Articles | Volume 20, issue 9
https://doi.org/10.5194/cp-20-2103-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-2103-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Distinct seasonal changes and precession forcing of surface and subsurface temperatures in the mid-latitudinal North Atlantic during the onset of the Late Pliocene
Xiaolei Pang
CORRESPONDING AUTHOR
Institute of Ocean Research, Peking University, Beijing, 100871, China
School of Earth and Space Sciences, Peking University, Beijing, 100871, China
Antje H. L. Voelker
Instituto Português do Mar e da Atmosfera, Divisão de Geologia e Georecursos Marinhos, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Alges, Portugal
Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, Edf. 7, 8005-139 Faro, Portugal
Sihua Lu
State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
Xuan Ding
School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
Related authors
No articles found.
Aline Martins Mega, Teresa Rodrigues, Emilia Salgueiro, Maria Padilha, Henning Kuhnert, and Antje H. L. Voelker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3185, https://doi.org/10.5194/egusphere-2024-3185, 2024
Short summary
Short summary
Our research explores climatic changes during the Early-Middle Pleistocene (1006–750 kilo years) on the southern Portuguese margin. We found that warm, subtropical gyre related conditions dominated. However, those conditions were occasionally interrupted by extreme cold events during the glacial periods. Our data shows that these cold events, linked to changes in the North Atlantic’s circulation, reached as far south as 36° N and significantly impacting marine ecosystems in the surface ocean.
Gilles Reverdin, Claire Waelbroeck, Antje Voelker, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3009, https://doi.org/10.5194/egusphere-2024-3009, 2024
Short summary
Short summary
Water isotopes in the ocean trace the freshwater exchanges between the ocean, the atmosphere and the cryosphere, and are used to investigate processes of the hydrological cycle. We illustrate offsets in seawater isotopic composition between different data sets that are larger than the expected variability that one often wants to explore. This highlights the need to share seawater isotopic composition samples dedicated to specific intercomparison of data produced in the different laboratories.
Mengdi Song, Shuyu He, Xin Li, Ying Liu, Shengrong Lou, Sihua Lu, Limin Zeng, and Yuanhang Zhang
Atmos. Meas. Tech., 17, 5113–5127, https://doi.org/10.5194/amt-17-5113-2024, https://doi.org/10.5194/amt-17-5113-2024, 2024
Short summary
Short summary
We introduce detailed and improved quantitation and semi-quantitation methods of iodide-adduct time-of-flight chemical ionization mass spectrometry (I-CIMS) to measure toluene oxidation intermediates. We assess the experimental sensitivity of various functional group species and their binding energy with iodide ions in I-CIMS. A novel classification approach was introduced to significantly enhance the accuracy of semi-quantitative methods (improving R2 values from 0.52 to beyond 0.88).
Kai Song, Rongzhi Tang, Jingshun Zhang, Zichao Wan, Yuan Zhang, Kun Hu, Yuanzheng Gong, Daqi Lv, Sihua Lu, Yu Tan, Ruifeng Zhang, Ang Li, Shuyuan Yan, Shichao Yan, Baoming Fan, Wenfei Zhu, Chak K. Chan, Maosheng Yao, and Song Guo
Atmos. Chem. Phys., 23, 13585–13595, https://doi.org/10.5194/acp-23-13585-2023, https://doi.org/10.5194/acp-23-13585-2023, 2023
Short summary
Short summary
Incense burning is common in Asia, posing threats to human health and air quality. However, less is known about its emissions and health risks. Full-volatility organic species from incense-burning smoke are detected and quantified. Intermediate-volatility volatile organic compounds (IVOCs) are crucial organics accounting for 19.2 % of the total emission factors (EFs) and 40.0 % of the secondary organic aerosol (SOA) estimation, highlighting the importance of incorporating IVOCs into SOA models.
Suding Yang, Xin Li, Limin Zeng, Xuena Yu, Ying Liu, Sihua Lu, Xiaofeng Huang, Dongmei Zhang, Haibin Xu, Shuchen Lin, Hefan Liu, Miao Feng, Danlin Song, Qinwen Tan, Jinhui Cui, Lifan Wang, Ying Chen, Wenjie Wang, Haijiong Sun, Mengdi Song, Liuwei Kong, Yi Liu, Linhui Wei, Xianwu Zhu, and Yuanhang Zhang
Atmos. Meas. Tech., 16, 501–512, https://doi.org/10.5194/amt-16-501-2023, https://doi.org/10.5194/amt-16-501-2023, 2023
Short summary
Short summary
Vertical observation of volatile organic compounds (VOCs) is essential to study the spatial distribution and evolution patterns of VOCs in the planetary boundary layer (PBL). This paper describes multi-channel whole-air sampling equipment onboard an unmanned aerial vehicle (UAV) for near-continuous VOC vertical observation. Vertical profiles of VOCs and trace gases during the evolution of the PBL in south-western China have been successfully obtained by deploying the newly developed UAV system.
