils, Geology, 36, 907, https://doi.org/10.1130/G24989A.1, 2008.
Bambach, R. K.: Phanerozoic Biodiversity Mass Extinctions, Annu. Rev. Earth Pl. Sc., 34, 127–155, https://doi.org/10.1146/annurev.earth.33.092203.122654, 2006.
Batenburg, S. J., De Vleeschouwer, D., Sprovieri, M., Hilgen, F. J., Gale, A. S., Singer, B. S., Koeberl, C., Coccioni, R., Claeys, P., and Montanari, A.: Orbital control on the timing of oceanic anoxia in the Late Cretaceous, Clim. Past, 12, 1995–2009, https://doi.org/10.5194/cp-12-1995-2016, 2016.
Becker, R. T.: Die Geologie des Gebietes nördlich von Adorf zwischen Rhenetal und R 3487 (MBL 4618 Adorf). Unveröffentlichte Diplom-Kartierung, Ruhr-University Bochum, Bochum, 68 pp., 1984.
Becker, R. T.: Stratigraphische Gliederung und Ammonoideen-Faunen im Nehdenium (Oberdevon II) von Europa und Nord-Afrika, Courier Forschungsinstitut Senckenberg, 155, 1–405, Schweizerbart, ISBN 9783510611164, 1993.
Becker, R. T. and House, M. R.: Kellwasser Events and goniatite successions in the Devonian of the Montagne Noire with comments on possible causations, Courier Forschungsinstitut Senckenberg, 169, 45–77, https://www.researchgate.net/publication/262715543_Kellwasser-Events_and_goniatite_successions_in_the_Devonian_of_the_Montagne_Noire_with_comments_on_possible_causations (last access: 14 February 2024), 1994.
Becker, R. T., Aboussalam, Z. S., Hartenfels, S., Nowak, H., Juch, D., and Drozdzewski, G.: Drowning and sedimentary cover of Velbert Anticline reef complexes (northwestern Rhenish Massif), Münstersche Forschungen zur Geologie und Paläontologie, 108, 76–101, 2016a.
Becker, R. T., Piecha, M., Gereke, M., and Spellbrink, K.: The Frasnian/Famennian boundary in shelf basin facies north of Diemelsee-Adorf., Münstersche Forschungen zur Geologie und Paläontologie, 108, 220–231, 2016b.
Becker, R. T., Marshall, J. E. A., Da Silva, A. C., Agterberg, F. P., Gradstein, F. M., and Ogg, J. G.: Chapter 22 – The Devonian Period., in: Geologic Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., vol. 2, Elsevier, 733–810, https://doi.org/10.1016/B978-0-12-824360-2.00022-X, 2020.
Berner, R. A.: Weathering, plants, and the long-term carbon cycle, Geochim. Cosmochim. Ac., 56, 3225–3231, https://doi.org/10.1016/0016-7037(92)90300-8, 1992.
Blakey, R. C.: Global Paleogeography, https://deeptimemaps.com/ (last access: 14 February 2024), 2016.
Bond, D., Wignall, P. B., and Racki, G.: Extent and duration of marine anoxia during the Frasnian–Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France, Geol. Mag., 141, 173–193, https://doi.org/10.1017/S0016756804008866, 2004.
Bond, D. P. G. and Wignall, P. B.: The role of sea-level change and marine anoxia in the Frasnian–Famennian (Late Devonian) mass extinction, Palaeogeogr. Palaeocl., 263, 107–118, https://doi.org/10.1016/j.palaeo.2008.02.015, 2008.
Boucot, A. J., Xu, C., Scotese, C. R., and Morley, R. J.: Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate, SEPM (Society for Sedimentary Geology), Tulsa, Oklahoma, USA, SEPM Society for Sedimentary Geology, https://doi.org/10.2110/sepmcsp.11, 2013.
Boyce, C. K. and Lee, J.-E.: Plant Evolution and Climate Over Geological Timescales, Annu. Rev. Earth Pl. Sci., 45, 61–87, https://doi.org/10.1146/annurev-earth-063016-015629, 2017.
Brugger, J., Hofmann, M., Petri, S., and Feulner, G.: On the Sensitivity of the Devonian Climate to Continental Configuration, Vegetation Cover, Orbital Configuration, CO2, Concentration, and Insolation, Paleoceanogr. Paleocl., 34, 1375–1398, https://doi.org/10.1029/2019PA003562, 2019.
Buggisch, W.: The global Frasnian-Famennian “Kellwasser Event”, Geol. Rundsch., 80, 49–72, https://doi.org/10.1007/BF01828767, 1991.
Buggisch, W. and Joachimski, M. M.: Carbon isotope stratigraphy of the Devonian of Central and Southern Europe, Palaeogeogr. Palaeocl., 240, 68–88, https://doi.org/10.1016/j.palaeo.2006.03.046, 2006.
Butler, B. M. and Hillier, S.: powdR: An R package for quantitative mineralogy using full pattern summation of X-ray powder diffraction data, Comput. Geosci., 147, 104662, https://doi.org/10.1016/j.cageo.2020.104662, 2021.
Calvert, S. E. and Pedersen, T. F.: Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application, in: Developments in Marine Geology, vol. 1, Elsevier, 567–644, https://doi.org/10.1016/S1572-5480(07)01019-6, 2007.
Cao, W., Williams, S., Flament, N., Zahirovic, S., Scotese, C., and Müller, R. D.: Palaeolatitudinal distribution of lithologic indicators of climate in a palaeogeographic framework, Geol. Mag., 156, 331–354, https://doi.org/10.1017/S0016756818000110, 2019.
