Articles | Volume 20, issue 4
https://doi.org/10.5194/cp-20-1087-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-1087-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A Holocene history of climate, fire, landscape evolution, and human activity in northeastern Iceland
Nicolò Ardenghi
CORRESPONDING AUTHOR
Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO 80309, USA
David J. Harning
Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO 80309, USA
Jonathan H. Raberg
Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO 80309, USA
Brooke R. Holman
Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO 80309, USA
Thorvaldur Thordarson
Faculty of Earth Sciences, University of Iceland, 102 Reykjavík, Iceland
Áslaug Geirsdóttir
Faculty of Earth Sciences, University of Iceland, 102 Reykjavík, Iceland
Gifford H. Miller
Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO 80309, USA
Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
Julio Sepúlveda
Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO 80309, USA
Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
Related authors
No articles found.
David J. Harning, Jonathan H. Raberg, Jamie M. McFarlin, Yarrow Axford, Christopher R. Florian, Kristín B. Ólafsdóttir, Sebastian Kopf, Julio Sepúlveda, Gifford H. Miller, and Áslaug Geirsdóttir
Hydrol. Earth Syst. Sci., 28, 4275–4293, https://doi.org/10.5194/hess-28-4275-2024, https://doi.org/10.5194/hess-28-4275-2024, 2024
Short summary
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes, streams, and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
Joshua Coupe, Nicole S. Lovenduski, Luise S. Gleason, Michael N. Levy, Kristen Krumhardt, Keith Lindsay, Charles Bardeen, Clay Tabor, Cheryl Harrison, Kenneth G. MacLeod, Siddhartha Mitra, and Julio Sepúlveda
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-94, https://doi.org/10.5194/gmd-2024-94, 2024
Preprint under review for GMD
Short summary
Short summary
We develop a new feature in the atmosphere and ocean components of the Community Earth System Model version 2. We have implemented ultraviolet (UV) radiation inhibition of photosynthesis of four marine phytoplankton functional groups represented in the Marine Biogeochemistry Library. The new feature is tested with varying levels of UV radiation. The new feature will enable an analysis of an asteroid impact’s effect on the ozone layer and how that affects the base of the marine food web.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
David J. Harning, Christopher R. Florian, Áslaug Geirsdóttir, Thor Thordarson, Gifford H. Miller, Yarrow Axford, and Sædís Ólafsdóttir
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-26, https://doi.org/10.5194/cp-2024-26, 2024
Revised manuscript under review for CP
Short summary
Short summary
Questions remain about the past climate in Iceland, including the relative impacts of natural and human factors on vegetation change and soil erosion. We present a sub-centennial scale record of landscape and algal productivity from a lake in north Iceland. Along with high-resolution age constraint that covers the last ~12000 years, our record provides an environmental template for the region and novel insight into the sensitivity of the Icelandic ecosystem to natural and human impacts.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Gifford H. Miller, Simon L. Pendleton, Alexandra Jahn, Yafang Zhong, John T. Andrews, Scott J. Lehman, Jason P. Briner, Jonathan H. Raberg, Helga Bueltmann, Martha Raynolds, Áslaug Geirsdóttir, and John R. Southon
Clim. Past, 19, 2341–2360, https://doi.org/10.5194/cp-19-2341-2023, https://doi.org/10.5194/cp-19-2341-2023, 2023
Short summary
Short summary
Receding Arctic ice caps reveal moss killed by earlier ice expansions; 186 moss kill dates from 71 ice caps cluster at 250–450, 850–1000 and 1240–1500 CE and continued expanding 1500–1880 CE, as recorded by regions of sparse vegetation cover, when ice caps covered > 11 000 km2 but < 100 km2 at present. The 1880 CE state approached conditions expected during the start of an ice age; climate models suggest this was only reversed by anthropogenic alterations to the planetary energy balance.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences, 20, 229–249, https://doi.org/10.5194/bg-20-229-2023, https://doi.org/10.5194/bg-20-229-2023, 2023
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence or absence. Our local temperature calibrations for GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
David Harning, Thor Thordarson, Áslaug Geirsdóttir, Gifford Miller, and Christopher Florian
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-26, https://doi.org/10.5194/gchron-2022-26, 2022
Preprint withdrawn
Short summary
Short summary
Volcanic ash layers are a common tool to synchronize records of past climate, and their estimated age relies on external dating methods. Here, we show that the chemical composition of the well-known, 12000 year-old Vedde Ash is indistinguishable with several other ash layers in Iceland that are ~1000 years younger. Therefore, chemical composition alone cannot be used to identify the Vedde Ash in sedimentary records.
Edgart Flores, Sebastian I. Cantarero, Paula Ruiz-Fernández, Nadia Dildar, Matthias Zabel, Osvaldo Ulloa, and Julio Sepúlveda
Biogeosciences, 19, 1395–1420, https://doi.org/10.5194/bg-19-1395-2022, https://doi.org/10.5194/bg-19-1395-2022, 2022
Short summary
Short summary
In this study, we investigate the chemical diversity and abundance of microbial lipids as markers of organic matter sources in the deepest points of the Atacama Trench sediments and compare them to similar lipid stocks in shallower surface sediments and in the overlying water column. We evaluate possible organic matter provenance and some potential chemical adaptations of the in situ microbial community to the extreme conditions of high hydrostatic pressure in hadal realm.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-177, https://doi.org/10.5194/bg-2021-177, 2021
Manuscript not accepted for further review
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence/absence. Our local temperature calibrations for alkenones, GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
David J. Harning, Anne E. Jennings, Denizcan Köseoğlu, Simon T. Belt, Áslaug Geirsdóttir, and Julio Sepúlveda
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, https://doi.org/10.5194/cp-17-379-2021, 2021
Short summary
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
Áslaug Geirsdóttir, Gifford H. Miller, John T. Andrews, David J. Harning, Leif S. Anderson, Christopher Florian, Darren J. Larsen, and Thor Thordarson
Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, https://doi.org/10.5194/cp-15-25-2019, 2019
Short summary
Short summary
Compositing climate proxies in sediment from seven Iceland lakes documents abrupt summer cooling between 4.5 and 4.0 ka, statistically indistinguishable from 4.2 ka. Although the decline in summer insolation was an important factor, a combination of superposed changes in ocean circulation and explosive Icelandic volcanism were likely responsible for the abrupt perturbation recorded by our proxies. Lake and catchment proxies recovered to a colder equilibrium state following the perturbation.
Simon L. Pendleton, Gifford H. Miller, Robert A. Anderson, Sarah E. Crump, Yafang Zhong, Alexandra Jahn, and Áslaug Geirsdottir
Clim. Past, 13, 1527–1537, https://doi.org/10.5194/cp-13-1527-2017, https://doi.org/10.5194/cp-13-1527-2017, 2017
Short summary
Short summary
Recent warming in the high latitudes has prompted the accelerated retreat of ice caps and glaciers, especially in the Canadian Arctic. Here we use the radiocarbon age of preserved plants being exposed by shrinking ice caps that once entombed them. These ages help us to constrain the timing and magnitude of climate change on southern Baffin Island over the past ~ 2000 years. Our results show episodic cooling up until ~ 1900 CE, followed by accelerated warming through present.
Fred Prata, Mark Woodhouse, Herbert E. Huppert, Andrew Prata, Thor Thordarson, and Simon Carn
Atmos. Chem. Phys., 17, 10709–10732, https://doi.org/10.5194/acp-17-10709-2017, https://doi.org/10.5194/acp-17-10709-2017, 2017
Short summary
Short summary
This paper investigates the separation of gases and particles that frequently occurs during violent volcanic eruptions. This problem is important because atmospheric winds spread volcanic aerosols at great distances from the source, and wind shear then causes the aerosols to spread in different directions at different altitudes. This has important repercussions for accurately forecasting the movement of hazardous volcanic clouds. The May 2011 Grímsvötn eruption is analysed in great detail.
J. A. Stevenson, S. C. Millington, F. M. Beckett, G. T. Swindles, and T. Thordarson
Atmos. Meas. Tech., 8, 2069–2091, https://doi.org/10.5194/amt-8-2069-2015, https://doi.org/10.5194/amt-8-2069-2015, 2015
Short summary
Short summary
We attempt to understand why volcanic ash grains found 100s of km from their source volcanoes (cryptotephra), which are typically 20–125 microns in length, are much larger than the size distributions measured by satellite remote sensing, which are centred at less than 10 microns. Our observations and models show that cryptotephra-sized grains are to be expected in distal plumes. Retrievals of effective radius made on simulated satellite images are shown to be biased toward smaller values.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Holocene
A continental reconstruction of hydroclimatic variability in South America during the past 2000 years
A global compilation of diatom silica oxygen isotope records from lake sediment – trends and implications for climate reconstruction
BrGDGT-based seasonal paleotemperature reconstruction for the last 15 000 years from a shallow lake on the eastern Tibetan Plateau
Reconstructing 15 000 years of southern France temperatures from coupled pollen and molecular (branched glycerol dialkyl glycerol tetraether) markers (Canroute, Massif Central)
Pollen-based reconstructions of Holocene climate trends in the eastern Mediterranean region
Spatiotemporal Intertropical Convergence Zone dynamics during the last 3 millennia in northeastern Brazil and related impacts in modern human history
Holocene climates of the Iberian Peninsula: pollen-based reconstructions of changes in the west–east gradient of temperature and moisture
Holocene climate and oceanography of the coastal Western United States and California Current System
Reconstructing Holocene temperatures in time and space using paleoclimate data assimilation
Long-term trends in diatom diversity and palaeoproductivity: a 16 000-year multidecadal record from Lake Baikal, southern Siberia
A 406-year non-growing-season precipitation reconstruction in the southeastern Tibetan Plateau
Climatic variations during the Holocene inferred from radiocarbon and stable carbon isotopes in speleothems from a high-alpine cave
Winter–spring warming in the North Atlantic during the last 2000 years: evidence from southwest Iceland
Climate reconstructions based on GDGT and pollen surface datasets from Mongolia and Baikal area: calibrations and applicability to extremely cold–dry environments over the Late Holocene
Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions
Changes in high-intensity precipitation on the northern Apennines (Italy) as revealed by multidisciplinary data over the last 9000 years
Neoglacial trends in diatom dynamics from a small alpine lake in the Qinling mountains of central China
Centennial- to millennial-scale monsoon changes since the last deglaciation linked to solar activities and North Atlantic cooling
Algal lipids reveal unprecedented warming rates in alpine areas of SW Europe during the industrial period
Reconstructing seasonality through stable-isotope and trace-element analyses of the Proserpine stalagmite, Han-sur-Lesse cave, Belgium: indications for climate-driven changes during the last 400 years
Two millennia of Main region (southern Germany) hydroclimate variability
Combining a pollen and macrofossil synthesis with climate simulations for spatial reconstructions of European climate using Bayesian filtering
Lignin oxidation products as a potential proxy for vegetation and environmental changes in speleothems and cave drip water – a first record from the Herbstlabyrinth, central Germany
How dry was the Younger Dryas? Evidence from a coupled δ2H–δ18O biomarker paleohygrometer applied to the Gemündener Maar sediments, Western Eifel, Germany
Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions
The 4.2 ka BP Event in the Mediterranean region: an overview
Technical note: Optimizing the utility of combined GPR, OSL, and Lidar (GOaL) to extract paleoenvironmental records and decipher shoreline evolution
The onset of neoglaciation in Iceland and the 4.2 ka event
Hydroclimatic variations in southeastern China during the 4.2 ka event reflected by stalagmite records
Fire, vegetation, and Holocene climate in a southeastern Tibetan lake: a multi-biomarker reconstruction from Paru Co
Climate impact on the development of Pre-Classic Maya civilisation
Synchronizing 10Be in two varved lake sediment records to IntCal13 14C during three grand solar minima
Technical note: Open-paleo-data implementation pilot – the PAGES 2k special issue
A chironomid-based record of temperature variability during the past 4000 years in northern China and its possible societal implications
Insights into Atlantic multidecadal variability using the Last Millennium Reanalysis framework
Three distinct Holocene intervals of stalagmite deposition and nondeposition revealed in NW Madagascar, and their paleoclimate implications
Examining bias in pollen-based quantitative climate reconstructions induced by human impact on vegetation in China
A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D∕H ratios
Pseudo-proxy tests of the analogue method to reconstruct spatially resolved global temperature during the Common Era
Development and evaluation of a system of proxy data assimilation for paleoclimate reconstruction
A chironomid-based mean July temperature inference model from the south-east margin of the Tibetan Plateau, China
Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world
Quantitative reconstruction of summer precipitation using a mid-Holocene δ13C common millet record from Guanzhong Basin, northern China
North Atlantic Oscillation controls on oxygen and hydrogen isotope gradients in winter precipitation across Europe; implications for palaeoclimate studies
A 368-year maximum temperature reconstruction based on tree-ring data in the northwestern Sichuan Plateau (NWSP), China
Inferring late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model
A high-altitude peatland record of environmental changes in the NW Argentine Andes (24 ° S) over the last 2100 years
Technical note: The Linked Paleo Data framework – a common tongue for paleoclimatology
A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change
Inferring climate variability from nonlinear proxies: application to palaeo-ENSO studies
Mathurin A. Choblet, Janica C. Bühler, Valdir F. Novello, Nathan J. Steiger, and Kira Rehfeld
Clim. Past, 20, 2117–2141, https://doi.org/10.5194/cp-20-2117-2024, https://doi.org/10.5194/cp-20-2117-2024, 2024
Short summary
Short summary
Past climate reconstructions are essential for understanding climate mechanisms and drivers. Our focus is on the South American continent over the past 2000 years. We offer a new reconstruction that particularly utilizes data from speleothems, previously absent from continent-wide reconstructions. We use paleoclimate data assimilation, a reconstruction method that combines information from climate archives and climate simulations.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Xiaohuan Hou, Nannan Wang, Zhe Sun, Kan Yuan, Xianyong Cao, and Juzhi Hou
Clim. Past, 20, 335–348, https://doi.org/10.5194/cp-20-335-2024, https://doi.org/10.5194/cp-20-335-2024, 2024
Short summary
Short summary
We present an ice-free season temperature based on brGDGTs over last 15 kyr on the eastern Tibetan Plateau (TP). The result shows that Holocene Thermal Maximum occurred during 8–3.5 ka, which lags behind pollen-based temperature recorded in same core, indicating a significant seasonal bias between different proxies. We also investigated previously published brGDGT-based temperatures on the TP to determine the pattern of Holocene temperature changes and possible reasons for the diverse records.