Kai Song, Song Guo, Yuanzheng Gong, Daqi Lv, Yuan Zhang, Zichao Wan, Tianyu Li, Wenfei Zhu, Hui Wang, Ying Yu, Rui Tan, Ruizhe Shen, Sihua Lu, Shuangde Li, Yunfa Chen, and Min Hu
Atmos. Chem. Phys., 22, 9827–9841, https://doi.org/10.5194/acp-22-9827-2022, https://doi.org/10.5194/acp-22-9827-2022, 2022
Short summary
Short summary
Emissions from four typical Chinese domestic cooking and fried chicken using four kinds of oils were investigated to illustrate the impact of cooking style and oil. Of the estimated SOA, 10.2 %–32.0 % could be explained by S/IVOC oxidation. Multiway principal component analysis (MPCA) emphasizes the importance of the unsaturated fatty acid-alkadienal volatile product mechanism (oil autoxidation) accelerated by the cooking and heating procedure.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Yuanzheng Gong, Kai Song, Song Guo, Daqi Lv, Yuan Zhang, Zichao Wan, Wenfei Zhu, Hui Wang, Ying Yu, Rui Tan, Ruizhe Shen, Sihua Lu, Shuangde Li, and Yunfa Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-326, https://doi.org/10.5194/acp-2022-326, 2022
Preprint withdrawn
Short summary
Short summary
Herein we applied thermal desorption comprehensive two-dimensional gas chromatography-mass spectrometer (TD-GCxGC-MS) for synchronous analysis of gaseous and particulate organics emitted from cooking fumes. With a systematic 4-step qualitative procedure and precise quantitative and semi-quantitative method, 170 and 352 compounds from C2 (acetic acids) – C30 (squalene) occupying 95 % and 90 % of the total ion current for gaseous and particulate samples were identified and quantified.
Wenjie Wang, David D. Parrish, Xin Li, Min Shao, Ying Liu, Ziwei Mo, Sihua Lu, Min Hu, Xin Fang, Yusheng Wu, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 20, 15617–15633, https://doi.org/10.5194/acp-20-15617-2020, https://doi.org/10.5194/acp-20-15617-2020, 2020
Short summary
Short summary
During the past decade, China has devoted very substantial resources to improving the environment. These efforts have improved atmospheric particulate matter loading, but ambient ozone levels have continued to increase. In this paper we investigate the causes of the increasing ozone concentrations through analysis of a data set that is, to our knowledge, unique: a 12-year data set including ground-level O3, NOx, and VOC precursors collected at an urban site in Beijing.
Sarah E. Benish, Hao He, Xinrong Ren, Sandra J. Roberts, Ross J. Salawitch, Zhanqing Li, Fei Wang, Yuying Wang, Fang Zhang, Min Shao, Sihua Lu, and Russell R. Dickerson
Atmos. Chem. Phys., 20, 14523–14545, https://doi.org/10.5194/acp-20-14523-2020, https://doi.org/10.5194/acp-20-14523-2020, 2020
Short summary
Short summary
Airborne observations of ozone and related pollutants show smog was pervasive in spring 2016 over Hebei Province, China. We find high amounts of ozone precursors throughout and even above the PBL, continuing to generate ozone at high rates to be potentially transported downwind. Concentrations even in the rural areas of this highly industrialized province promote widespread ozone production, and we show that to improve air quality over Hebei both NOx and VOCs should be targeted.
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, https://doi.org/10.5194/cp-16-2017-2020, 2020
Andreia Rebotim, Antje Helga Luise Voelker, Lukas Jonkers, Joanna J. Waniek, Michael Schulz, and Michal Kucera
J. Micropalaeontol., 38, 113–131, https://doi.org/10.5194/jm-38-113-2019, https://doi.org/10.5194/jm-38-113-2019, 2019
Short summary
Short summary
To reconstruct subsurface water conditions using deep-dwelling planktonic foraminifera, we must fully understand how the oxygen isotope signal incorporates into their shell. We report δ18O in four species sampled in the eastern North Atlantic with plankton tows. We assess the size and crust effect on the isotopic δ18O and compared them with predictions from two equations. We reveal different patterns of calcite addition with depth, highlighting the need to perform species-specific calibrations.
Liqing Wu, Xuemei Wang, Sihua Lu, Min Shao, and Zhenhao Ling
Atmos. Chem. Phys., 19, 8141–8161, https://doi.org/10.5194/acp-19-8141-2019, https://doi.org/10.5194/acp-19-8141-2019, 2019
Short summary
Short summary
Semi-volatile and intermediate-volatility organic compounds (S–IVOCs) are considered critical precursors of secondary organic aerosol (SOA), which is an important component of fine particulate matter (PM2.5). In this study, an emission inventory of S–IVOCs in the Pearl River Delta (PRD) region was developed for the first time for the year 2010, while the contributions of S–IVOCs to SOA formation was evaluated by the WRF-Chem model.
Dongjie Shang, Min Hu, Jing Zheng, Yanhong Qin, Zhuofei Du, Mengren Li, Jingyao Fang, Jianfei Peng, Yusheng Wu, Sihua Lu, and Song Guo
Atmos. Chem. Phys., 18, 15687–15703, https://doi.org/10.5194/acp-18-15687-2018, https://doi.org/10.5194/acp-18-15687-2018, 2018
Short summary
Short summary
Biomass burning (BB) activities have a great impact on the particle number size distribution in the upper troposphere of the Tibetan Plateau (TP), which could affect regional and global climate. We found that the cloud condensation nuclei concentration was 2–8 times higher during BB influenced periods than during clean periods on the TP. An unexpectedly low new particle formation frequency was found in clean atmosphere on the TP, due to low concentrations of anthropogenic precursors, i.e., SO2.