Carmichael, S. K., Waters, J. A., Königshof, P., Suttner, T. J., and Kido, E.: Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: A review of its sedimentological and geochemical expression, Global Planet. Change, 183, 102984, https://doi.org/10.1016/j.gloplacha.2019.102984, 2019.
Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J., and Hedin, L. O.: Changing sources of nutrients during four million years of ecosystem development, Nature, 397, 491–497, https://doi.org/10.1038/17276, 1999.
Chen, D. and Tucker, M. E.: The Frasnian–Famennian mass extinction: insights from high-resolution sequence stratigraphy and cyclostratigraphy in South China., Palaeogeogr. Palaeocl., 193, 87–111, https://doi.org/10.1016/S0031-0182(02)00716-2, 2003.
Claisse, F. and Samson, C.: Heterogeneity Effects in X-Ray Analysis, Adv. x-ray anal., 5, 335–354, https://doi.org/10.1154/S0376030800001671, 1961.
Clift, P. D., Hodges, K. V., Heslop, D., Hannigan, R., Van Long, H., and Calves, G.: Correlation of Himalayan exhumation rates and Asian monsoon intensity, Nat. Geosci., 1, 875–880, https://doi.org/10.1038/ngeo351, 2008.
Clift, P. D., Wan, S., and Blusztajn, J.: Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies, Earth-Sci. Rev., 130, 86–102, https://doi.org/10.1016/j.earscirev.2014.01.002, 2014.
Copper, P.: Frasnian/Famennian mass extinction and cold-water oceans, Geology, 14, 835, https://doi.org/10.1130/0091-7613(1986)14<835:FMEACO>2.0.CO;2, 1986.
Correns, C. W.: Die Sedimentgesteine, in: Die Entstehung der Gesteine, edited by: Barth, T. F. W., Correns, C. W., and Eskola, P., Springer Berlin Heidelberg, Berlin, Heidelberg, 116–262, https://doi.org/10.1007/978-3-642-86244-1_2, 1939.
Courtillot, V., Kravchinsky, V. A., Quidelleur, X., Renne, P. R., and Gladkochub, D. P.: Preliminary dating of the Viluy traps (Eastern Siberia): Eruption at the time of Late Devonian extinction events?, Earth Planet. Sc. Lett., 300, 239–245, https://doi.org/10.1016/j.epsl.2010.09.045, 2010.
Cramer, B. D. and Jarvis, I.: Carbon Isotope Stratigraphy, in: Geologic Time Scale 2020, Elsevier, 309–343, https://doi.org/10.1016/B978-0-12-824360-2.00011-5, 2020.
Da Silva, A.-C., Sinnesael, M., Claeys, P., Davies, J. H. F. L., de Winter, N. J., Percival, L. M. E., Schaltegger, U., and De Vleeschouwer, D.: Anchoring the Late Devonian mass extinction in absolute time by integrating climatic controls and radio-isotopic dating, Nat. Sci. Rep., 10, 1–12, https://doi.org/10.1038/s41598-020-69097-6, 2020.
D'Antonio, M. P., Ibarra, D. E., and Boyce, C. K.: Land plant evolution decreased, rather than increased, weathering rates, Geology, 48, 29–33, https://doi.org/10.1130/G46776.1, 2020.
Denayer, J., Prestianni, C., Mottequin, B., Hance, L., and Poty, E.: The Devonian – Carboniferous boundary in Belgium and surrounding areas, Palaeobio. Palaeoenv., 101, 313–356, https://doi.org/10.1007/s12549-020-00440-5, 2021.
De Vleeschouwer, D., Crucifix, M., Bounceur, N., and Claeys, P.: The impact of astronomical forcing on the Late Devonian greenhouse climate, Global Planet. Change, 20, 65–80, https://doi.org/10.1016/j.gloplacha.2014.06.002, 2014.
De Vleeschouwer, D., Da Silva, A.-C., Sinnesael, M., Chen, D., Day, J. E., Whalen, M. T., Guo, Z., and Claeys, P.: Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity, Nat. Commun., 8, 2268, https://doi.org/10.1038/s41467-017-02407-1, 2017.
Devleeschouwer, X., Herbosch, A., and Préat, A.: Microfacies, sequence stratigraphy and clay mineralogy of a condensed deep-water section around the Frasnian/Famennian boundary (Steinbruch Schmidt, Germany), Palaeogeogr. Palaeocl., 181, 171–193, https://doi.org/10.1016/S0031-0182(01)00478-3, 2002.
Driese, S. G. and Mora, C. I.: 13. Diversification of Siluro-Devonian Plant Traces in Paleosols and Influence on Estimates of Paleoatmospheric CO 2 Levels, in: Plants Invade the Land, edited by: Gensel, P. G. and Edwards, D., Columbia University Press, 237–254, https://doi.org/10.7312/gens11160-014, 2001.
Eder, W., Engel, W., and Franke, W.: Pasläogeographie an der Wende Mittel-/Oberdevon (Faziesübergang Schelf/Becken am Beispiel von Briloner Massenkalk, Padberger Kalk und Flinz; Aufschlüsse 4 bis 6), Geotagung '77 Göttingen, Exkursions-Führer I, 22–29, 1977.
Ernst, R. E., Rodygin, S. A., and Grinev, O. M.: Age correlation of Large Igneous Provinces with Devonian biotic crises, Global Planet. Change, 185, 103097, https://doi.org/10.1016/j.gloplacha.2019.103097, 2020.