Léa d'Oliveira, Lucas Dugerdil, Guillemette Ménot, Allowen Evin, Serge D. Muller, Salomé Ansanay-Alex, Julien Azuara, Colline Bonnet, Laurent Bremond, Mehmet Shah, and Odile Peyron
Clim. Past, 19, 2127–2156, https://doi.org/10.5194/cp-19-2127-2023, https://doi.org/10.5194/cp-19-2127-2023, 2023
Short summary
Short summary
In southern Europe, Holocene climate variability is characterized by a strong heterogeneity whose patterns are still poorly understood. Here, a multi-proxy approach (pollen and biomarkers) is applied to the Canroute sequence to reconstruct the climatic variation over the last 15 000 years in southern Massif Central, France. Results reveal that reconstructions of regional climate trends notably differ depending on proxies and sites, notably concerning the presence of a Holocene thermal maximum.
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
Clim. Past, 19, 2093–2108, https://doi.org/10.5194/cp-19-2093-2023, https://doi.org/10.5194/cp-19-2093-2023, 2023
Short summary
Short summary
We examined 71 pollen records (12.3 ka to present) in the eastern Mediterranean, reconstructing climate changes. Over 9000 years, winters gradually warmed due to orbital factors. Summer temperatures peaked at 4.5–5 ka, likely declining because of ice sheets. Moisture increased post-11 kyr, remaining high from 10–6 kyr before a slow decrease. Climate models face challenges in replicating moisture transport.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Mengmeng Liu, Yicheng Shen, Penelope González-Sampériz, Graciela Gil-Romera, Cajo J. F. ter Braak, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past, 19, 803–834, https://doi.org/10.5194/cp-19-803-2023, https://doi.org/10.5194/cp-19-803-2023, 2023
Short summary
Short summary
We reconstructed the Holocene climates in the Iberian Peninsula using a large pollen data set and found that the west–east moisture gradient was much flatter than today. We also found that the winter was much colder, which can be expected from the low winter insolation during the Holocene. However, summer temperature did not follow the trend of summer insolation, instead, it was strongly correlated with moisture.
Hannah M. Palmer, Veronica Padilla Vriesman, Caitlin M. Livsey, Carina R. Fish, and Tessa M. Hill
Clim. Past, 19, 199–232, https://doi.org/10.5194/cp-19-199-2023, https://doi.org/10.5194/cp-19-199-2023, 2023
Short summary
Short summary
To better understand and contextualize modern climate change, this systematic review synthesizes climate and oceanographic patterns in the Western United States and California Current System through the most recent 11.75 kyr. Through a literature review and coded analysis of past studies, we identify distinct environmental phases through time and linkages between marine and terrestrial systems. We explore climate change impacts on ecosystems and human–environment interactions.
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Anson W. Mackay, Vivian A. Felde, David W. Morley, Natalia Piotrowska, Patrick Rioual, Alistair W. R. Seddon, and George E. A. Swann
Clim. Past, 18, 363–380, https://doi.org/10.5194/cp-18-363-2022, https://doi.org/10.5194/cp-18-363-2022, 2022
Short summary
Short summary
We investigated the diversity of algae called diatoms in Lake Baikal, the oldest and deepest lake in the world, because algae sit at the base of aquatic foodwebs and provide energy (in the form of primary production) for other organisms to use. Diatom diversity and primary production have been influenced by both long-term and abrupt climate change over the past 16 000 years. The shape of these responses appears to be time-period specific.
Maierdang Keyimu, Zongshan Li, Bojie Fu, Guohua Liu, Fanjiang Zeng, Weiliang Chen, Zexin Fan, Keyan Fang, Xiuchen Wu, and Xiaochun Wang
Clim. Past, 17, 2381–2392, https://doi.org/10.5194/cp-17-2381-2021, https://doi.org/10.5194/cp-17-2381-2021, 2021
Short summary
Short summary
We created a residual tree-ring width chronology and reconstructed non-growth-season precipitation (NGSP) over the period spanning 1600–2005 in the southeastern Tibetan Plateau (SETP), China. Reconstruction model verification as well as similar variations of NGSP reconstruction and Palmer Drought Severity Index reconstructions from the surrounding region indicate the reliability of the present reconstruction. Our reconstruction is representative of NGSP variability of a large region in the SETP.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Nora Richter, James M. Russell, Johanna Garfinkel, and Yongsong Huang
Clim. Past, 17, 1363–1383, https://doi.org/10.5194/cp-17-1363-2021, https://doi.org/10.5194/cp-17-1363-2021, 2021
Short summary
Short summary
We present a reconstruction of winter–spring temperatures developed using organic proxies preserved in well-dated lake sediments from southwest Iceland to assess seasonal temperature changes in the North Atlantic region over the last 2000 years. The gradual warming trend observed in our record is likely influenced by sea surface temperatures, which are sensitive to changes in ocean circulation and seasonal insolation, during the winter and spring season.
Lucas Dugerdil, Sébastien Joannin, Odile Peyron, Isabelle Jouffroy-Bapicot, Boris Vannière, Bazartseren Boldgiv, Julia Unkelbach, Hermann Behling, and Guillemette Ménot
Clim. Past, 17, 1199–1226, https://doi.org/10.5194/cp-17-1199-2021, https://doi.org/10.5194/cp-17-1199-2021, 2021
Short summary
Short summary
Since the understanding of Holocene climate change appears to be a relevant issue for future climate change, the paleoclimate calibrations have to be improved. Here, surface samples from Mongolia and Siberia were analyzed to provide new calibrations for pollen and biomarker climate models. These calibrations appear to be more powerful than global calibrations, especially in an arid central Asian context. These calibrations will improve the understanding of monsoon Holocene oscillations.
Justin T. Maxwell, Grant L. Harley, Trevis J. Matheus, Brandon M. Strange, Kayla Van Aken, Tsun Fung Au, and Joshua C. Bregy
Clim. Past, 16, 1901–1916, https://doi.org/10.5194/cp-16-1901-2020, https://doi.org/10.5194/cp-16-1901-2020, 2020
Short summary
Short summary
We found that increasing the density of chronologies in the tree-ring network resulted in estimated soil moisture conditions that better matched the spatial variability of the values that were instrumentally recorded for droughts and, to a lesser extent, pluvials. By sampling trees in 2010 compared to 1980, the sensitivity of tree rings to soil moisture decreased in the southern portion of our region, where severe drought conditions have been absent over recent decades.
Stefano Segadelli, Federico Grazzini, Veronica Rossi, Margherita Aguzzi, Silvia Marvelli, Marco Marchesini, Alessandro Chelli, Roberto Francese, Maria Teresa De Nardo, and Sandro Nanni
Clim. Past, 16, 1547–1564, https://doi.org/10.5194/cp-16-1547-2020, https://doi.org/10.5194/cp-16-1547-2020, 2020
Short summary
Short summary
In an attempt to consolidate trends in the hydrological cycle induced by recent warming, we conducted a multidisciplinary study combining meteorological data, climate proxies from the literature, and original coring and pollen data acquired in an area that has been hit by record-breaking precipitation events. A detailed study of recent flash-flood deposits compared with fossil peat bog and lake sediments supports the expected increase in precipitation intensity during warm climatic phases.
Bo Cheng, Jennifer Adams, Jianhui Chen, Aifeng Zhou, Qing Zhang, and Anson W. Mackay
Clim. Past, 16, 543–554, https://doi.org/10.5194/cp-16-543-2020, https://doi.org/10.5194/cp-16-543-2020, 2020
Short summary
Short summary
The Qinling mountains in China are biodiversity rich. We studied one of the high-latitude lakes on Mount Taibai with a view to looking at how aquatic diversity responded to long-term changes in climate over the past 3500 years. We specifically looked at a group of single-celled algae called diatoms, as they are very sensitive to the environment. We found that these algae changed gradually over time, but they showed abrupt change during the period known as the Little Ice Age, about 400 years ago.
Xingxing Liu, Youbin Sun, Jef Vandenberghe, Peng Cheng, Xu Zhang, Evan J. Gowan, Gerrit Lohmann, and Zhisheng An
Clim. Past, 16, 315–324, https://doi.org/10.5194/cp-16-315-2020, https://doi.org/10.5194/cp-16-315-2020, 2020
Short summary
Short summary
The East Asian summer monsoon and winter monsoon are anticorrelated on a centennial timescale during 16–1 ka. The centennial monsoon variability is connected to changes of both solar activity and North Atlantic cooling events during the Early Holocene. Then, North Atlantic cooling became the major forcing of events during the Late Holocene. This work presents the great challenge and potential to understand the response of the monsoon system to global climate changes in the past and the future.