Mari F. Jensen, Aleksi Nummelin, Søren B. Nielsen, Henrik Sadatzki, Evangeline Sessford, Bjørg Risebrobakken, Carin Andersson, Antje Voelker, William H. G. Roberts, Joel Pedro, and Andreas Born
Clim. Past, 14, 901–922, https://doi.org/10.5194/cp-14-901-2018, https://doi.org/10.5194/cp-14-901-2018, 2018
Short summary
Short summary
We combine North Atlantic sea-surface temperature reconstructions and global climate model simulations to study rapid glacial climate shifts (30–40 000 years ago). Pre-industrial climate boosts similar, albeit weaker, sea-surface temperature variability as the glacial period. However, in order to reproduce most of the amplitude of this variability, and to see temperature variability in Greenland similar to the ice-core record, although with a smaller amplitude, we need forced simulations.
Jianfei Peng, Min Hu, Zhuofei Du, Yinhui Wang, Jing Zheng, Wenbin Zhang, Yudong Yang, Yanhong Qin, Rong Zheng, Yao Xiao, Yusheng Wu, Sihua Lu, Zhijun Wu, Song Guo, Hongjun Mao, and Shijin Shuai
Atmos. Chem. Phys., 17, 10743–10752, https://doi.org/10.5194/acp-17-10743-2017, https://doi.org/10.5194/acp-17-10743-2017, 2017
Short summary
Short summary
Through an environmental chamber approach, we find that a small increase in aromatic content in gasoline fuel will result in a large enhancement in the secondary organic aerosol formation from vehicle exhaust. The higher emissions of both monocyclic and polycyclic aromatic organic compounds from the high-aromatic fuel played an essential role. Our findings highlight the importance of more stringent regulation of gasoline aromatic content for air quality in urban areas.
Yudong Yang, Min Shao, Stephan Keßel, Yue Li, Keding Lu, Sihua Lu, Jonathan Williams, Yuanhang Zhang, Liming Zeng, Anke C. Nölscher, Yusheng Wu, Xuemei Wang, and Junyu Zheng
Atmos. Chem. Phys., 17, 7127–7142, https://doi.org/10.5194/acp-17-7127-2017, https://doi.org/10.5194/acp-17-7127-2017, 2017
Short summary
Short summary
Total OH reactivity is an important parameter to evaluate understanding of atmospheric chemistry, especially the VOC contribution to air pollution. Measured by comparative reactivity methods, total OH reactivity in Beijing and Heshan revealed significant differences between measured and calculated results, such as missing reactivity, which were related to unmeasured primary or secondary species. This missing reactivity would introduce a 21–30 % underestimation for ozone production efficiency.
Andreia Rebotim, Antje H. L. Voelker, Lukas Jonkers, Joanna J. Waniek, Helge Meggers, Ralf Schiebel, Igaratza Fraile, Michael Schulz, and Michal Kucera
Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, https://doi.org/10.5194/bg-14-827-2017, 2017
Short summary
Short summary
Planktonic foraminifera species depth habitat remains poorly constrained and the existing conceptual models are not sufficiently tested by observational data. Here we present a synthesis of living planktonic foraminifera abundance data in the subtropical eastern North Atlantic from vertical plankton tows. We also test potential environmental factors influencing the species depth habitat and investigate yearly or lunar migration cycles. These findings may impact paleoceanographic studies.
Zhaofeng Tan, Hendrik Fuchs, Keding Lu, Andreas Hofzumahaus, Birger Bohn, Sebastian Broch, Huabin Dong, Sebastian Gomm, Rolf Häseler, Lingyan He, Frank Holland, Xin Li, Ying Liu, Sihua Lu, Franz Rohrer, Min Shao, Baolin Wang, Ming Wang, Yusheng Wu, Limin Zeng, Yinsong Zhang, Andreas Wahner, and Yuanhang Zhang
Atmos. Chem. Phys., 17, 663–690, https://doi.org/10.5194/acp-17-663-2017, https://doi.org/10.5194/acp-17-663-2017, 2017
Short summary
Short summary
In this study, we performed accurate OH measurements as well as selective HO2 and RO2 measurements at a rural site in North China Plain with state-of-the-art instruments newly developed. We confirmed the previous discovery on the enhancement of the OH in low NOx with which little O3 production was associated, and we found a missing RO2 source in high NOx which promoted higher O3 production. Our results are of vital importance for ozone abatement strategies currently under discussion for China.