Franke, W.: Devon und Unterkarbon des Waldecker Landes-Ein Paläogeographischer Querschnitt (Exkursion C am 4. April 1991), Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, Neue Folge, 73, 57–78, 1991.
Franke, W., Meischner, D., and Oncken, O.: Geologie eines passiven Plattenrandes: Devon und Karbon im Rechtsrheinischen Schiefergebirge., Exkursion der Geologischen Vereinigung, Nr. 3, Gießen, Göttingen, Potsdam, 74 pp., 1996.
Genise, J. F., Bedatou, E., Bellosi, E. S., Sarzetti, L. C., Sánchez, M. V., and Krause, J. M.: The Phanerozoic Four Revolutions and Evolution of Paleosol Ichnofacies, in: The Trace-Fossil Record of Major Evolutionary Events, vol. 40, edited by: Mángano, M. G. and Buatois, L. A., Springer Netherlands, Dordrecht, 301–370, https://doi.org/10.1007/978-94-017-9597-5_6, 2016.
Gereke, M.: Die oberdevonische Kellwasser-Krise in der Beckenfazies von Rhenohercynikum und Saxothuringikum (spätes Frasnium, frühestes Famennium, Deutschland), Kölner Forum Geol. Paläont., 17, 1–199, 2007.
Gereke, M. and Schindler, E.: “Time-Specific Facies” and biological crises – The Kellwasser Event interval near the Frasnian/Famennian boundary (Late Devonian), Palaeogeogr. Palaeocl., 367–368, 19–29, https://doi.org/10.1016/j.palaeo.2011.11.024, 2012.
Gibling, M. R. and Davies, N. S.: Palaeozoic landscapes shaped by plant evolution, Nat. Geosci., 5, 99–105, https://doi.org/10.1038/ngeo1376, 2012.
Gong, Y.-M., Li, B.-H., Wang, C.-Y., and Wu, Y.: Orbital cyclostratigraphy of the Devonian Frasnian–Famennian transition in South China, Palaeogeogr. Palaeocl., 168, 237–248, https://doi.org/10.1016/S0031-0182(00)00257-1, 2001.
Gouhier, T. C., Grinsted, A., and Simko, V.: R package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses (Version 0.20.21), GitHub [code], https://github.com/tgouhier/biwavelet (last access: 14 February 2024), 2021.
Griffin, J. J., Windom, H., and Goldberg, E. D.: The distribution of clay minerals in the World Ocean, Deep Sea Research and Oceanographic Abstracts, 15, 433–459, https://doi.org/10.1016/0011-7471(68)90051-X, 1968.
Harrigan, C. O., Schmitz, M. D., Over, D. J., Trayler, R. B., and Davydov, V. I.: Recalibrating the Devonian time scale: A new method for integrating radioisotopic and astrochronologic ages in a Bayesian framework, GSA Bulletin, 134, 1931001948, https://doi.org/10.1130/B36128.1, 2021.
Hartenfels, S., Becker, R. T., and Aboussalam, Z. S.: Givetian to Famennian stratigraphy, Kellwasser, Annulata and other events at Beringhauser Tunnel (Messinghausen Anticline, eastern Rhenish Massif), Münstersche Forschungen zur Geologie und Paläontologie, 108, 196–219, 2016.
Hartkopf-Fröder, C., Kloppisch, M., Mann, U., Neumann-Mahlkau, P., Schaefer, R. G., and Wilkes, H.: The end-Frasnian mass extinction in the Eifel Mountains, Germany: new insights from organic matter composition and preservation. in: Devonian Events and Correlation, edited by: Becker, R. T., and Kirchgasser, W. T., Geological Society, London, Special Publications, 278, 173–196, https://doi.org/10.1144/SP278.8, 2007.
Hu, D., Clift, P. D., Wan, S., Böning, P., Hannigan, R., Hillier, S., and Blusztajn, J.: Testing chemical weathering proxies in Miocene–Recent fluvial-derived sediments in the South China Sea, Geol. Soc. Lond. Spec. Publ., 429, 45–72, https://doi.org/10.1144/SP429.5, 2016.
Huang, C., Joachimski, M. M., and Gong, Y.: Did climate changes trigger the Late Devonian Kellwasser Crisis? Evidence from a high-resolution conodont δ18O PO 4 record from South China, Earth Planet. Sc. Lett., 495, 174–184, https://doi.org/10.1016/j.epsl.2018.05.016, 2018.
Ibarra, D. E., Rugenstein, J. K. C., Bachan, A., Baresch, A., Lau, K. V., Thomas, D. L., Lee, J.-E., Boyce, C. K., and Chamberlain, C. P.: Modeling the consequences of land plant evolution on silicate weathering, Am. J. Sci., 319, 1–43, https://doi.org/10.2475/01.2019.01, 2019.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophy. Geosy., 11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
Joachimski, M. M.: Comparison of organic and inorganic carbon isotope patterns across the Frasnian–Famennian boundary, Palaeogeogr. Palaeocl., 132, 133–145, https://doi.org/10.1016/S0031-0182(97)00051-5, 1997.
Joachimski, M. M. and Buggisch, W.: Anoxic events in the late Frasnian – Causes of the Frasnian-Famennian faunal crisis?, Geology, 21, 675–678, https://doi.org/10.1130/0091-7613(1993)021<0675:AEITLF>2.3.CO;2, 1993.
Joachimski, M. M. and Buggisch, W.: Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction, Geology, 30, 711, https://doi.org/10.1130/0091-7613(2002)030<0711:CAOSIC>2.0.CO;2, 2002.