Antonio García-Alix, Jaime L. Toney, Gonzalo Jiménez-Moreno, Carmen Pérez-Martínez, Laura Jiménez, Marta Rodrigo-Gámiz, R. Scott Anderson, Jon Camuera, Francisco J. Jiménez-Espejo, Dhais Peña-Angulo, and María J. Ramos-Román
Clim. Past, 16, 245–263, https://doi.org/10.5194/cp-16-245-2020, https://doi.org/10.5194/cp-16-245-2020, 2020
Short summary
Short summary
In this paper we identify warming thresholds, rates, and forcing mechanisms from a novel alpine temperature record of the southern Iberian Peninsula during the Common Era in order to contextualize the modern warming and its potential impact on these vulnerable alpine ecosystems. To do so, we have developed and applied the first lacustrine temperature calibration in alpine lakes for algal compounds, called long-chain alkyl diols, which is a significant advance in biomarker paleothermometry.
Stef Vansteenberge, Niels J. de Winter, Matthias Sinnesael, Sophie Verheyden, Steven Goderis, Stijn J. M. Van Malderen, Frank Vanhaecke, and Philippe Claeys
Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, https://doi.org/10.5194/cp-16-141-2020, 2020
Short summary
Short summary
We measured the chemical composition (trace-element concentrations and stable-isotope ratios) of a Belgian speleothem that deposited annual layers. Our sub-annual resolution dataset allows us to investigate how the chemistry of this speleothem recorded changes in the environment and climate in northwestern Europe. We then use this information to reconstruct climate change during the 16th and 17th century on the seasonal scale and demonstrate that environmental change drives speleothem chemistry.
Alexander Land, Sabine Remmele, Jutta Hofmann, Daniel Reichle, Margaret Eppli, Christian Zang, Allan Buras, Sebastian Hein, and Reiner Zimmermann
Clim. Past, 15, 1677–1690, https://doi.org/10.5194/cp-15-1677-2019, https://doi.org/10.5194/cp-15-1677-2019, 2019
Short summary
Short summary
With the use of precipitation sensitive oak ring-width series from the Main River region (southern Germany) a 2000-year long hydroclimate reconstruction has been developed. The ring series are sensitive to the sum of rainfall from 26 February to 6 July. This region suffered from severe, long-lasting droughts in the past two millennia (e.g., AD 500/510s, 940s, 1170s, 1390s and 1160s). In the AD 550s, 1050s, 1310s and 1480s, multi-year periods with high rainfall hit the region.
Nils Weitzel, Andreas Hense, and Christian Ohlwein
Clim. Past, 15, 1275–1301, https://doi.org/10.5194/cp-15-1275-2019, https://doi.org/10.5194/cp-15-1275-2019, 2019
Short summary
Short summary
A new method for probabilistic spatial reconstructions of past climate states is presented, which combines pollen data with a multi-model ensemble of climate simulations in a Bayesian framework. The approach is applied to reconstruct summer and winter temperature in Europe during the mid-Holocene. Our reconstructions account for multiple sources of uncertainty and are well suited for quantitative statistical analyses of the climate under different forcing conditions.
Inken Heidke, Denis Scholz, and Thorsten Hoffmann
Clim. Past, 15, 1025–1037, https://doi.org/10.5194/cp-15-1025-2019, https://doi.org/10.5194/cp-15-1025-2019, 2019
Short summary
Short summary
This is the first quantitative study of lignin biomarkers in stalagmites and cave drip water. Lignin is only produced by higher plants; therefore, its analysis can be used to reconstruct the vegetation of the past. We compared our lignin results with stable isotope and trace element records from the same samples and found correlations or similarities with P, Ba, U and Mg concentrations as well as δ13C values. These results can help to better interpret other vegetation proxies.
Johannes Hepp, Lorenz Wüthrich, Tobias Bromm, Marcel Bliedtner, Imke Kathrin Schäfer, Bruno Glaser, Kazimierz Rozanski, Frank Sirocko, Roland Zech, and Michael Zech
Clim. Past, 15, 713–733, https://doi.org/10.5194/cp-15-713-2019, https://doi.org/10.5194/cp-15-713-2019, 2019
Olga V. Churakova (Sidorova), Marina V. Fonti, Matthias Saurer, Sébastien Guillet, Christophe Corona, Patrick Fonti, Vladimir S. Myglan, Alexander V. Kirdyanov, Oksana V. Naumova, Dmitriy V. Ovchinnikov, Alexander V. Shashkin, Irina P. Panyushkina, Ulf Büntgen, Malcolm K. Hughes, Eugene A. Vaganov, Rolf T. W. Siegwolf, and Markus Stoffel
Clim. Past, 15, 685–700, https://doi.org/10.5194/cp-15-685-2019, https://doi.org/10.5194/cp-15-685-2019, 2019
Short summary
Short summary
We present a unique dataset of multiple tree-ring and stable isotope parameters, representing temperature-sensitive Siberian ecotones, to assess climatic impacts after six large stratospheric volcanic eruptions at 535, 540, 1257, 1640, 1815, and 1991 CE. Besides the well-documented effects of temperature derived from tree-ring width and latewood density, stable carbon and oxygen isotopes in tree-ring cellulose provide information about moisture and sunshine duration changes after the events.
Monica Bini, Giovanni Zanchetta, Aurel Perşoiu, Rosine Cartier, Albert Català, Isabel Cacho, Jonathan R. Dean, Federico Di Rita, Russell N. Drysdale, Martin Finnè, Ilaria Isola, Bassem Jalali, Fabrizio Lirer, Donatella Magri, Alessia Masi, Leszek Marks, Anna Maria Mercuri, Odile Peyron, Laura Sadori, Marie-Alexandrine Sicre, Fabian Welc, Christoph Zielhofer, and Elodie Brisset
Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, https://doi.org/10.5194/cp-15-555-2019, 2019
Short summary
Short summary
The Mediterranean region has returned some of the clearest evidence of a climatically dry period occurring approximately 4200 years ago. We reviewed selected proxies to infer regional climate patterns between 4.3 and 3.8 ka. Temperature data suggest a cooling anomaly, even if this is not uniform, whereas winter was drier, along with dry summers. However, some exceptions to this prevail, where wetter condition seems to have persisted, suggesting regional heterogeneity.
Amy J. Dougherty, Jeong-Heon Choi, Chris S. M. Turney, and Anthony Dosseto
Clim. Past, 15, 389–404, https://doi.org/10.5194/cp-15-389-2019, https://doi.org/10.5194/cp-15-389-2019, 2019
Áslaug Geirsdóttir, Gifford H. Miller, John T. Andrews, David J. Harning, Leif S. Anderson, Christopher Florian, Darren J. Larsen, and Thor Thordarson
Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, https://doi.org/10.5194/cp-15-25-2019, 2019
Short summary
Short summary
Compositing climate proxies in sediment from seven Iceland lakes documents abrupt summer cooling between 4.5 and 4.0 ka, statistically indistinguishable from 4.2 ka. Although the decline in summer insolation was an important factor, a combination of superposed changes in ocean circulation and explosive Icelandic volcanism were likely responsible for the abrupt perturbation recorded by our proxies. Lake and catchment proxies recovered to a colder equilibrium state following the perturbation.
Haiwei Zhang, Hai Cheng, Yanjun Cai, Christoph Spötl, Gayatri Kathayat, Ashish Sinha, R. Lawrence Edwards, and Liangcheng Tan
Clim. Past, 14, 1805–1817, https://doi.org/10.5194/cp-14-1805-2018, https://doi.org/10.5194/cp-14-1805-2018, 2018
Short summary
Short summary
The collapses of several Neolithic cultures in China are considered to have been associated with abrupt climate change during the 4.2 ka BP event; however, the hydroclimate of this event in China is still poorly known. Based on stalagmite records from monsoonal China, we found that north China was dry but south China was wet during this event. We propose that the rain belt remained longer at its southern position, giving rise to a pronounced humidity gradient between north and south China.
Alice Callegaro, Dario Battistel, Natalie M. Kehrwald, Felipe Matsubara Pereira, Torben Kirchgeorg, Maria del Carmen Villoslada Hidalgo, Broxton W. Bird, and Carlo Barbante
Clim. Past, 14, 1543–1563, https://doi.org/10.5194/cp-14-1543-2018, https://doi.org/10.5194/cp-14-1543-2018, 2018
Short summary
Short summary
Holocene fires and vegetation are reconstructed using different molecular markers with a single analytical method, applied for the first time to lake sediments from Tibet. The early Holocene shows oscillations between grasses and conifers, with smouldering fires represented by levoglucosan peaks, and high-temperature fires represented by PAHs. The lack of human FeSts excludes local human influence on fire and vegetation changes. Late Holocene displays an increase in local to regional combustion.
Kees Nooren, Wim Z. Hoek, Brian J. Dermody, Didier Galop, Sarah Metcalfe, Gerald Islebe, and Hans Middelkoop
Clim. Past, 14, 1253–1273, https://doi.org/10.5194/cp-14-1253-2018, https://doi.org/10.5194/cp-14-1253-2018, 2018
Short summary
Short summary
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new insights to the impact of climate change on the development of Maya civilisation. Lake Tuspan's diatom record is indicative of precipitation changes at a local scale, while a beach ridge elevation record from the world's largest late Holocene beach ridge plain provides a regional picture.
Markus Czymzik, Raimund Muscheler, Florian Adolphi, Florian Mekhaldi, Nadine Dräger, Florian Ott, Michał Słowinski, Mirosław Błaszkiewicz, Ala Aldahan, Göran Possnert, and Achim Brauer
Clim. Past, 14, 687–696, https://doi.org/10.5194/cp-14-687-2018, https://doi.org/10.5194/cp-14-687-2018, 2018
Short summary
Short summary
Our results provide a proof of concept for facilitating 10Be in varved lake sediments as a novel synchronization tool required for investigating leads and lags of proxy responses to climate variability. They also point to some limitations of 10Be in these archives mainly connected to in-lake sediment resuspension processes.
Darrell S. Kaufman and PAGES 2k special-issue editorial team
Clim. Past, 14, 593–600, https://doi.org/10.5194/cp-14-593-2018, https://doi.org/10.5194/cp-14-593-2018, 2018
Short summary
Short summary
We explain the procedure used to attain a high and consistent level of data stewardship across a special issue of the journal Climate of the Past. We discuss the challenges related to (1) determining which data are essential for public archival, (2) using data generated by others, and (3) understanding data citations. We anticipate that open-data sharing in paleo sciences will accelerate as the advantages become more evident and as practices that reduce data loss become the accepted convention.
Haipeng Wang, Jianhui Chen, Shengda Zhang, David D. Zhang, Zongli Wang, Qinghai Xu, Shengqian Chen, Shijin Wang, Shichang Kang, and Fahu Chen
Clim. Past, 14, 383–396, https://doi.org/10.5194/cp-14-383-2018, https://doi.org/10.5194/cp-14-383-2018, 2018
Short summary
Short summary
The chironomid-inferred temperature record from Gonghai Lake exhibits a stepwise decreasing trend since 4 ka. A cold event in the Era of Disunity, the Sui-Tang Warm Period, the Medieval Warm Period and the Little Ice Age can all be recognized in our record, as well as in many other temperature reconstructions in China. Local wars in Shanxi Province, documented in the historical literature during the past 2700 years, are statistically significantly correlated with changes in temperature.