Hendrik Fuchs, Zhaofeng Tan, Keding Lu, Birger Bohn, Sebastian Broch, Steven S. Brown, Huabin Dong, Sebastian Gomm, Rolf Häseler, Lingyan He, Andreas Hofzumahaus, Frank Holland, Xin Li, Ying Liu, Sihua Lu, Kyung-Eun Min, Franz Rohrer, Min Shao, Baolin Wang, Ming Wang, Yusheng Wu, Limin Zeng, Yinson Zhang, Andreas Wahner, and Yuanhang Zhang
Atmos. Chem. Phys., 17, 645–661, https://doi.org/10.5194/acp-17-645-2017, https://doi.org/10.5194/acp-17-645-2017, 2017
Short summary
Short summary
OH reactivity was measured during a 1-month long campaign at a rural site in the North China Plain in 2014. OH reactivity measurements are compared to calculations using OH reactant measurements. Good agreement is found indicating that all important OH reactants were measured. In addition, the chemical OH budget is analyzed. In contrast to previous campaigns in China in 2006, no significant imbalance between OH production and destruction is found.
Aurélie Penaud, Frédérique Eynaud, Antje Helga Luise Voelker, and Jean-Louis Turon
Biogeosciences, 13, 5357–5377, https://doi.org/10.5194/bg-13-5357-2016, https://doi.org/10.5194/bg-13-5357-2016, 2016
Short summary
Short summary
This paper presents new analyses conducted at high resolution in the Gulf of Cadiz over the last 50 ky. Palaeohydrological changes in these subtropical latitudes are discussed through dinoflagellate cyst assemblages but also dinocyst transfer function results, implying sea surface temperature and salinity as well as annual productivity reconstructions. This study is thus important for our understanding of past and future productivity regimes, also implying consequences on the biological pump.
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Milankovitch
Orbitally forced environmental changes during the accumulation of a Pliensbachian (Lower Jurassic) black shale in northern Iberia
A 300 000-year record of cold-water coral mound build-up at the East Melilla Coral Province (SE Alboran Sea, western Mediterranean)
Secular and orbital-scale variability of equatorial Indian Ocean summer monsoon winds during the late Miocene
Last interglacial ocean changes in the Bahamas: climate teleconnections between low and high latitudes
Testing the impact of stratigraphic uncertainty on spectral analyses of sedimentary series
The East Asian winter monsoon variability in response to precession during the past 150 000 yr
Paleo Agulhas rings enter the subtropical gyre during the penultimate deglaciation
A 500 kyr record of global sea-level oscillations in the Gulf of Lion, Mediterranean Sea: new insights into MIS 3 sea-level variability
Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept
Naroa Martinez-Braceras, Aitor Payros, Jaume Dinarès-Turell, Idoia Rosales, Javier Arostegi, and Roi Silva-Casal
Clim. Past, 20, 1659–1686, https://doi.org/10.5194/cp-20-1659-2024, https://doi.org/10.5194/cp-20-1659-2024, 2024
Short summary
Short summary
Although significant progress in Early Jurassic cyclostratigraphy has been made in the last few decades, fewer studies have focused on the climatic and environmental impact of orbital cycles on the sedimentary record. This study presents an original orbitally modulated depositional model, which provides new insight into the formation of orbitally modulated organic-rich calcareous hemipelagic rhythmites accumulated in early Pliensbachian times in the northern Iberian palaeomargin.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, and Anneleen Foubert
Clim. Past, 18, 1915–1945, https://doi.org/10.5194/cp-18-1915-2022, https://doi.org/10.5194/cp-18-1915-2022, 2022
Short summary
Short summary
The investigation of a 9 m long sediment core recovered at ca. 300 m water depth demonstrates that cold-water coral mound build-up within the East Melilla Coral Province (southeastern Alboran Sea) took place during both interglacial and glacial periods. Based on the combination of different analytical methods (e.g. radiometric dating, micropaleontology), we propose that corals never thrived but rather developed under stressful environmental conditions.
Clara T. Bolton, Emmeline Gray, Wolfgang Kuhnt, Ann E. Holbourn, Julia Lübbers, Katharine Grant, Kazuyo Tachikawa, Gianluca Marino, Eelco J. Rohling, Anta-Clarisse Sarr, and Nils Andersen
Clim. Past, 18, 713–738, https://doi.org/10.5194/cp-18-713-2022, https://doi.org/10.5194/cp-18-713-2022, 2022
Short summary
Short summary
The timing of the initiation and evolution of the South Asian monsoon in the geological past is a subject of debate. Here, we present a new age model spanning the late Miocene (9 to 5 million years ago) and high-resolution records of past open-ocean biological productivity from the equatorial Indian Ocean that we interpret to reflect monsoon wind strength. Our data show no long-term intensification; however, strong orbital periodicities suggest insolation forcing of monsoon wind strength.
Anastasia Zhuravleva and Henning A. Bauch
Clim. Past, 14, 1361–1375, https://doi.org/10.5194/cp-14-1361-2018, https://doi.org/10.5194/cp-14-1361-2018, 2018
Short summary
Short summary
New foraminiferal data from the Bahama region are used to investigate the mechanisms regulating subtropical climate. Our results suggest that the sensitivity of the low-latitude climate increased at times of enhanced sea-surface freshening in the subpolar North Atlantic. This has further implications for future climate development, given the ongoing melting of the Greenland ice sheet.