Joachimski, M. M., Ostertag-Henning, C., Pancost, R. D., Strauss, H., Freeman, K. H., Littke, R., Sinninghe Damsté, J. S., and Racki, G.: Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian–Famennian boundary (Kowala – Holy Cross Mountains/Poland), Chem. Geol., 175, 109–131, https://doi.org/10.1016/S0009-2541(00)00365-X, 2001.
Joachimski, M. M., Pancost, R. D., Freeman, K. H., Ostertag-Henning, C., and Buggisch, W.: Carbon isotope geochemistry of the Frasnian–Famennian transition., Palaeogeogr. Palaeocl., 181, 91–109, https://doi.org/10.1016/S0031-0182(01)00474-6, 2002.
Jochum, K. P. and Nohl, U.: Reference materials in geochemistry and environmental research and the GeoReM database, Chem. Geol., 253, 50–53, https://doi.org/10.1016/j.chemgeo.2008.04.002, 2008.
Johnson, J. G., Klapper, G., and Sandberg, C. A.: Devonian eustatic fluctuations in Euramerica, Geol. Soc. Am. Bull., 96, 567, https://doi.org/10.1130/0016-7606(1985)96<567:DEFIE>2.0.CO;2, 1985.
Jutras, P., Quillan, R. S., and LeForte, M. J.: Evidence from Middle Ordovician paleosols for the predominance of alkaline groundwater at the dawn of land plant radiation, Geology, 37, 91–94, https://doi.org/10.1130/G25447A.1, 2009.
Kabanov, P., Hauck, T. E., Gouwy, S. A., Grasby, S. E., and van der Boon, A.: Oceanic anoxic events, marine photic-zone euxinia, and controversy of sea-level fluctuations during the Middle-Late Devonian, Earth-Sci. Rev., 241, 104415, https://doi.org/10.1016/j.earscirev.2023.104415, 2023.
Kaiho, K., Yatsu, S., Oba, M., Gorjan, P., Casier, J.-G., and Ikeda, M.: A forest fire and soil erosion event during the Late Devonian mass extinction, Palaeogeogr. Palaeocl., 392, 272–280, https://doi.org/10.1016/j.palaeo.2013.09.008, 2013.
Kaiser, S. I., Aretz, M., and Becker, R. T.: The global Hangenberg Crisis (Devonian–Carboniferous transition): review of a first-order mass extinction, in: Devonian Climate, Sea Level and Evolutionary Events, edited by: Becker, R. T., Königshof, P., and Brett, C. E., Geological Society, London, Special Publications, 423, 387–437, https://doi.org/10.1144/SP423.9, 2016.
Königshof, P.: Der Farbanderungsindex von Conodonten (CAI) in palaozoischen Gesteinen (Mitteldevon bis Unterkarbon) des Rheinischen Schiefergebirges – Eine Erganzung zur Vitrinitreflexion, Courier Forschungsinstitut Senckenberg, Frankfurt/Main, Schweizerbart, 118 pp., ISBN 978-3-510-61122-5, 1992.
Lash, G. G.: A multiproxy analysis of the Frasnian-Famennian transition in western New York State, U.S.A, Palaeogeogr. Palaeocl., 473, 108–122, https://doi.org/10.1016/j.palaeo.2017.02.032, 2017.
Lenton, T. M., Crouch, M., Johnson, M., Pires, N., and Dolan, L.: First plants cooled the Ordovician, Nat. Geosci., 5, 86–89, https://doi.org/10.1038/ngeo1390, 2012.
Li, C., Yang, S., Zhao, J., Dosseto, A., Bi, L., and Clark, T. R.: The time scale of river sediment source-to-sink processes in East Asia, Chem. Geol., 446, 138–146, https://doi.org/10.1016/j.chemgeo.2016.06.012, 2016.
Liu, Z., Percival, L. M. E., Vandeputte, D., Selby, D., Claeys, P., Over, D. J., and Gao, Y.: Upper Devonian mercury record from North America and its implications for the Frasnian–Famennian mass extinction, Palaeogeogr. Palaeocl., 576, 110502, https://doi.org/10.1016/j.palaeo.2021.110502, 2021.
Lourens, L. J., Hilgen, F. J., Gudjonsson, L., and Zachariasse, W. J.: Late Pliocene to early Pleistocene astronomically forced sea surface productivity and temperature variations in the Mediterranean, Mar. Micropaleontology, 19, 49–78, https://doi.org/10.1016/0377-8398(92)90021-B, 1992.
Lu, M., Lu, Y., Ikejiri, T., Sun, D., Carroll, R., Blair, E. H., Algeo, T. J., and Sun, Y.: Periodic oceanic euxinia and terrestrial fluxes linked to astronomical forcing during the Late Devonian Frasnian–Famennian mass extinction, Earth Planet. Sc. Lett., 562, 116839, https://doi.org/10.1016/j.epsl.2021.116839, 2021.
Ma, K., Hinnov, L., Zhang, X., and Gong, Y.: Astronomical climate changes trigger Late Devonian bio- and environmental events in South China, Global Planet. Change, 215, 103874, https://doi.org/10.1016/j.gloplacha.2022.103874, 2022.
Ma, X., Gong, Y., Chen, D., Racki, G., Chen, X., and Liao, W.: The Late Devonian Frasnian–Famennian Event in South China – Patterns and causes of extinctions, sea level changes, and isotope variations, Palaeogeogr. Palaeocl., 448, 224–244, https://doi.org/10.1016/j.palaeo.2015.10.047, 2016.