Hansi K. A. Singh, Gregory J. Hakim, Robert Tardif, Julien Emile-Geay, and David C. Noone
Clim. Past, 14, 157–174, https://doi.org/10.5194/cp-14-157-2018, https://doi.org/10.5194/cp-14-157-2018, 2018
Short summary
Short summary
The Atlantic Multidecadal Oscillation (AMO) is prominent in the climate system. We study the AMO over the last 2000 years using a novel proxy framework, the Last Millennium Reanalysis. We find that the AMO is linked to continental warming, Arctic sea ice retreat, and an Atlantic precipitation shift. Low clouds decrease globally. We find no distinct multidecadal spectral peak in the AMO over the last 2 millennia, suggesting that human activities may have enhanced the AMO in the modern era.
Ny Riavo Gilbertinie Voarintsoa, Loren Bruce Railsback, George Albert Brook, Lixin Wang, Gayatri Kathayat, Hai Cheng, Xianglei Li, Richard Lawrence Edwards, Amos Fety Michel Rakotondrazafy, and Marie Olga Madison Razanatseheno
Clim. Past, 13, 1771–1790, https://doi.org/10.5194/cp-13-1771-2017, https://doi.org/10.5194/cp-13-1771-2017, 2017
Short summary
Short summary
This research has been an investigation of two stalagmites from two caves in NW Madagascar to reconstruct the region's paleoenvironmental changes, and to understand the linkage of such changes to the dynamics of the ITCZ. Stable isotopes, mineralogy, and petrography suggest wetter climate conditions than today during the early and late Holocene, when the mean ITCZ was south, and drier during the mid-Holocene when the ITCZ was north.
Wei Ding, Qinghai Xu, and Pavel E. Tarasov
Clim. Past, 13, 1285–1300, https://doi.org/10.5194/cp-13-1285-2017, https://doi.org/10.5194/cp-13-1285-2017, 2017
Short summary
Short summary
Pollen-based past climate reconstruction for regions with long-term human occupation is always controversial. We examined the bias induced by the human impact on vegetation in a climate reconstruction for temperate eastern China by comparing the deviations in the reconstructed results for a fossil record based on two pollen–climate calibration sets. Climatic signals in pollen assemblages are indeed obscured by human impact; however, the extent of the bias could be assessed.
Oliver Rach, Ansgar Kahmen, Achim Brauer, and Dirk Sachse
Clim. Past, 13, 741–757, https://doi.org/10.5194/cp-13-741-2017, https://doi.org/10.5194/cp-13-741-2017, 2017
Short summary
Short summary
Currently, reconstructions of past changes in the hydrological cycle are usually qualitative, which is a major drawback for testing the accuracy of models in predicting future responses. Here we present a proof of concept of a novel approach to deriving quantitative paleohydrological data, i.e. changes in relative humidity, from lacustrine sediment archives, employing a combination of organic geochemical methods and plant physiological modeling.
Juan José Gómez-Navarro, Eduardo Zorita, Christoph C. Raible, and Raphael Neukom
Clim. Past, 13, 629–648, https://doi.org/10.5194/cp-13-629-2017, https://doi.org/10.5194/cp-13-629-2017, 2017
Short summary
Short summary
This contribution aims at assessing to what extent the analogue method, a classic technique used in other branches of meteorology and climatology, can be used to perform gridded reconstructions of annual temperature based on the limited information from available but un-calibrated proxies spread across different locations of the world. We conclude that it is indeed possible, albeit with certain limitations that render the method comparable to more classic techniques.
Atsushi Okazaki and Kei Yoshimura
Clim. Past, 13, 379–393, https://doi.org/10.5194/cp-13-379-2017, https://doi.org/10.5194/cp-13-379-2017, 2017
Short summary
Short summary
Data assimilation has been successfully applied in the field of paleoclimatology to reconstruct past climate. However, data reconstructed from proxies have been assimilated, as opposed to the actual proxy values, which prevented full utilization of the information recorded in the proxies. This study propose a new data assimilation system in which actual proxy data are directly assimilated.
Enlou Zhang, Jie Chang, Yanmin Cao, Hongqu Tang, Pete Langdon, James Shulmeister, Rong Wang, Xiangdong Yang, and Ji Shen
Clim. Past, 13, 185–199, https://doi.org/10.5194/cp-13-185-2017, https://doi.org/10.5194/cp-13-185-2017, 2017
Short summary
Short summary
This paper reports the first development of sub-fossil chironomid-based mean July temperature transfer functions from China. The transfer functions yield reliable reconstructions that are comparable to the instrumental record. The application of this new tool will provide long-term quantitative palaeoclimate estimates from south-western China which is a critical region for understanding the dynamic and evolution of the Indian Ocean south-west Monsoon system.
Kira Rehfeld, Mathias Trachsel, Richard J. Telford, and Thomas Laepple
Clim. Past, 12, 2255–2270, https://doi.org/10.5194/cp-12-2255-2016, https://doi.org/10.5194/cp-12-2255-2016, 2016
Short summary
Short summary
Indirect evidence on past climate comes from the former composition of ecological communities such as plants, preserved as pollen grains in sediments of lakes. Transfer functions convert relative counts of species to a climatologically meaningful scale (e.g. annual mean temperature in degrees C). We show that the fundamental assumptions in the algorithms impact the reconstruction results in he idealized model world, in particular if the reconstructed variables were not ecologically relevant.
Qing Yang, Xiaoqiang Li, Xinying Zhou, Keliang Zhao, and Nan Sun
Clim. Past, 12, 2229–2240, https://doi.org/10.5194/cp-12-2229-2016, https://doi.org/10.5194/cp-12-2229-2016, 2016
Short summary
Short summary
The fossilized seeds of common millet are suited to the production of quantitative Holocene precipitation reconstructions. Our reconstructed results showed that summer precipitation from 7.7–3.4 ka BP was ~ 50 mm, or 17 % higher than present levels. Maximal mean summer precipitation peaked at 414 mm during 6.1–5.5 ka BP, ~ 109 mm, or 36 % higher than today, indicating the EASM peaked at this time. This work can provide a new proxy for further research into continuous paleoprecipitation sequences.
Michael Deininger, Martin Werner, and Frank McDermott
Clim. Past, 12, 2127–2143, https://doi.org/10.5194/cp-12-2127-2016, https://doi.org/10.5194/cp-12-2127-2016, 2016
Short summary
Short summary
This study investigates the NAO (Northern Atlantic Oscillation)-related mechanisms that control winter precipitation stable oxygen and hydrogen isotope gradients across Europe. The results show that past longitudinal stable oxygen and hydrogen isotope gradients in European rainfall stored in palaeoclimate archives (e.g. speleothems) can be used to infer the past winter NAO modes from its variations.
Liangjun Zhu, Yuandong Zhang, Zongshan Li, Binde Guo, and Xiaochun Wang
Clim. Past, 12, 1485–1498, https://doi.org/10.5194/cp-12-1485-2016, https://doi.org/10.5194/cp-12-1485-2016, 2016
Short summary
Short summary
We present a 368-year late summer maximum temperature reconstruction based on spruce tree rings. It touches on the critical topic of climate reconstruction in the eastern edge of Tibetan Plateau and represents an extension and enhancement of climate records for this area. The Little Ice Age was well represented and 20th century warming was not obvious in this reconstruction. This temperature variation may be affected by global land–sea atmospheric circulation as well as solar and volcanic forcing.
Frazer Matthews-Bird, Stephen J. Brooks, Philip B. Holden, Encarni Montoya, and William D. Gosling
Clim. Past, 12, 1263–1280, https://doi.org/10.5194/cp-12-1263-2016, https://doi.org/10.5194/cp-12-1263-2016, 2016
Short summary
Short summary
Chironomidae are a family of two-winged aquatic fly of the order Diptera. The family is species rich (> 5000 described species) and extremely sensitive to environmental change, particualy temperature. Across the Northern Hemisphere, chironomids have been widely used as paleotemperature proxies as the chitinous remains of the insect are readily preserved in lake sediments. This is the first study using chironomids as paleotemperature proxies in tropical South America.
Karsten Schittek, Sebastian T. Kock, Andreas Lücke, Jonathan Hense, Christian Ohlendorf, Julio J. Kulemeyer, Liliana C. Lupo, and Frank Schäbitz
Clim. Past, 12, 1165–1180, https://doi.org/10.5194/cp-12-1165-2016, https://doi.org/10.5194/cp-12-1165-2016, 2016
Short summary
Short summary
Cushion peatlands are versatile climate archives for the study of past environmental changes. We present the environmental history for the last 2100 years of Cerro Tuzgle peatland, which is located in the NW Argentine Puna. The results reflect prominent late Holocene climate anomalies and provide evidence that Northern Hemisphere climate oscillations were extensive. Volcanic forcing at the beginning of the 19th century seems to have had an impact on climatic settings in the Central Andes
Nicholas P. McKay and Julien Emile-Geay
Clim. Past, 12, 1093–1100, https://doi.org/10.5194/cp-12-1093-2016, https://doi.org/10.5194/cp-12-1093-2016, 2016
Short summary
Short summary
The lack of accepted data formats and data standards in paleoclimatology is a growing problem that slows progress in the field. Here, we propose a preliminary data standard for paleoclimate data, general enough to accommodate all the proxy and measurement types encountered in a large international collaboration (PAGES 2k). We also introduce a data format for such structured data (Linked Paleo Data, or LiPD), leveraging recent advances in knowledge representation (Linked Open Data).
Niamh Cahill, Andrew C. Kemp, Benjamin P. Horton, and Andrew C. Parnell
Clim. Past, 12, 525–542, https://doi.org/10.5194/cp-12-525-2016, https://doi.org/10.5194/cp-12-525-2016, 2016
Short summary
Short summary
We propose a Bayesian model for the reconstruction and analysis of former sea levels. The model provides a single, unifying framework for reconstructing and analyzing sea level through time with fully quantified uncertainty. We illustrate our approach using a case study of Common Era (last 2000 years) sea levels from New Jersey.
J. Emile-Geay and M. Tingley
Clim. Past, 12, 31–50, https://doi.org/10.5194/cp-12-31-2016, https://doi.org/10.5194/cp-12-31-2016, 2016
Short summary
Short summary
Ignoring nonlinearity in palaeoclimate records (e.g. continental run-off proxies) runs the risk of severely overstating changes in climate variability. Even with the correct model and parameters, some information is irretrievably lost by such proxies. However, we find that a simple empirical transform can do much to improve the situation, and makes them amenable to classical analyses. Doing so on two palaeo-ENSO records markedly changes some of the quantitative inferences made from such records.
Cited articles
Abas, M. R. B. and Mohamad, S.: Hazardous (Organic) Air Pollutants, Encycl. Environ. Heal., 23–33, https://doi.org/10.1016/B978-0-444-52272-6.00070-2, 2011.
Aizenshtat, Z.: Perylene and its geochemical significance, Geochim. Cosmochim. Ac., 37, 559–567, https://doi.org/10.1016/0016-7037(73)90218-4, 1973.