Mathieu Martinez, Sergey Kotov, David De Vleeschouwer, Damien Pas, and Heiko Pälike
Clim. Past, 12, 1765–1783, https://doi.org/10.5194/cp-12-1765-2016, https://doi.org/10.5194/cp-12-1765-2016, 2016
Short summary
Short summary
Identification of Milankovitch cycles within the sedimentary record depends on spectral analyses, but these can be biased because there are always slight uncertainties in the sample position within a sedimentary column. Here, we simulate uncertainties in the sample position and show that a tight control on the inter-sample distance together with a density of 6–12 samples per precession cycle are needed to accurately reconstruct the contribution of the orbital forcing on past climate changes.
M. Yamamoto, H. Sai, M.-T. Chen, and M. Zhao
Clim. Past, 9, 2777–2788, https://doi.org/10.5194/cp-9-2777-2013, https://doi.org/10.5194/cp-9-2777-2013, 2013
P. Scussolini, E. van Sebille, and J. V. Durgadoo
Clim. Past, 9, 2631–2639, https://doi.org/10.5194/cp-9-2631-2013, https://doi.org/10.5194/cp-9-2631-2013, 2013
J. Frigola, M. Canals, I. Cacho, A. Moreno, F. J. Sierro, J. A. Flores, S. Berné, G. Jouet, B. Dennielou, G. Herrera, C. Pasqual, J. O. Grimalt, M. Galavazi, and R. Schneider
Clim. Past, 8, 1067–1077, https://doi.org/10.5194/cp-8-1067-2012, https://doi.org/10.5194/cp-8-1067-2012, 2012
L. Beaufort, S. van der Kaars, F. C. Bassinot, and V. Moron
Clim. Past, 6, 695–706, https://doi.org/10.5194/cp-6-695-2010, https://doi.org/10.5194/cp-6-695-2010, 2010
Cited articles
Abell, J. T., Winckler, G., Anderson, R. F., and Herbert, T. D.: Poleward and weakened westerlies during Pliocene warmth, Nature, 589, 70–75, https://doi.org/10.1038/s41586-020-03062-1, 2021.
Anand, P., Elderfield, H., and Conte, M. H.: Calibration of Mg / Ca thermometry in planktonic foraminifera from a sediment trap time series, Paleoceanography, 18, 1050, https://doi.org/10.1029/2002pa000846, 2003.
Bahr, A., Jaeschke, A., Hou, A., Meier, K., Chiessi, C. M., Albuquerque, A. L. S., Rethemeyer, J., and Friedrich, O.: A Comparison Study of Mg / Ca-, Alkenone-, and TEX86-Derived Temperatures for the Brazilian Margin, Paleoceanogr. Paleoclimatology, 38, e2023PA004618, https://doi.org/10.1029/2023pa004618, 2023.
Bailey, I., Hole, G. M., Foster, G. L., Wilson, P. A., Storey, C. D., Trueman, C. N., and Raymo, M. E.: An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris, Quaternary Sci. Rev., 75, 181–194, https://doi.org/10.1016/j.quascirev.2013.06.004, 2013.
Barker, S., Greaves, M., and Elderfield, H.: A study of cleaning procedures used for foraminiferal Mg / Ca paleothermometry, Geochem. Geophy. Geosy., 4, 8407, https://doi.org/10.1029/2003gc000559, 2003.
Bolton, C. T., Bailey, I., Friedrich, O., Tachikawa, K., Garidel-Thoron, T., Vidal, L., Sonzogni, C., Marino, G., Rohling, E. J., Robinson, M. M., Ermini, M., Koch, M., Cooper, M. J., and Wilson, P. A.: North Atlantic Midlatitude Surface-Circulation Changes Through the Plio-Pleistocene Intensification of Northern Hemisphere Glaciation, Paleoceanography Paleoclimatology, 33, 1186–1205, https://doi.org/10.1029/2018pa003412, 2018.
Bridges, J. D., Tarduno, J. A., Cottrell, R. D., and Herbert, T. D.: Rapid strengthening of westerlies accompanied intensification of Northern Hemisphere glaciation, Nat. Commun., 14, 3905, https://doi.org/10.1038/s41467-023-39557-4, 2023.
Carton, J. A. and Giese, B. S.: A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA), Mon. Weather Rev., 136, 2999–3017, https://doi.org/10.1175/2007mwr1978.1, 2008.
Catunda, M. C. A., Bahr, A., Kaboth-Bahr, S., Zhang, X., Foukal, N. P., and Friedrich, O.: Subsurface Heat Channel Drove Sea Surface Warming in the High-Latitude North Atlantic During the Mid-Pleistocene Transition, Geophys. Res. Lett., 48, e2020GL091899, https://doi.org/10.1029/2020gl091899, 2021.
Cavaleiro, C., Voelker, A. H. L., Stoll, H., Baumann, K.-H., Kulhanek, D. K., Naafs, B. D. A., Stein, R., Grützner, J., Ventura, C., and Kucera, M.: Insolation forcing of coccolithophore productivity in the North Atlantic during the Middle Pleistocene, Quaternary Sci. Rev., 191, 318–336, https://doi.org/10.1016/j.quascirev.2018.05.027, 2018.
Centro de Ciências do Mar do Algarve (CCMAR): Financiamento Base Project UIDB/04326/2020, https://doi.org/10.54499/UIDB/04326/2020, 2023a.