McGhee, G. R.: Extinction: Late Devonian Mass Extinction, in: Encyclopedia of Life Sciences (eLS), edited by: John Wiley & Sons, Ltd, Wiley, Chichester, https://doi.org/10.1002/9780470015902.a0001653.pub3, 2012.
McGhee, G. R., Clapham, M. E., Sheehan, P. M., Bottjer, D. J., and Droser, M. L.: A new ecological-severity ranking of major Phanerozoic biodiversity crises, Palaeogeogr. Palaeocl., 370, 260–270, https://doi.org/10.1016/j.palaeo.2012.12.019, 2013.
McGregor, H. V., Dupont, L., Stuut, J.-B. W., and Kuhlmann, H.: Vegetation change, goats, and religion: a 2000-year history of land use in southern Morocco, Quaternary Sci. Rev., 28, 1434–1448, https://doi.org/10.1016/j.quascirev.2009.02.012, 2009.
Meischner, D.: Clastic sedimentation in the Variscan Geosyncline east of the River Rhine, in: Sedimentology of Parts of Central Europe, International Sedimentological Congress, 9–43, ISBN 3782910346, 1971.
Meyers, S. R.: Astrochron: An R Package for Astrochronology, https://cran.r-project.org/package=astrochron (last access: 14 February 2024), 2014.
Meyers, S. R.: The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization, Paleoceanography, 30, 1625–1640, https://doi.org/10.1002/2015PA002850, 2015.
Meyers, S. R., Sageman, B. B., and Arthur, M. A.: Obliquity forcing of organic matter accumulation during Oceanic Anoxic Event 2, Paleoceanography, 27, PA3212, https://doi.org/10.1029/2012PA002286, 2012.
Mitchell, R. L., Kenrick, P., Pressel, S., Duckett, J., Strullu-Derrien, C., Davies, N., McMahon, W. J., and Summerfield, R.: Terrestrial surface stabilisation by modern analogues of the earliest land plants: A multi-dimensional imaging study, Geobiology, 21, 454–473, https://doi.org/10.1111/gbi.12546, 2023.
Mottequin, B. and Poty, E.: Kellwasser horizons, sea-level changes and brachiopod–coral crises during the late Frasnian in the Namur–Dinant Basin (southern Belgium): a synopsis, in: Devonian Climate, Sea Level and Evolutionary Events, edited by: Becker, R. T., Königshof, P., and Brett, C. E., Geological Society, London, Special Publications, 423, 235–250, https://doi.org/10.1144/SP423.6, 2016.
Munnecke, A. and Samtleben, C.: The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden, Facies, 34, 159–176, https://doi.org/10.1007/BF02546162, 1996.
Nesbitt, H. W., Markovics, G., and price, R. C.: Chemical processes affecting alkalis and alkaline earths during continental weathering, Geochim. Cosmochim. Ac., 44, 1659–1666, https://doi.org/10.1016/0016-7037(80)90218-5, 1980.
Nohl, T., Wetterich, J., Fobbe, N., and Munnecke, A.: Lithological dependence of aragonite preservation in monospecific gastropod deposits of the Miocene Mainz Basin: Implications for the (dia-)genesis of limestone–marl alternations, J. Sediment. Res., 90, 1500–1509, https://doi.org/10.2110/jsr.2020.057, 2020.
Nohl, T., Steinbauer, M. J., Sinnesael, M., and Jarochowska, E.: Detecting initial aragonite and calcite variations in limestone–marl alternations, Sedimentology, 68, 3102–3115, https://doi.org/10.1111/sed.12885, 2021.
Pas, D., Da Silva, A.-C., Cornet, P., Bultynck, P., Königshof, P., and Boulvain, F.: Sedimentary development of a continuous Middle Devonian to Mississippian section from the fore-reef fringe of the Brilon Reef Complex (Rheinisches Schiefergebirge, Germany), Facies, 59, 969–990, https://doi.org/10.1007/s10347-012-0351-z, 2013.
Percival, L. M. E., Davies, J. H. F. L., Schaltegger, U., De Vleeschouwer, D., Da Silva, A. C., and Föllmi, K. B.: Precisely dating the Frasnian–Famennian boundary: implications for the cause of the Late Devonian mass extinction, Sci. Rep., 8, 1–10, https://doi.org/10.1038/s41598-018-27847-7, 2018.
Percival, L. M. E., Selby, D., Bond, D. P. G., Rakociński, M., Racki, G., Marynowski, L., Adatte, T., Spangenberg, J. E., and Föllmi, K. B.: Pulses of enhanced continental weathering associated with multiple Late Devonian climate perturbations: Evidence from osmium-isotope compositions, Palaeogeogr. Palaeocl., 524, 240–249, https://doi.org/10.1016/j.palaeo.2019.03.036, 2019.
Percival, L. M. E., Bond, D. P. G., Rakociński, M., Marynowski, L., Hood, A. v. S., Adatte, T., Spangenberg, J. E., and Föllmi, K. B.: Phosphorus-cycle disturbances during the Late Devonian anoxic events, Global Planet. Change, 184, 103070, https://doi.org/10.1016/j.gloplacha.2019.103070, 2020.
Piecha, M.: Stratigraphie, Fazies und Sedimentpetrographie der-rhythmisch und zyklisch abgelagerten, tiefoberdevonischen-Beckensedimente im Rechtsrheinischen Schiefergebirg (Adorf-Bänderschiefer), Courier Forschungsinstitut Senckenberg, Schweizerbart, ISBN 78-3-510-61110-2, 1–151, 1993.