Alkalaj, J., Hrafnsdottir, T., Ingimarsson, F., Smith, R. J., Kreiling, A. K., and Mischke, S.: Distribution of Recent non-marine ostracods in Icelandic lakes, springs, and cave pools, J. Crustac. Biol., 39, 202–212, https://doi.org/10.1093/jcbiol/ruz008, 2019.
Alsos, I. G., Lammers, Y., Kjellman, S. E., Merkel, M. K. F., Bender, E. M., Rouillard, A., Erlendsson, E., Guðmundsdóttir, E. R., Benediktsson, Í. Ö., Farnsworth, W. R., Brynjólfsson, S., Gísladóttir, G., Eddudóttir, S. D., and Schomacker, A.: Ancient sedimentary DNA shows rapid post-glacial colonisation of Iceland followed by relatively stable vegetation until the Norse settlement (Landnám) AD 870, Quaternary Sci. Rev., 259, 106903, https://doi.org/10.1016/j.quascirev.2021.106903, 2021.
Andersson, R. A. and Meyers, P. A.: Effect of climate change on delivery and degradation of lipid biomarkers in a Holocene peat sequence in the Eastern European Russian Arctic, Org. Geochem., 53, 63–72, https://doi.org/10.1016/j.orggeochem.2012.05.002, 2012.
Ardenghi, N., Mulch, A., Koutsodendris, A., Pross, J., Kahmen, A., and Niedermeyer, E. M.: Temperature and moisture variability in the eastern Mediterranean region during Marine Isotope Stages 11–10 based on biomarker analysis of the Tenaghi Philippon peat deposit, Quaternary Sci. Rev., 225, 105977, https://doi.org/10.1016/j.quascirev.2019.105977, 2019.
Ardenghi, N., Harning, D. J., Raberg, J., Holman, B. R., Thordarson, T., Geirsdóttir, A., Miller, G. H., and Sepúlveda, J.: NOAA/WDS Paleoclimatology – Lake Stóra Viðarvatn, Iceland Biomarker Data over the past 10,900 years, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/y2ek-1152, 2023.
Arellano, L., Fernández, P., Van Drooge, B. L., Rose, N. L., Nickus, U., Thies, H., Stuchlík, E., Camarero, L., Catalan, J., and Grimalt, J. O.: Drivers of atmospheric deposition of polycyclic aromatic hydrocarbons at European high-altitude sites, Atmos. Chem. Phys., 18, 16081–16097, https://doi.org/10.5194/acp-18-16081-2018, 2018.
Argiriadis, E., Battistel, D., McWethy, D. B., Vecchiato, M., Kirchgeorg, T., Kehrwald, N. M., Whitlock, C., Wilmshurst, J. M., and Barbante, C.: Lake sediment fecal and biomass burning biomarkers provide direct evidence for prehistoric human-lit fires in New Zealand, Sci. Rep., 8, 12113, https://doi.org/10.1038/s41598-018-30606-3, 2018.
Axford, Y., Miller, G. H., Geirsdóttir, Á., and Langdon, P. G.: Holocene temperature history of northern Iceland inferred from subfossil midges, Quaternary Sci. Rev., 26, 3344–3358, https://doi.org/10.1016/j.quascirev.2007.09.003, 2007.
Ayris, P. M. and Delmelle, P.: The immediate environmental effects of tephra emission, Bull. Volcanol., 74, 1905–1936, https://doi.org/10.1007/s00445-012-0654-5, 2012.
Bates, R., Erlendsson, E., Eddudóttir, S. D., Möckel, S. C., Tinganelli, L., and Gísladóttir, G.: Landnám, Land Use and Landscape Change at Kagaðarhóll in Northwest Iceland, Environ. Archaeol., 27, 211–227, https://doi.org/10.1080/14614103.2021.1949680, 2021.
Battistel, D., Argiriadis, E., Kehrwald, N., Spigariol, M., Russell, J. M., and Barbante, C.: Fire and human record at Lake Victoria, East Africa, during the Early Iron Age: Did humans or climate cause massive ecosystem changes?, Holocene, 27, 997–1007, https://doi.org/10.1177/0959683616678466, 2016.
Berger, A. and Loutre, M.-F.: Parameters of the Earths orbit for the last 5 Million years in 1 kyr resolution, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.56040, 1999.
Berke, M. A., Sierra, A. C., Bush, R. T., Cheah, D., and O'Connor, K.: Controls on leaf wax fractionation and δ2H values in tundra vascular plants from western Greenland, Geochim. Cosmochim. Ac., 244, 565–583, https://doi.org/10.1016/j.gca.2018.10.020, 2019.
Bershaw, J., Penny, S. M., and Garzione, C. N.: Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate, J. Geophys. Res.-Atmos., 117, 1–18, https://doi.org/10.1029/2011JD016132 2012.
Birk, J. J., Dippold, M., Wiesenberg, G. L. B., and Glaser, B.: Combined quantification of faecal sterols, stanols, stanones and bile acids in soils and terrestrial sediments by gas chromatography-mass spectrometry, J. Chromatogr. A, 1242, 1–10, https://doi.org/10.1016/j.chroma.2012.04.027, 2012.
Blaauw, M. and Christeny, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Bold, R.: Norse Utilisation of Archaeobotanical Resources within the Myvatnssveit locale, Northern Iceland, PhD thesis, Durham University, Durham, http://etheses.dur.ac.uk/3440/ (last access: 26 October 2023), 2012.
Bray, E. E. and Evans, E. D.: Distribution of n-paraffins as a clue to recognition of source beds, Geochim. Cosmochim. Ac., 22, 2–15, https://doi.org/10.1016/0016-7037(61)90069-2, 1961.
Bronk Ramsey, C., Albert, P. G., Blockley, S. P. E., Hardiman, M., Housley, R. A., Lane, C. S., Lee, S., Matthews, I. P., Smith, V. C., and Lowe, J. J.: Improved age estimates for key Late Quaternary European tephra horizons in the RESET lattice, Quaternary Sci. Rev., 118, 18–32, https://doi.org/10.1016/j.quascirev.2014.11.007, 2015.
Bull, I. D., Evershed, R. P., and Betancourt, P. P.: An organic geochemical investigation of the practice of manuring at a Minoan site on Pseira Island, Crete, Geoarchaeology, 16, 223–242, https://doi.org/10.1002/1520-6548(200102)16:2<223::AID-GEA1002>3.0.CO;2-7, 2001.
Bull, I. D., Lockheart, M. J., Elhmmali, M. M., Roberts, D. J., and Evershed, R. P.: The origin of faeces by means of biomarker detection, Environ. Int., 27, 647–654, https://doi.org/10.1016/S0160-4120(01)00124-6, 2002.
Bush, R. T., Berke, M. A., and Jacobson, A. D.: Plant Water äD and δ18O of Tundra Species from West Greenland, Arctic, Antarct. Alp. Res., 49, 341–358, https://doi.org/10.1657/AAAR0016-025, 2017.
Callegaro, A., Battistel, D., Kehrwald, N. M., Matsubara Pereira, F., Kirchgeorg, T., Del Carmen Villoslada Hidalgo, M., Bird, B. W., and Barbante, C.: Fire, vegetation, and Holocene climate in a southeastern Tibetan lake: A multi-biomarker reconstruction from Paru Co, Clim. Past, 14, 1543–1563, https://doi.org/10.5194/cp-14-1543-2018, 2018.
Canuel, E. A. and Martens, C. S.: Seasonal variations in the sources and alteration of organic matter associated with recently-deposited sediments, Org. Geochem., 20, 563–577, https://doi.org/10.1016/0146-6380(93)90024-6, 1993.
Caves Rugenstein, J. K. and Chamberlain, C. P.: The evolution of hydroclimate in Asia over the Cenozoic: A stable-isotope perspective, Earth-Sci. Rev., 185, 1129–1156, https://doi.org/10.1016/j.earscirev.2018.09.003, 2018.
Chandler, C., Cheney, P., Thomas, P., Trabaud, L., and Williams, D.: Fire in forestry. Volume 1. Forest fire behavior and effects. Volume 2. Forest fire management and organization, John Wiley & Sons, Inc., ISBN 13978-0471874423, 1983.
Chen, A., Yang, L., Sun, L., Gao, Y., and Xie, Z.: Holocene changes in biomass burning in the boreal Northern Hemisphere, reconstructed from anhydrosugar fluxes in an Arctic sediment profile, Sci. Total Environ., 867, 161460, https://doi.org/10.1016/j.scitotenv.2023.161460, 2023.
Colman, S. M., Peck, J. A., Karabanov, E. B., Carter, S. J., Bradbury, J. P., King, J. W., and Williams, D. F.: Continental climate response to orbital forcing from biogenic silica records in lake Baikal, Nature, 378, 769–771, https://doi.org/10.1038/378769a0, 1995.
Conley, D. J.: Biogenic silica as an estimate of siliceous microfossil abundance in Great Lakes sediments, Biogeochemistry, 6, 161–179, https://doi.org/10.1007/BF02182994, 1988.
Conley, D. J. and Schelske, C. L.: Biogenic silica, in: Tracking environmental change using lake sediments, edited by: Last, W. M. and Smol, J. P., Springer Science & Business Media, 281–293, ISBN 1402006284, 2002.
Cordeiro, L. G. S. M., Carreira, R. S., and Wagener, A. L. R.: Geochemistry of fecal sterols in a contaminated estuary in southeastern Brazil, Org. Geochem., 39, 1097–1103, https://doi.org/10.1016/j.orggeochem.2008.02.022, 2008.
Curtin, L., D'Andrea, W. J., Balascio, N. L., Shirazi, S., Shapiro, B., de Wet, G. A., Bradley, R. S., and Bakke, J.: Sedimentary DNA and molecular evidence for early human occupation of the Faroe Islands, Commun. Earth Environ., 2, 253, https://doi.org/10.1038/s43247-021-00318-0, 2021.
D'Anjou, R. M., Bradley, R. S., Balascio, N. L., and Finkelstein, D. B.: Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry, P. Natl. Acad. Sci. SA, 109, 20332–20337, https://doi.org/10.1073/pnas.1212730109, 2012.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, https://doi.org/10.3402/tellusa.v16i4.8993, 1964.
Davies, G. M. and Legg, C. J.: Fuel Moisture Thresholds in the Flammability of Calluna vulgaris, Fire Technol., 47, 421–436, https://doi.org/10.1007/s10694-010-0162-0, 2011.
Decrouy, L.: Biological and environmental controls on isotopes in ostracod shells, Dev. Quatern. Sci., 17, 165–181, 2012.
Denis, E. H.: Production and preservation of organic and fire-derived carbon across the Paleocene-Eocene Thermal Maximum, PhD thesis, Pennsylvania State University, https://etda.libraries.psu.edu/files/final_submissions/12576 (last access: 26 October 2023), 2016.
Denis, E. H., Toney, J. L., Tarozo, R., Scott Anderson, R., Roach, L. D., and Huang, Y.: Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: Validation using HPLC-fluorescence detection, Org. Geochem., 45, 7–17, https://doi.org/10.1016/j.orggeochem.2012.01.005, 2012.
Denis, E. H., Pedentchouk, N., Schouten, S., Pagani, M., and Freeman, K. H.: Fire and ecosystem change in the Arctic across the Paleocene–Eocene Thermal Maximum, Earth Planet. Sc. Lett., 467, 149–156, https://doi.org/10.1016/j.epsl.2017.03.021, 2017.