Centro de Ciências do Mar do Algarve (CCMAR): Financiamento Programático Project UIDP/04326/2020, https://doi.org/10.54499/UIDP/04326/2020, 2023b.
Centro de Investigação Marinha e Ambiental (CIMAR): associated laboratory funding to CCMAR under Project LA/P/0101/2020, https://doi.org/10.54499/LA/P/0101/2020, 2023.
Clark, P. U., Shakun, J. D., Rosenthal, Y., Köhler, P., and Bartlein, P. J.: Global and regional temperature change over the past 4.5 million years, Science, 383, 884–890, https://doi.org/10.1126/science.adi1908, 2024.
Cléroux, C., Cortijo, E., Anand, P., Labeyrie, L., Bassinot, F., Caillon, N., and Duplessy, J.: Mg / Ca and Sr/Ca ratios in planktonic foraminifera: Proxies for upper water column temperature reconstruction, Paleoceanography, 23, PA3214, https://doi.org/10.1029/2007pa001505, 2008.
Cléroux, C., deMenocal, P., Arbuszewski, J., and Linsley, B.: Reconstructing the upper water column thermal structure in the Atlantic Ocean, Paleoceanography, 28, 503–516, https://doi.org/10.1002/palo.20050, 2013.
Clotten, C., Stein, R., Fahl, K., and Schepper, S. D.: Seasonal sea ice cover during the warm Pliocene: Evidence from the Iceland Sea (ODP Site 907), Earth Planet. Sci. Lett., 481, 61–72, https://doi.org/10.1016/j.epsl.2017.10.011, 2018.
Daniault, N., Mercier, H., Lherminier, P., Sarafanov, A., Falina, A., Zunino, P., Pérez, F. F., Ríos, A. F., Ferron, B., Huck, T., Thierry, V., and Gladyshev, S.: The northern North Atlantic Ocean mean circulation in the early 21st century, Prog. Oceanogr., 146, 142–158, https://doi.org/10.1016/j.pocean.2016.06.007, 2016.
de la Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P., and Foster, G. L.: Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation, Sci. Rep.-UK, 10, 11002, https://doi.org/10.1038/s41598-020-67154-8, 2020.
De Schepper, S., Head, M. J., and Groeneveld, J.: North Atlantic Current variability through marine isotope stage M2 (circa 3.3 Ma) during the mid-Pliocene, Paleoceanography, 24, PA4206, https://doi.org/10.1029/2008pa001725, 2009.
Dowsett, H., Dolan, A., Rowley, D., Moucha, R., Forte, A. M., Mitrovica, J. X., Pound, M., Salzmann, U., Robinson, M., Chandler, M., Foley, K., and Haywood, A.: The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction, Clim. Past, 12, 1519–1538, https://doi.org/10.5194/cp-12-1519-2016, 2016.
Dowsett, H. J., Robinson, M. M., Haywood, A. M., Hill, D. J., Dolan, A. M., Stoll, D. K., Chan, W.-L., Abe-Ouchi, A., Chandler, M. A., Rosenbloom, N. A., Otto-Bliesner, B. L., Bragg, F. J., Lunt, D. J., Foley, K. M., and Riesselman, C. R.: Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models, Nat. Clim. Change, 2, 365–371, https://doi.org/10.1038/nclimate1455, 2012.
Expedition 306 Scientists: Site U1313, in: Proc. IODP, edited by: Channell, J. E. T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C. A., Malone, M. J., and the Expedition 303/306 Scientists, 303/306: College Station TX (Integrated Ocean Drilling Program Management International, Inc.), https://doi.org/10.2204/iodp.proc.303306.112.2006, 2006.
Evans, D. and Müller, W.: Deep time foraminifera Mg / Ca paleothermometry: Nonlinear correction for secular change in seawater Mg / Ca, Paleoceanography, 27, PA4205, https://doi.org/10.1029/2012pa002315, 2012.
Fan, Y., Liu, W., Zhang, P., Chen, R., and Li, L.: North Atlantic Oscillation contributes to the subpolar North Atlantic cooling in the past century, Clim. Dynam., 61, 5199–5215, https://doi.org/10.1007/s00382-023-06847-y, 2023.
Fedorov, A. V., Brierley, C. M., Lawrence, K. T., Liu, Z., Dekens, P. S., and Ravelo, A. C.: Patterns and mechanisms of early Pliocene warmth, Nature, 496, 43–49, https://doi.org/10.1038/nature12003, 2013.
Friedrich, O., Schiebel, R., Wilson, P. A., Weldeab, S., Beer, C. J., Cooper, M. J., and Fiebig, J.: Influence of test size, water depth, and ecology on Mg / Ca, Sr / Ca, δ18O and δ13C in nine modern species of planktic foraminifers, Earth Planet. Sc. Lett., 319, 133–145, https://doi.org/10.1016/j.epsl.2011.12.002, 2012.
Friedrich, O., Wilson, P. A., Bolton, C. T., Beer, C. J., and Schiebel, R.: Late Pliocene to early Pleistocene changes in the North Atlantic Current and suborbital-scale sea-surface temperature variability, Paleoceanography, 28, 274–282, https://doi.org/10.1002/palo.20029, 2013.