Pier, J. Q., Brisson, S. K., Beard, J. A., Hren, M. T., and Bush, A. M.: Accelerated mass extinction in an isolated biota during Late Devonian climate changes, Sci. Rep., 11, 24366, https://doi.org/10.1038/s41598-021-03510-6, 2021.
Pippenger, K. H., Estrada, L., Jones, D. S., and Cohen, P. A.: Appalachian Basin mercury enrichments during the Late Devonian Kellwasser Events and comparison to global records, Palaeogeogr. Palaeocl., 627, 111751, https://doi.org/10.1016/j.palaeo.2023.111751, 2023.
Pisarzowska, A. and Racki, G.: Comparative carbon isotope chemostratigraphy of major Late Devonian biotic crises, in: Stratigraphy & Timescales, vol. 5, Elsevier, 387–466, https://doi.org/10.1016/bs.sats.2020.08.001, 2020.
Polyansky, O. P., Prokopiev, A. V., Koroleva, O. V., Tomshin, M. D., Reverdatto, V. V., Selyatitsky, A. Yu., Travin, A. V., and Vasiliev, D. A.: Temporal correlation between dyke swarms and crustal extension in the middle Palaeozoic Vilyui rift basin, Siberian platform, Lithos, 282–283, 45–64, https://doi.org/10.1016/j.lithos.2017.02.020, 2017.
Pujol, F., Berner, Z., and Stüben, D.: Palaeoenvironmental changes at the Frasnian/Famennian boundary in key European sections: Chemostratigraphic constraints, Palaeogeogr. Palaeocl., 240, 120–145, https://doi.org/10.1016/j.palaeo.2006.03.055, 2006.
Qie, W., Zhang, J., Luo, G., Algeo, T. J., Chen, B., Xiang, L., Liang, K., Liu, X., Pogge Von Strandmann, P. A. E., Chen, J., and Wang, X.: Enhanced Continental Weathering as a Trigger for the End-Devonian Hangenberg Crisis, Geophys. Res. Lett., 50, e2022GL102640, https://doi.org/10.1029/2022GL102640, 2023.
Quye-Sawyer, J., Vandeginste, V., and Johnston, K. J.: Application of handheld energy-dispersive X-ray fluorescence spectrometry to carbonate studies: opportunities and challenges, J. Anal. Atom. Spectrom., 30, 1490–1499, https://doi.org/10.1039/c5ja00114e, 2015.
Racki, G.: The Frasnian-Famennian biotic crisis: How many (if any) bolide impacts?, Geol. Rundsch., 87, 617–632, https://doi.org/10.1007/s005310050235, 1999.
Racki, G.: Toward understanding Late Devonian global events: few answers, many questions, in: Developments in Palaeontology and Stratigraphy, vol. 20, Elsevier, 5–36, 2005.
Racki, G.: A volcanic scenario for the Frasnian–Famennian major biotic crisis and other Late Devonian global changes: More answers than questions?, Global Planet. Change, 189, 103174, https://doi.org/10.1016/j.gloplacha.2020.103174, 2020a.
Racki, G.: Volcanism as a prime cause of mass extinctions: Retrospectives and perspectives, in: Mass Extinctions, Volcanism, and Impacts: New Developments, Vol. 544, edited by: Adatte, T., Bond, D. P. G., and Keller, G., Geol. Soc. Am., 1–34, https://doi.org/10.1130/2020.2544(01), 2020b.
Racki, G., Rakociński, M., Marynowski, L., and Wignall, P. B.: Mercury enrichments and the Frasnian-Famennian biotic crisis: A volcanic trigger proved?, Geology, 46, 543–546, https://doi.org/10.1130/G40233.1, 2018.
Raup, D. M. and Sepkoski, J. J.: Mass extinctions in the marine fossil record, Science, 215, 1501–1503, https://doi.org/10.1126/science.215.4539.1501, 1982.
Ricci, J., Quidelleur, X., Pavlov, V., Orlov, S., Shatsillo, A., and Courtillot, V.: New 40Ar/39Ar and K–Ar ages of the Viluy traps (Eastern Siberia): Further evidence for a relationship with the Frasnian–Famennian mass extinction, Palaeogeogr. Palaeocl., 386, 531–540, https://doi.org/10.1016/j.palaeo.2013.06.020, 2013.
Riquier, L., Tribovillard, N., Averbuch, O., Devleeschouwer, X., and Riboulleau, A.: The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): two oxygen-deficient periods resulting from different mechanisms, Chem. Geol., 233, 137–155, https://doi.org/10.1016/j.chemgeo.2006.02.021, 2006.
Riquier, L., Averbuch, O., Tribovillard, N., Albani, A. E., Lazreq, N., and Chakiri, S.: Environmental changes at the Frasnian–Famennian boundary in Central Morocco (Northern Gondwana): integrated rock-magnetic and geochemical studies, in: Devonian Events and Correlations, edited by: Becker, R. T., and Kirchgasser, W. T., Geological Society, London, Special Publications, 278, 197–217, https://doi.org/10.1144/SP278.9, 2007.
Robert, C. and Chamley, H.: Cenozoic evolution of continental humidity and paleoenvironment, deduced from the kaolinite content of oceanic sediments, Palaeogeogr. Palaeocl., 60, 171–187, https://doi.org/10.1016/0031-0182(87)90031-9, 1987.
Schindler, E.: Die Kellwasser-Krise (hohe Frasne-Stufe, Ober-Devon), Göttinger Arbeiten zur Geologie und Paläontologie, 46, 1–115, 1990a.