De Schutter, A., Kervyn, M., Canters, F., Bosshard-Stadlin, S. A., Songo, M. A. M., and Mattsson, H. B.: Ash fall impact on vegetation: a remote sensing approach of the Oldoinyo Lengai 2007–08 eruption, J. Appl. Volcanol., 4, 1–18, 2015.
Dion-Kirschner, H., McFarlin, J. M., Masterson, A. L., Axford, Y., and Osburn, M. R.: Modern constraints on the sources and climate signals recorded by sedimentary plant waxes in west Greenland, Geochim. Cosmochim. Ac., 286, 336–354, https://doi.org/10.1016/j.gca.2020.07.027, 2020.
Draxler, R. R., Hess, G. D., and Draxler R. R., and Hess G., D.: An overview of the HYSPLIT_4 modelling system for trajectories, Aust. Meteorol. Mag., 47, 295–308, 1998.
Duan, Y., Wu, Y., Cao, X., Zhao, Y., and Ma, L.: Hydrogen isotope ratios of individual n-alkanes in plants from Gannan Gahai Lake (China) and surrounding area, Org. Geochem., 77, 96–105, https://doi.org/10.1016/j.orggeochem.2014.10.005, 2014.
Dugmore, A. J., Shore, J. S., Cook, G. T., Newton, A. J., Edwards, K. J., and Larsen, G.: The radiocarbon dating of tephra layers in Britain and Iceland, in: 15th Int. C Conf., 15–19 August 1994, Glasgow, Scotland, 379–388, https://doi.org/10.1017/S003382220003085X, 1995.
Eddudóttir, S. D., Erlendsson, E., Tinganelli, L., and Gísladóttir, G.: Climate change and human impact in a sensitive ecosystem: the Holocene environment of the Northwest Icelandic highland margin, Boreas, 45, 715–728, https://doi.org/10.1111/bor.12184, 2016.
Eddudóttir, S. D., Erlendsson, E., and Gísladóttir, G.: Effects of the Hekla 4 tephra on vegetation in Northwest Iceland, Veg. Hist. Archaeobot., 26, 389–402, https://doi.org/10.1007/s00334-017-0603-5, 2017.
Eddudóttir, S. D., Erlendsson, E., and Gísladóttir, G.: An Icelandic terrestrial record of North Atlantic cooling c. 8800–8100 cal. yr BP, Quaternary Sci. Rev., 197, 246–256, https://doi.org/10.1016/j.quascirev.2018.07.017, 2018.
Edvardsson, R.: The role of marine resources in the medieval economy of Vestfirðir, Iceland, PhD thesis, UMI Number 3396427, University of New York, New York, https://www.proquest.com/dissertations/docview/305189660/135A9DA8BD01C2AB675/208 (last access: 26 October 2023), 2010.
Eglinton, G. and Hamilton, R. J.: Leaf epicuticular waxes, Science, 156, 1322–1335, https://doi.org/10.1126/science.156.3780.1322, 1967.
Esri: ArcGIS Pro (Version 3.1.0.), Earthstar Geographic “World Imagery” map, https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9 (last access: March 2023), 2023.
Evershed, R. P., Bethell, P. H., Reynolds, P. J., and Walsh, N. J.: 5β-Stigmastanol and related 5β-stanols as biomarkers of manuring: analysis of modern experimental material and assessment of the archaeological potential, J. Archaeol. Sci., 24, 485–495, https://doi.org/10.1006/jasc.1996.0132, 1997.
Feng, D., Liu, Y., Gao, Y., Zhou, J., Zheng, L., Qiao, G., Ma, L., Lin, Z., and Grathwohl, P.: Atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal and spatial variation, and global comparison, Environ. Pollut., 230, 639–647, https://doi.org/10.1016/j.envpol.2017.07.022, 2017.
Fernandes, P. M. and Cruz, M. G.: Plant flammability experiments offer limited insight into vegetation-fire dynamics interactions, New Phytol., 194, 606–609, https://doi.org/10.1111/j.1469-8137.2012.04065.x, 2012.
Fernández-Martínez, M., Preece, C., Corbera, J., Cano, O., Garcia-Porta, J., Sardans, J., Janssens, I. A., Sabater, F., and Peñuelas, J.: Bryophyte C: N: P stoichiometry, biogeochemical niches and elementome plasticity driven by environment and coexistence, Ecol. Lett., 24, 1375–1386, 2021.
Ficken, K. J., Li, B., Swain, D. L., and Eglinton, G.: An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes, Org. Geochem., 31, 745–749, https://doi.org/10.1016/S0146-6380(00)00081-4, 2000.
Flowers, G. E., Björnsson, H., Geirsdóttir, Á., Miller, G. H., Black, J. L., and Clarke, G. K. C.: Holocene climate conditions and glacier variation in central Iceland from physical modelling and empirical evidence, Quaternary Sci. Rev., 27, 797–813, https://doi.org/10.1016/j.quascirev.2007.12.004, 2008.
Gagosian, R. B. and Peltzer, E. T.: The importance of atmospheric input of terrestrial organic material to deep sea sediments, Org. Geochem., 10, 661–669, https://doi.org/10.1016/S0146-6380(86)80002-X, 1986.
Geirsdóttir, Á., Miller, G. H., Thordarson, T., and Ólafsdóttir, K. B.: A 2000 year record of climate variations reconstructed from Haukadalsvatn, West Iceland, J. Paleolimnol., 41, 95–115, https://doi.org/10.1007/s10933-008-9253-z, 2009a.
Geirsdóttir, Á., Miller, G. H., Axford, Y., and Ólafsdóttir, S.: Holocene and latest Pleistocene climate and glacier fluctuations in Iceland, Quaternary Sci. Rev., 28, 2107–2118, https://doi.org/10.1016/j.quascirev.2009.03.013, 2009b.
Geirsdóttir, Á., Miller, G. H., Larsen, D. J., and Ólafsdóttir, S.: Abrupt holocene climate transitions in the northern North Atlantic region recorded by synchronized lacustrine records in Iceland, Quaternary Sci. Rev., 70, 48–62, https://doi.org/10.1016/j.quascirev.2013.03.010, 2013.
Geirsdóttir, Á., Miller, G. H., Andrews, J. T., Harning, D. J., Anderson, L. S., Florian, C., Larsen, D. J., and Thordarson, T.: The onset of neoglaciation in Iceland and the 4.2 ka event, Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, 2019.
Geirsdóttir, Á., Harning, D. J., Miller, G. H., Andrews, J. T., Zhong, Y., and Caseldine, C.: Holocene history of landscape instability in Iceland: Can we deconvolve the impacts of climate, volcanism and human activity?, Quaternary Sci. Rev., 249, 106633, https://doi.org/10.1016/j.quascirev.2020.106633, 2020.
Geirsdóttir, Á., Miller, G. H., Harning, D. J., Hannesdóttir, H., Thordarson, T., and Jónsdóttir, I.: Recurrent outburst floods and explosive volcanism during the Younger Dryas–Early Holocene deglaciation in south Iceland: evidence from a lacustrine record, J. Quaternary Sci., 37, 1006–1023, https://doi.org/10.1002/jqs.3344, 2022.
George, I. J., Black, R. R., Geron, C. D., Aurell, J., Hays, M. D., Preston, W. T., and Gullett, B. K.: Volatile and semivolatile organic compounds in laboratory peat fire emissions, Atmos. Environ., 132, 163–170, https://doi.org/10.1016/j.atmosenv.2016.02.025, 2016.
Gísladóttir, G., Woollett, J. M., Hébert, C. D., and Newton, A.: The Svalbarð project, Archaeol. Islandica, 10, 65–103, 2012.
Goad, L.: The Biosynthesis of Plant Sterols, Springer, 146–168, https://doi.org/10.1007/978-3-642-66632-2_8, 1977.
Goad, L. and Goodwin, T.: The biosynthesis of sterols in higher plants, Biochem. J., 99, 735–746, https://doi.org/10.1042/bj0990735, 1966.
Goldammer, J. G. and Furyaev, V. V.: Fire in ecosystems of boreal Eurasia: Ecological impacts and links to the global system, Fire Ecosyst. Boreal Eurasia, 1–20, https://doi.org/10.1007/978-94-015-8737-226, 1996.
Golomb, D., Barry, E., Fisher, G., Varanusupakul, P., Koleda, M., and Rooney, T.: Atmospheric deposition of polycyclic aromatic hydrocarbons near New England coastal waters, Atmos. Environ., 35, 6245–6258, https://doi.org/10.1016/S1352-2310(01)00456-3, 2001.
Grimalt, J. and Albaigés, J.: Source and occurrence of C12–C22
n-alkane distributions with even carbon-number preference in sedimentary environments, Geochim. Cosmochim. Ac., 51, 1379–1384, https://doi.org/10.1016/0016-7037(87)90322-X, 1987.
Gross, M.: An investigation of paleo-wildfires during the Cretaceous-Paleogene (K-PG) boundary at El Kef, Tunisia, Undergraduate Honors thesis, University of Colorado, Boulder, https://scholar.colorado.edu/honr_theses/1351 (last access: 26 October 2023), 2017.
Guiñez, M., Escudero, L., Mandelli, A., Martinez, L. D., and Cerutti, S.: Volcanic ashes as a source for nitrated and oxygenated polycyclic aromatic hydrocarbon pollution, Environ. Sci. Pollut. Res., 27, 16972–16982, https://doi.org/10.1007/s11356-020-08130-7, 2020.
Guo, J. and Liao, H.: In-situ formation of perylene in lacustrine sediments and its geochemical significance, Acta Geochim., 39, 587–594, https://doi.org/10.1007/s11631-020-00400-y, 2020.
Halsall, C. J., Sweetman, A. J., Barrie, L. A., and Jones, K. C.: Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic, Atmos. Environ., 35, 255–267, https://doi.org/10.1016/S1352-2310(00)00195-3, 2001.
Han, J. and Calvin, M.: Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments, P. Natl. Acad. Sci. USA, 64, 436–443, https://doi.org/10.1073/pnas.64.2.436, 1969.
Hanke, U. M., Lima-Braun, A. L., Eglinton, T. I., Donnelly, J. P., Galy, V., Poussart, P., Hughen, K., McNichol, A. P., Xu, L., and Reddy, C. M.: Significance of perylene for source allocation of terrigenous organic matter in aquatic sediments, Environ. Sci. Technol., 53, 8244–8251, https://doi.org/10.1021/acs.est.9b02344, 2019.
Harning, D. J., Geirsdóttir, Á., Miller, G. H., and Zalzal, K.: Early Holocene deglaciation of Drangajökull, Vestfirðir, Iceland, Quaternary Sci. Rev., 153, 192–198, https://doi.org/10.1016/j.quascirev.2016.09.030, 2016.
Harning, D. J., Thordarson, T., Geirsdóttir, Á., Zalzal, K., and Miller, G. H.: Provenance, stratigraphy and chronology of Holocene tephra from Vestfirðir, Iceland, Quatern. Geochronol., 46, 59–76, https://doi.org/10.1016/j.quageo.2018.03.007, 2018a.
Harning, D. J., Geirsdóttir, Á., and Miller, G. H.: Punctuated Holocene climate of Vestfirðir, Iceland, linked to internal/external variables and oceanographic conditions, Quaternary Sci. Rev., 189, 31–42, https://doi.org/10.1016/j.quascirev.2018.04.009, 2018b.