Hammer, Ø. and Harper, D. A.: Past: paleontological statistics software package for educaton and data anlysis, Palaeontol. Electron., 4, 4, http://palaeo-electronica.org/2001_1/past/issue1_01.htm (last access: 15 September 2024), 2001.
Haywood, A. M., Dowsett, H. J., and Dolan, A. M.: Integrating geological archives and climate models for the mid-Pliocene warm period, Nat. Commun., 7, 10646, https://doi.org/10.1038/ncomms10646, 2016.
Herbert, T. D.: Review of alkenone calibrations (culture, water column, and sediments), Geochem. Geophy. Geosy., 2, 2000GC000055, https://doi.org/10.1029/2000gc000055, 2001.
Hennissen, J. A. I., Head, M. J., Schepper, S. D., and Groeneveld, J.: Palynological evidence for a southward shift of the North Atlantic Current at ∼2.6 Ma during the intensification of late Cenozoic Northern Hemisphere glaciation, Paleoceanography, 29, 564–580, https://doi.org/10.1002/2013pa002543, 2014.
Hennissen, J. A. I., Head, M. J., Schepper, S. D., and Groeneveld, J.: Increased seasonality during the intensification of Northern Hemisphere glaciation at the Pliocene–Pleistocene boundary ∼ 2.6 Ma, Quaternary Sci. Rev., 129, 321–332, https://doi.org/10.1016/j.quascirev.2015.10.010, 2015.
Karas, C., Khélifi, N., Bahr, A., Naafs, B. D. A., Nürnberg, D., and Herrle, J. O.: Did North Atlantic cooling and freshening from 3.65–3.5 Ma precondition Northern Hemisphere ice sheet growth?, Global Planet. Change, 185, 103085, https://doi.org/10.1016/j.gloplacha.2019.103085, 2020.
Knies, J., Cabedo-Sanz, P., Belt, S. T., Baranwal, S., Fietz, S., and Rosell-Melé, A.: The emergence of modern sea ice cover in the Arctic Ocean, Nat. Commun., 5, 5608, https://doi.org/10.1038/ncomms6608, 2014.
Lan, X., Tans, P., and Thoning, K. W.: Trends in globally-averaged CO2 determined from NOAA Global Monitoring Laboratory measurements, NOAA Global Monitoring Laboratory (GML) [data set], https://doi.org/10.15138/9n0h-zh07, 2024.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Lawrence, K. T. and Woodard, S. C.: Past sea surface temperatures as measured by different proxies – A cautionary tale from the late Pliocene, Paleoceanography, 32, 318–324, https://doi.org/10.1002/2017pa003101, 2017.
Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E., and Haywood, A. M.: High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period, Paleoceanography, 24, PA2218, https://doi.org/10.1029/2008pa001669, 2009.
Lawrence, K. T., Sosdian, S., White, H. E., and Rosenthal, Y.: North Atlantic climate evolution through the Plio-Pleistocene climate transitions, Earth Planet. Sc. Lett., 300, 329–342, https://doi.org/10.1016/j.epsl.2010.10.013, 2010.
Leduc, G., Schneider, R., Kim, J.-H., and Lohmann, G.: Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg / Ca paleothermometry, Quaternary Sci. Rev., 29, 989–1004, https://doi.org/10.1016/j.quascirev.2010.01.004, 2010.
Lee, K. E., Clemens, S. C., Kubota, Y., Timmermann, A., Holbourn, A., Yeh, S.-W., Bae, S. W., and Ko, T. W.: Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures, Nat. Commun., 12, 5742, https://doi.org/10.1038/s41467-021-26051-y, 2021.
Lévy, M., Lehahn, Y., André, J., Mémery, L., Loisel, H., and Heifetz, E.: Production regimes in the northeast Atlantic: A study based on Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll and ocean general circulation model mixed layer depth, J. Geophys. Res.-Oceans, 110, C07S10, https://doi.org/10.1029/2004jc002771, 2005.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records: PLIOCENE-PLEISTOCENE BENTHIC STACK, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004pa001071, 2005.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., Dan, 1948-Seidov, and Levitus, S.: World ocean atlas 2013, Volume 1, Temperature, https://doi.org/10.7289/v55x26vd, 2013.
Lozier, M. S.: Overturning in the North Atlantic, Annu. Rev. Mar. Sci., 4, 291–315, https://doi.org/10.1146/annurev-marine-120710-100740, 2012.
McClymont, E. L., Ho, S. L., Ford, H. L., Bailey, I., Berke, M. A., Bolton, C. T., Schepper, S., Grant, G. R., Groeneveld, J., Inglis, G. N., Karas, C., Patterson, M. O., Swann, G. E. A., Thirumalai, K., White, S. M., Alonso-Garcia, M., Anand, P., Hoogakker, B. A. A., Littler, K., Petrick, B. F., Risebrobakken, B., Abell, J. T., Crocker, A. J., Graaf, F., Feakins, S. J., Hargreaves, J. C., Jones, C. L., Markowska, M., Ratnayake, A. S., Stepanek, C., and Tangunan, D.: Climate Evolution Through the Onset and Intensification of Northern Hemisphere Glaciation, Rev. Geophys., 61, e2022RG000793, https://doi.org/10.1029/2022rg000793, 2023.