Schindler, E.: The late Frasnian (Upper Devonian) Kellwasser Crisis, in: Extinction Events in Earth History, edited by: Kauffman, E. G. and Walliser, O. H., vol. 30, Springer, Berlin, Heidelberg, 151–159, https://doi.org/10.1007/BFb0011143, 1990b.
Schindler, E. and Königshof, P.: Sedimentology and microfacies of Late Devonian Kellwasser limestones in relation to palaeobathymetry (Upper Kellwasser horizon, late Frasnian), Zentral-blatt für Geologie und Paläontologie, Teil I, Stuttgart, 597–607, 1997.
Schmitz, B., Feist, R., Meier, M. M. M., Martin, E., Heck, P. R., Lenaz, D., Topa, D., Busemann, H., Maden, C., Plant, A. A., and Terfelt, F.: The micrometeorite flux to Earth during the Frasnian–Famennian transition reconstructed in the Coumiac GSSP section, France, Earth Planet. Sc. Lett., 522, 234–243, https://doi.org/10.1016/j.epsl.2019.06.025, 2019.
Schobben, M., Van De Schootbrugge, B., and Wignall, P. B.: Interpreting the Carbon Isotope Record of Mass Extinctions, Elements, 15, 331–337, https://doi.org/10.2138/gselements.15.5.331, 2019.
Scotese, C. R.: An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come In and the Seas Go Out, Annu. Rev. Earth Pl. Sc., 49, 679–728, https://doi.org/10.1146/annurev-earth-081320-064052, 2021.
Sepkoski, J. J.: Patterns of Phanerozoic Extinction: a Perspective from Global Data Bases, in: Global Events and Event Stratigraphy in the Phanerozoic, edited by: Walliser, O. H., Springer Berlin Heidelberg, Berlin, Heidelberg, 35–51, https://doi.org/10.1007/978-3-642-79634-0_4, 1996.
Smart, M. S., Filippelli, G., Gilhooly III, W. P., Marshall, J. E. A., and Whiteside, J. H.: Enhanced terrestrial nutrient release during the Devonian emergence and expansion of forests: Evidence from lacustrine phosphorus and geochemical records, GSA Bulletin, 135, 1879–1898, https://doi.org/10.1130/B36384.1, 2022.
Smith, D.: Misplaced confidence: limits to statistical inference in cyclostratigraphy, Boletín Geológico y Minero, 131, 291–307, https://doi.org/10.21701/bolgeomin.131.2.005, 2020.
Smith, D. G.: The Orbital Cycle Factory: Sixty cyclostratigraphic spectra in need of re-evaluation, Palaeogeogr. Palaeocl., 628, 111744, https://doi.org/10.1016/j.palaeo.2023.111744, 2023.
Song, H., Song, H., Algeo, T. J., Tong, J., Romaniello, S. J., Zhu, Y., Chu, D., Gong, Y., and Anbar, A. D.: Uranium and carbon isotopes document global-ocean redox-productivity relationships linked to cooling during the Frasnian-Famennian mass extinction, Geology, 45, 887–890, https://doi.org/10.1130/G39393.1, 2017.
Southam, J. R., Peterson, W. H., and Brass, G. W.: Dynamics of anoxia, Palaeogeogr. Palaeocl., 40, 183–198, https://doi.org/10.1016/0031-0182(82)90089-X, 1982.
Stritzke, R.: Die Karbonatsedimentation im Briloner Vorriffbereich, Geologisches Jahrbuch, 95, 253–315, 1990.
Swart, P. K.: Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle, P. Natl. Acad. Sci. USA, 105, 13741–13745, https://doi.org/10.1073/pnas.0802841105, 2008.
Thomson, D. J.: Spectrum estimation and harmonic analysis, Proc. IEEE, 70, 1055–1096, https://doi.org/10.1109/PROC.1982.12433, 1982.
Trabucho-Alexandre, J., Hay, W. W., and de Boer, P. L.: Phanerozoic environments of black shale deposition and the Wilson Cycle, Solid Earth, 3, 29–42, https://doi.org/10.5194/se-3-29-2012, 2012.
Van Cappellen, P. and Ingall, E. D.: Redox Stabilization of the Atmosphere and Oceans by Phosphorus-Limited Marine Productivity, Science, 271, 493–496, https://doi.org/10.1126/science.271.5248.493, 1996.
van der Meer, D. G., Scotese, C. R., Mills, B. J. W., Sluijs, A., van den Berg van Saparoea, A.-P., and van de Weg, R. M. B.: Long-term Phanerozoic global mean sea level: Insights from strontium isotope variations and estimates of continental glaciation, Gondwana Res., 111, 103–121, https://doi.org/10.1016/j.gr.2022.07.014, 2022.
van Hulten, F. F. N.: Devono-carboniferous carbonate platform systems of the Netherlands, Geol. Belg., 15, 284–296, 2012.
Vaughan, S., Bailey, R. J., and Smith, D. G.: Detecting cycles in stratigraphic data: Spectral analysis in the presence of red noise, Paleoceanography, 26, 2011PA002195, https://doi.org/10.1029/2011PA002195, 2011.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., and Strauss, H.: 87Sr 86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 161, 59–88, https://doi.org/10.1016/S0009-2541(99)00081-9, 1999.
Versteegh, G. J. M., Servais, T., Streng, M., Munnecke, A., and Vachard, D.: A discussion and proposal concerning the use of the term calcispheres, Palaeontology, 52, 343–348, https://doi.org/10.1111/j.1475-4983.2009.00854.x, 2009.