Harning, D. J., Curtin, L., Geirsdóttir, Á., D'Andrea, W. J., Miller, G. H., and Sepúlveda, J.: Lipid Biomarkers Quantify Holocene Summer Temperature and Ice Cap Sensitivity in Icelandic Lakes, Geophys. Res. Lett., 47, e2019GL085728, https://doi.org/10.1029/2019GL085728, 2020.
Harning, D. J., Jennings, A. E., Köseoglu, D., Belt, S. T., Geirsdóttir, Á., and Sepúlveda, J.: Response of biological productivity to North Atlantic marine front migration during the Holocene, Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, 2021.
Harning, D. J., Sacco, S., Anamthawat-, K., Ardenghi, N., Thordarson, T., Raberg, J. H., Sepúlveda, J., Geirsdóttir, Á., Shapiro, B., and Miller, G. H.: Delayed postglacial colonization of Betula in Iceland and the circum North Atlantic, Elife, 12, 1–23, 2023.
Hatcher, P. G. and McGillivary, P. A.: Sewage Contamination in the New York Bight. Coprostanol as an Indicator, Environ. Sci. Technol., 13, 1225–1229, https://doi.org/10.1021/es60158a015, 1979.
He, D., Zhang, K., Tang, J., Cui, X., and Sun, Y.: Using fecal sterols to assess dynamics of sewage input in sediments along a human-impacted river-estuary system in eastern China, Sci. Total Environ., 636, 787–797, https://doi.org/10.1016/j.scitotenv.2018.04.314, 2018.
Hernández, A., Bao, R., Giralt, S., Barker, P. A., Leng, M. J., Sloane, H. J., and Sáez, A.: Biogeochemical processes controlling oxygen and carbon isotopes of diatom silica in Late Glacial to Holocene lacustrine rhythmites, Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 413–425, https://doi.org/10.1016/j.palaeo.2010.11.020, 2011.
Hiles, W., Lawson, I. T., Roucoux, K. H., and Streeter, R. T.: Late survival of woodland contrasts with rapid limnological changes following settlement at Kalmanstjörn, Mývatnssveit, northeast Iceland, Boreas, 50, 1209–1227, https://doi.org/10.1111/bor.12529, 2021.
Hjartarson, A. and Sæmundsson, K.: Geological map of Iceland, bedrock. , Icel. GeoSurvey, Reykjavík, 2014.
Hoffmann, D. and Wynder, E. L.: Organic particulate pollutants: Chemical analysis and bioassays for carcinogenicity, in: Air pollution, vol. II, Academic Press, New York, 67–95, ISBN 0-12-666602–4, 1977.
Hollister, K. V, Thomas, E. K., Raynolds, M. K., Bültmann, H., Raberg, J. H., Miller, G. H., and Sepúlveda, J.: Aquatic and terrestrial plant contributions to sedimentary plant waxes in a modern arctic lake setting, J. Geophys. Res.-Biogeo., 127, e2022JG006903, https://doi.org/10.1029/2022JG006903, 2022.
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation, Science, 269, 676–679, https://doi.org/10.1126/science.269.5224.676, 1995.
Hurrell, J. W., Kushnir, Y., Otterson, G., and Visbeck, M.: An Overview of the North Atlantic Oscillation, North Atl. Oscil. Clim. Significance Environ. Impact, 134, 263,https://doi.org/10.1029/GM134, 2003.
Icelandic Meteorological Office: Climatological data, https://www.vedur.is/ (last access: 1 January 2022), 2022.
Iceland Statistical Service: https://www.hagstofa.is/ (last access: 13 March 2023), 2023.
Ifkirne, M., Beri, Q., Schaefer, A., Pham, Q. B., Acharki, S., and Farah, A.: Study of the impact of ash fallout from the Icelandic volcano Eyjafjöll (2010) on vegetation using MODIS data, Nat. Hazards, 114, 3811–3831, https://doi.org/10.1007/s11069-022-05544-z, 2022.
Iinuma, Y., Brüggemann, E., Gnauk, T., Müller, K., Andreae, M. O., Helas, G., Parmar, R., and Herrmann, H.: Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat, J. Geophys. Res., 112, D08209, https://doi.org/10.1029/2006JD007120, 2007.
Ilyinskaya, E., Schmidt, A., Mather, T. A., Pope, F. D., Witham, C., Baxter, P., Jóhannsson, T., Pfeffer, M., Barsotti, S., Singh, A., Sanderson, P., Bergsson, B., McCormick Kilbride, B., Donovan, A., Peters, N., Oppenheimer, C., and Edmonds, M.: Understanding the environmental impacts of large fissure eruptions: Aerosol and gas emissions from the 2014–2015 Holuhraun eruption (Iceland), Earth Planet. Sc. Lett., 472, 309–322, https://doi.org/10.1016/j.epsl.2017.05.025, 2017.
Jaffé, R., Cabrera, A., Hajje, N., and Carvajal-Chitty, H.: Organic biogeochemistry of a hypereutrophic tropical, freshwater lake – Part 1: particle associated and dissolved lipids, Org. Geochem., 25, 227–240, https://doi.org/10.1016/S0146-6380(96)00114-3, 1996.
Jennings, A., Thordarson, T., Zalzal, K., Stoner, J., Hayward, C., Geirsdóttir, Á., and Miller, G. H.: Holocene tephra from Iceland and Alaska in SE Greenland shelf sediments, Geol. Soc. Lond. Spec. Publ., 398, 157–193, https://doi.org/10.1144/SP398.6, 2014.
Jiang, C., Alexander, R., Kagi, R. I., and Murray, A. P.: Origin of perylene in ancient sediments and its geological significance, Org. Geochem., 31, 1545–1559, https://doi.org/10.1016/S0146-6380(00)00074-7, 2000.
Johnsen, A. R., Wick, L. Y., and Harms, H.: Principles of microbial PAH-degradation in soil, Environ. Pollut., 133, 71–84, https://doi.org/10.1016/j.envpol.2004.04.015, 2005.
Jónsson, G. and Magnússon, M. S.: Hagskinna: Icelandic historical statistics, Stat. Iceland, Reykjavík, Iceland, ISBN 9979-817-41-0, 1997.
Junk, G. A. and Ford, C. S.: Review of organic emissions from selected combustion processes, Ames Lab., IA, USA, https://doi.org/10.2172/5295035, 1980.
Kardjilov, M. I., Gisladottir, G., and Gislason, S. R.: Land degradation in northeastern Iceland: present and past carbon fluxes, Land. Degrad. Dev., 17, 401–417, https://doi.org/10.1002/ldr.746, 2006.
Karlsdóttir, L., Hallsdóttir, M., Eggertsson, Ó., Thorssón, Æ. T., and Anamthawat-Jónsson, K.: Birch hybridization in Thistilfjördur, North-east Iceland during the Holocene, Icelandic Agric. Sci., 27, 95–109, 2014.
Karp, A. T., Holman, A. I., Hopper, P., Grice, K., and Freeman, K. H.: Fire distinguishers: Refined interpretations of polycyclic aromatic hydrocarbons for paleo-applications, Geochim. Cosmochim. Ac., 289, 93–113, https://doi.org/10.1016/j.gca.2020.08.024, 2020.
Kaushal, S. and Binford, M. W.: Relationship between C:N ratios of lake sediments, organic matter sources, and historical deforestation in Lake Pleasant, Massachusetts, USA, J. Paleolimnol., 22, 439–442, https://doi.org/10.1023/A:1008027028029, 1999.
Kilian, R., Biester, H., Behrmann, J., Baeza, O., Fesq-Martin, M., Hohner, M., Schimpf, D., Friedmann, A., and Mangini, A.: Millennium-scale volcanic impact on a superhumid and pristine ecosystem, Geology, 34, 609–612, https://doi.org/10.1130/G22605.1, 2006.
Kozak, K., Ruman, M., Kosek, K., Karasiñski, G., Stachnik, Ł ., and Polkowska, Z.: Impact of volcanic eruptions on the occurrence of PAHs compounds in the aquatic ecosystem of the southern part of West Spitsbergen (Hornsund Fjord, Svalbard), Water, 9, 42, https://doi.org/10.3390/w9010042, 2017.
Lake, S., Bullock, J. M., and Hartley, S.: Impacts of livestock grazing on lowland heathland in the UK, English Nat. Res. Reports 422, Natural England, UK, 143 pp., 2001.
Lammel, G., Sehili, A. M., Bond, T. C., Feichter, J., and Grassl, H.: Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons – A modelling approach, Chemosphere, 76, 98–106, https://doi.org/10.1016/j.chemosphere.2009.02.017, 2009.
Landmælingar Íslands: https://www.lmi.is/is/moya/page/licence-for-national-land-survey-of-iceland-free-data (last access: 1 March 2023), 2023.
Larsen, D. J., Miller, G. H., Geirsdóttir, Á., and Thordarson, T.: A 3000-year varved record of glacier activity and climate change from the proglacial lake Hvítárvatn, Iceland, Quaternary Sci. Rev., 30, 2715–2731, https://doi.org/10.1016/j.quascirev.2011.05.026, 2011.
Larsen, D. J., Miller, G. H., Geirsdóttir, Á., and Ólafsdóttir, S.: Non-linear Holocene climate evolution in the North Atlantic: A high-resolution, multi-proxy record of glacier activity and environmental change from Hvítárvatn, central Iceland, Quaternary Sci. Rev., 39, 14–25, https://doi.org/10.1016/j.quascirev.2012.02.006, 2012.
Larsen, G.: H4 and other acid Hekla tephra layers, Jokull, 27, 28–46, 1977.
Larsen, G. and Eiríksson, J.: Late Quaternary terrestrial tephrochronology of Iceland – frequency of explosive eruptions, type and volume of tephra deposits, J. Quat. Sci. Publ. Quat. Res. Assoc., 23, 109–120, https://doi.org/10.1002/jqs.1129, 2008.
Larsen, G., Eiríksson, J., Knudsen, K. L., and Heinemeier, J.: Correlation of late Holocene terrestrial and marine tephra markers, north Iceland: Implications for reservoir age changes, Polar Res., 21, 283–290, 2002.
Lebrun, J., Bhiry, N., Woollett, J., and Sæmundsson, Þ.: Slope Dynamics in Relation to the Occupation and Abandonment of a Mountain Farm in Þistilfjörður, Northeast Iceland, Geosciences, 13, 30, https://doi.org/10.3390/geosciences13020030, 2023.
Lechler, A. R. and Galewsky, J.: Refining paleoaltimetry reconstructions of the Sierra Nevada: California, using air parcel trajectories, Geology, 41, 259–262, https://doi.org/10.1130/G33553.1, 2013.
Leeming, R., Ball, A., Ashbolt, N., and Nichols, P.: Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters, Water Res., 30, 2893–2900, https://doi.org/10.1016/S0043-1354(96)00011-5, 1996.
Leeming, R. L., Ball, A., Ashbolt, N. J., Jones, G., and Nichols, P. D.: Distinguishing between human and animal sources of faecal pollution, CSIRO, http://hdl.handle.net/102.100.100/237154?index=1 (last access: 26 October 2023), 1994.
Lerch, M., Bromm, T., Geitner, C., Haas, J. N., Schäfer, D., Glaser, B., and Zech, M.: Human and livestock faecal biomarkers at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria – potential and limitations, Biogeosciences, 19, 1135–1150, https://doi.org/10.5194/bg-19-1135-2022, 2022.