Medina-Elizalde, M. and Lea, D. W.: The Mid-Pleistocene Transition in the Tropical Pacific, Science, 310, 1009–1012, https://doi.org/10.1126/science.1115933, 2005.
Meyers, S. R. and Hinnov, L. A.: Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise, Paleoceanography, 25, PA3207, https://doi.org/10.1029/2009pa001834, 2010.
Mudelsee, M. and Raymo, M. E.: Slow dynamics of the Northern Hemisphere glaciation, Paleoceanography, 20, PA4022, https://doi.org/10.1029/2005pa001153, 2005.
Müller, P. J., Kirst, G., Ruhland, G., Storch, I. von, and Rosell-Melé, A.: Calibration of the alkenone paleotemperature index UK′37 based on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S), Geochim. Cosmochim. Ac., 62, 1757–1772, https://doi.org/10.1016/s0016-7037(98)00097-0, 1998.
Naafs, B. D. A., Stein, R., Hefter, J., Khélifi, N., Schepper, S. D., and Haug, G. H.: Late Pliocene changes in the North Atlantic Current, Earth Planet. Sc. Lett., 298, 434–442, https://doi.org/10.1016/j.epsl.2010.08.023, 2010.
Naafs, B. D. A., Hefter, J., Acton, G., Haug, G. H., Martínez-Garcia, A., Pancost, R., and Stein, R.: Strengthening of North American dust sources during the late Pliocene (2.7 Ma), Earth Planet. Sc. Lett., 317, 8–19, https://doi.org/10.1016/j.epsl.2011.11.026, 2012.
Naafs, B. D. A., Voelker, A. H. L., Karas, C., Andersen, N., and Sierro, F. J.: Repeated Near-Collapse of the Pliocene Sea Surface Temperature Gradient in the North Atlantic, Paleoceanogr Paleoclimatology, 35, e2020PA003905, https://doi.org/10.1029/2020pa003905, 2020.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh Program performs time-series analysis, EOS T. Am. Geophys. Un., 77, 379–379, https://doi.org/10.1029/96eo00259, 1996.
Pang, X., Voelker, A. H. L., Lu, S., and Ding, X.: Mg / Ca ratios of Globigerinoides ruber and Globorotalia hirsuta from IODP Site 306-U1313 during the early Late Pliocene, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.971263, 2024.
Pena, L. D., Cacho, I., Ferretti, P., and Hall, M. A.: El Niño–Southern Oscillation–like variability during glacial terminations and interlatitudinal teleconnections, Paleoceanography, 23, Q07012, https://doi.org/10.1029/2008pa001620, 2008.
Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Schulz, M., and Kucera, M.: Calcification depth of deep-dwelling planktonic foraminifera from the eastern North Atlantic constrained by stable oxygen isotope ratios of shells from stratified plankton tows, J. Micropalaeontol., 38, 113–131, https://doi.org/10.5194/jm-38-113-2019, 2019.
Reißig, S., Nürnberg, D., Bahr, A., Poggemann, D.-W., and Hoffmann, J.: Southward Displacement of the North Atlantic Subtropical Gyre Circulation System During North Atlantic Cold Spells, Paleoceanography Paleoclimatology, 34, 866–885, https://doi.org/10.1029/2018pa003376, 2019.
Repschläger, J., Weinelt, M., Schneider, R., Blanz, T., Leduc, G., Schiebel, R., and Haug, G. H.: Disentangling multiproxy temperature reconstructions from the subtropical North Atlantic, Front. Ecol. Evol., 11, 1176278, https://doi.org/10.3389/fevo.2023.1176278, 2023.
Robinson, M. M., Dowsett, H. J., Dwyer, G. S., and Lawrence, K. T.: Reevaluation of mid-Pliocene North Atlantic sea surface temperatures, Paleoceanography, 23, PA3213, https://doi.org/10.1029/2008pa001608, 2008.
The CenCO2PIP Consortium: Toward a Cenozoic history of atmospheric CO2, Science, 382, eadi5177, https://doi.org/10.1126/science.adi5177, 2023.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., Vleeschouwer, D. D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1387, https://doi.org/10.1126/science.aba6853, 2020.
Zhou, X., Rosenthal, Y., Haynes, L., Si, W., Evans, D., Huang, K.-F., Hönisch, B., and Erez, J.: Planktic foraminiferal Na / Ca: A potential proxy for seawater calcium concentration, Geochim. Cosmochim. Ac., 305, 306–322, https://doi.org/10.1016/j.gca.2021.04.012, 2021.
Short summary
Our research discovered significant seasonal temperature variations in the North Atlantic's mid-latitudes during the early Late Pliocene. This highlights the necessity of using multiple methods to get a full picture of past climates, thus avoiding a biased understanding of the climate system. Moreover, our study reveals that the precession signal, which previously dominated surface temperature records, disappeared with the increased influence of the ice sheets in the Northern Hemisphere.
Our research discovered significant seasonal temperature variations in the North Atlantic's...