Vervoort, P., Kirtland Turner, S., Rochholz, F., and Ridgwell, A.: Earth System Model Analysis of How Astronomical Forcing Is Imprinted Onto the Marine Geological Record: The Role of the Inorganic (Carbonate) Carbon Cycle and Feedbacks, Paleoceanogr. Paleoclimatol., 36, e2020PA004090, https://doi.org/10.1029/2020PA004090, 2021.
Waltham, D.: Milankovitch period uncertainties and their impact on cyclostratigraphy, J. Sediment. Res., 85, 990–998, https://doi.org/10.2110/jsr.2015.66, 2015.
Weedon, G. P.: Problems with the current practice of spectral analysis in cyclostratigraphy: Avoiding false detection of regular cyclicity, Earth-Sci. Rev., 235, 104261, https://doi.org/10.1016/j.earscirev.2022.104261, 2022.
Westphal, H.: Limestone–marl alternations as environmental archives and the role of early diagenesis: a critical review, Int. J. Earth Sci., 95, 947–961, https://doi.org/10.1007/s00531-006-0084-8, 2006.
Westphal, H., Hilgen, F., and Munnecke, A.: An assessment of the suitability of individual rhythmic carbonate successions for astrochronological application, Earth-Sci. Rev., 99, 19–30, https://doi.org/10.1016/j.earscirev.2010.02.001, 2010.
Whalen, M. T., De Vleeschouwer, D., Payne, J. H., Day, J. E., Over, D. J., and Claeys, P.: Pattern and timing of the Late Devonian biotic crisis in Western Canada: insights from carbon isotopes and astronomical calibration of magnetic susceptibility data., New Advances in Devonian Carbonates: Outcrop Analogs, Reservoirs, and Chronostratigraphy, SEPM Special Publication, 107, 185–201, https://doi.org/10.2110/sepmsp.107.02, 2017.
Wichern, N. M. A.: NMAWichern/winsenberg_astro: Winsenberg_supplementary_code (Version v2023), Zenodo [code], https://doi.org/10.5281/zenodo.10160298, 2023.
Wichern, N. M. A., Bialik, O. M., Nohl, T., Percival, L., Becker, R. T., Kaskes, P., Claeys, P., De Vleeschouwer, and D.: Multiproxy dataset (pXRF, carbon isotopes, TOC, XRD) of the Devonian Kellwasser Crisis interval (ca. 372 Ma) at Winsenberg, Germany, PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA.965390, 2024.
Wilde, P. and Berry, W. B. N.: Destabilization of the oceanic density structure and its significance to marine “extinction” events, Palaeogeogr. Palaeocl., 48, 143–162, https://doi.org/10.1016/0031-0182(84)90041-5, 1984.
Winter, J.: Volcanism and Kellwasser Crisis – Zircon tephrostratigraphy, identification and origin of distal fallout ash layers (Upper Devonian, Dinant Syncline, Rhenish Slate Mountains, Harz Mountains), Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 166, 227–251, https://doi.org/10.1127/1860-1804/2015/0092, 2015.
Wintsch, R. P. and Kvale, C. M.: Differential Mobility of Elements in Burial Diagenesis of Siliciclastic Rocks, J. Sediment. Res., 64, 349–361, https://doi.org/10.1306/D4267D9D-2B26-11D7-8648000102C1865D, 1994.
Young, G. M. and Nesbitt, H. W.: Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks, J. Sediment. Res., 68, 448–455, https://doi.org/10.2110/jsr.68.448, 1998.
Zhang, X., Joachimski, M. M., and Gong, Y.: Late Devonian greenhouse-icehouse climate transition: New evidence from conodont δ18O thermometry in the eastern Palaeotethys (Lali section, South China), Chem. Geol., 581, 120383, https://doi.org/10.1016/j.chemgeo.2021.120383, 2021.
Zhao, H., Shen, J., Algeo, T. J., Racki, G., Chen, J., Huang, C., Song, J., Qie, W., and Gong, Y.: Mercury isotope evidence for regional volcanism during the Frasnian-Famennian transition, Earth Planet. Sc. Lett., 581, 117412, https://doi.org/10.1016/j.epsl.2022.117412, 2022.
Zheng, W., Gilleaudeau, G. J., Algeo, T. J., Zhao, Y., Song, Y., Zhang, Y., Sahoo, S. K., Anbar, A. D., Carmichael, S. K., Xie, S., Liu, C.-Q., and Chen, J.: Mercury isotope evidence for recurrent photic-zone euxinia triggered by enhanced terrestrial nutrient inputs during the Late Devonian mass extinction, Earth Planet. Sc. Lett., 613, 118175, https://doi.org/10.1016/j.epsl.2023.118175, 2023.
Zhou, Y., Li, Y., Zheng, W., ShunlinTang, Pan, S., Chen, J., Xiao-Fang, H., Shen, J., and Algeo, T. J.: The role of LIPs in Phanerozoic mass extinctions: An Hg perspective, Earth-Sci. Rev., 249, 104667, https://doi.org/10.1016/j.earscirev.2023.104667, 2023.
Short summary
Middle–Late Devonian sedimentary rocks are often punctuated by anoxic black shales. Due to their semi-regular nature, anoxic events may be linked to periodic changes in the Earth’s climate caused by astronomical forcing. We use portable X-ray fluorescence elemental records, measured on marine sediments from Germany, to construct an astrochronological framework for the Kellwasser ocean anoxic Crisis. Results suggest that the Upper Kellwasser event was preceded by a specific orbital configuration.
Middle–Late Devonian sedimentary rocks are often punctuated by anoxic black shales. Due to their...