Li, C., Ma, S., Xia, Y., He, X., Gao, W., and Zhang, G.: Assessment of the relationship between ACL/CPI values of long chain n-alkanes and climate for the application of paleoclimate over the Tibetan Plateau, Quatern. Int., 544, 76–87, https://doi.org/10.1016/j.quaint.2020.02.028, 2020.
Lima, A. L. C., Farrington, J. W., and Reddy, C. M.: Combustion-Derived Polycyclic Aromatic Hydrocarbons in the Environment – A Review, Environ. Forensics, 6, 109–131, https://doi.org/10.1080/15275920590952739, 2005.
Mack, R. N.: Initial Effects of Ashfall from Mount St. Helens on Vegetation in Eastern Washington and Adjacent Idaho, Science, 213, 537–539, https://doi.org/10.1126/science.213.4507.537, 1981.
Magi, E., Bianco, R., Ianni, C., and Di Carro, M.: Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea, Environ. Pollut., 119, 91–98, https://doi.org/10.1016/S0269-7491(01)00321-9, 2002.
Mankasingh, U. and Gísladóttir, G.: Early indicators of soil formation in the Icelandic sub-arctic highlands, Geoderma, 337, 152–163, https://doi.org/10.1016/j.geoderma.2018.09.002, 2019.
Marino, E., Madrigal, J., Guijarro, M., Hernando, C., Dez, C., and Fernndez, C.: Flammability descriptors of fine dead fuels resulting from two mechanical treatments in shrubland: A comparative laboratory study, Int. J. Wildl. Fire, 19, 314–324, https://doi.org/10.1071/WF08123, 2010.
Marlon, J. R.: The geography of fire: A paleo perspective, PhD thesis, University of Oregon, http://hdl.handle.net/1794/10334 (last access: 26 October 2023), 2009.
Marlon, J. R., Bartlein, P. J., Walsh, M. K., Harrison, S. P., Brown, K. J., Edwards, M. E., Higuera, P. E., Power, M. J., Anderson, R. S., Briles, C., Brunelle, A., Carcaillet, C., Daniels, M., Hu, F. S., Lavoie, M., Long, C., Minckley, T., Richard, P. J. H., Scott, A. C., Shafer, D. S., Tinner, W., Umbanhowar, C. E., and Whitlock, C.: Wildfire responses to abrupt climate change in North America, P. Natl. Acad. Sci. USA, 106, 2519–2524, https://doi.org/10.1073/pnas.0808212106, 2009.
Marlon, J. R., Bartlein, P. J., Daniau, A. L., Harrison, S. P., Maezumi, S. Y., Power, M. J., Tinner, W., and Vanniére, B.: Global biomass burning: A synthesis and review of Holocene paleofire records and their controls, Quaternary Sci. Rev., 65, 5–25, https://doi.org/10.1016/j.quascirev.2012.11.029, 2013.
Marzi, R., Torkelson, B. E., and Olson, R. K.: A revised carbon preference index, Org. Geochem., 20, 1303–1306, https://doi.org/10.1016/0146-6380(93)90016-5, 1993.
May, W. E., Wasik, S. P., and Freeman, D. H.: Determination of the solubility behavior of some polycyclic aromatic hydrocarbons in water, Anal. Chem., 23, 877–884, https://doi.org/10.1021/ac50029a042, 1978.
McCalley, D. V., Cooke, M., and Nickless, G.: Effect of sewage treatment on faecal sterols, Water Res., 15, 1019–1025, https://doi.org/10.1016/0043-1354(81)90211-6, 1981.
Mccarty, J. L., Aalto, J., Paunu, V. V., Arnold, S. R., Eckhardt, S., Klimont, Z., Fain, J. J., Evangeliou, N., Venäläinen, A., Tchebakova, N. M., Parfenova, E. I., Kupiainen, K., Soja, A. J., Huang, L., and Wilson, S.: Reviews and syntheses: Arctic fire regimes and emissions in the 21st century, Biogeosciences, 18, 5053—5083, https://doi.org/10.5194/bg-18-5053-2021, 2021.
McFarlin, J. M., Axford, Y., Masterson, A. L., and Osburn, M. R.: Calibration of modern sedimentary δ2H plant wax-water relationships in Greenland lakes, Quaternary Sci. Rev., 225, 105978, https://doi.org/10.1016/j.quascirev.2019.105978, 2019.
McGovern, T. H., Vésteinsson, O., Friðriksoon, A., Church, M., Lawson, I., Simpson, I. A., Einarsson, A., Dugmore, A., Cook, G., Perdikaris, S., Edwards, K. J., Thomson, A. M., Adderley, W. P., Newton, A., Lucas, G., Edvardsson, R., Aldred, O., and Dunbar, E.: Landscapes of Settlement in Northern Iceland: Historical Ecology of Human Impact and Climate Fluctuation on the Millennial Scale, Am. Anthropol., 109, 27–51, https://doi.org/10.1525/aa.2007.109.1.27, 2007.
McGrath, T. E., Chan, W. G., and Hajajigol, R.: Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose, J. Anal. Appl. Pyrolys., 66, 51–70, 2003.
McKay, N. P., Kaufman, D. S., and Michelutti, N.: Biogenic silica concentration as a high-resolution, quantitative temperature proxy at Hallet Lake, south-central Alaska, Geophys. Res. Lett., 35, 4–9, https://doi.org/10.1029/2007GL032876, 2008.
Meyers, P. A.: Preservation of elemental and isotopic source identification of sedimentary organic matter, Chem. Geol., 114, 289–302, https://doi.org/10.1016/0009-2541(94)90059-0, 1994.
Meyers, P. A.: Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes, Org. Geochem., 27, 213–250, https://doi.org/10.1016/S0146-6380(97)00049-1, 1997.
Meyers, P. A. and Ishiwatari, R.: Lacustrine organic geochemistry – an overview of indicators of organic matter sources and diagenesis in lake sediments, Org. Geochem., 20, 867–900, https://doi.org/10.1016/0146-6380(93)90100-P, 1993.
Meyers, P. A. and Teranes, J. L.: Sediment Organic Matter, in: Tracking Environmental Change Using Lake Sediments: Physical and Geochemical Methods, edited by: Last, W. M. and Smol, J. P., Springer Netherlands, Dordrecht, 239–269, https://doi.org/10.1007/0-306-47670-3_9, 2001.
Mjell, T. L., Ninnemann, U. S., Kleiven, H. F., and Hall, I. R.: Multidecadal changes in Iceland Scotland Overflow Water vigor over the last 600 years and its relationship to climate, Geophys. Res. Lett., 43, 2111–2117, https://doi.org/10.1002/2016GL068227, 2016.
Mooney, D. E.: Examining Possible Driftwood Use in Viking Age Icelandic Boats, Nor. Archaeol. Rev., 49, 156–176, https://doi.org/10.1080/00293652.2016.1211734, 2016.
Moossen, H., Bendle, J., Seki, O., Quillmann, U., and Kawamura, K.: North Atlantic Holocene climate evolution recorded by high-resolution terrestrial and marine biomarker records, Quaternary Sci. Rev., 129, 111–127, https://doi.org/10.1016/j.quascirev.2015.10.013, 2015.
Murchison, D. G. and Raymond, A. C.: Igneous activity and organic maturation in the Midland Valley of Scotland, Int. J. Coal Geol., 14, 47–82, https://doi.org/10.1016/0166-5162(89)90078-5, 1989.
Murtaugh, J. J. and Bunch, R. L.: Sterols as a measure of fecal pollution, J. Water Pollut. Control Fed., 39, 404–409, 1967.
Niedermeyer, E. M., Forrest, M., Beckmann, B., Sessions, A. L., Mulch, A., and Schefuß, E.: The stable hydrogen isotopic composition of sedimentary plant waxes as quantitative proxy for rainfall in the West African Sahel, Geochim. Cosmochim. Ac., 184, 55–70, https://doi.org/10.1016/j.gca.2016.03.034, 2016.
NOAA: https://www.ncei.noaa.gov/access/monitoring/nao/ (last access: 1 March 2023), 2023.
Norðdahl, H. and Pétursson, H. G.: Relative sea-level changes in Iceland: new aspects of the Weichselian deglaciation of Iceland, Dev. Quat. Sci., Elsevier, 25–78, ISBN 0-444-50652–7, 2005.
Óladóttir, B. A., Larsen, G., and Sigmarsson, O.: Holocene volcanic activity at Grímsvötn, Bárdarbunga and Kverkfjöll subglacial centres beneath Vatnajökull, Iceland, Bull. Volcanol., 73, 1187–1208, https://doi.org/10.1007/s00445-011-0461-4, 2011.
Óladóttir, B. A., Thordarson, T., Geirsdóttir, Á., Jóhannsdóttir, G. E., and Mangerud, J.: The Saksunarvatn Ash and the G10ka series tephra. Review and current state of knowledge, Quatern. Geochronol., 56, 101041, https://doi.org/10.1016/j.quageo.2019.101041, 2020.
Ólafsdóttir, R., Schlyter, P., and Haraldsson, H. V.: Simulating icelandic vegetation cover during the holocene implications for long-term land degradation, Geogr. Ann. A, 83, 203–215, https://doi.org/10.1111/j.0435-3676.2001.00155.x, 2001.
Page, D. S., Boehm, P. D., Douglas, G. S., Bence, A. E., Burns, W. A., and Mankiewicz, P. J.: Pyrogenic polycyclic aromatic hydrocarbons in sediments record past human activity: A case study in Prince William Sound, Alaska, Mar. Pollut. Bull., 38, 247–260, https://doi.org/10.1016/S0025-326X(98)00142-8, 1999.
Pancost, R. D., Baas, M., Van Geel, B., and Sinninghe Damsté, J. S.: Biomarkers as proxies for plant inputs to peats: An example from a sub-boreal ombrotrophic bog, Org. Geochem., 33, 675–690, https://doi.org/10.1016/S0146-6380(02)00048-7, 2002.
Patterson, G. W.: Relation between Structure and Retention Time of Sterols in Gas Chromatography, Anal. Chem., 43, 1165–1170, https://doi.org/10.1021/ac60304a015, 1971.
Petit, T., Lozier, M. S., Josey, S. A., and Cunningham, S. A.: Atlantic Deep Water Formation Occurs Primarily in the Iceland Basin and Irminger Sea by Local Buoyancy Forcing, Geophys. Res. Lett., 47, 1–9, https://doi.org/10.1029/2020GL091028, 2020.
Pickarski, N., Kwiecien, O., and Litt, T.: Volcanic impact on terrestrial and aquatic ecosystems in the Eastern Mediterranean, Commun. Earth Environ., 4, 1–12, https://doi.org/10.1038/s43247-023-00827-0, 2023.
Pinta, E.: Norse Management of Wooden Resources across the North Atlantic: Highlights from the Norse Greenlandic Settlements, Environ. Archaeol., 26, 209–221, https://doi.org/10.1080/14614103.2018.1547510, 2021.
Plucinski, M. P., Anderson, W. R., Bradstock, R. A., and Gill, A. M.: The initiation of fire spread in shrubland fuels recreated in the laboratory, Int. J. Wildl. Fire, 19, 512–520, https://doi.org/10.1071/WF09038, 2010.
Power, M. J., Marlon, J., Ortiz, N., Bartlein, P. J., Harrison, S. P., Mayle, F. E., Ballouche, A., Bradshaw, R. H. W., Carcaillet, C., Cordova, C., Mooney, S., Moreno, P. I., Prentice, I. C., Thonicke, K., Tinner, W., Whitlock, C., Zhang, Y., Zhao, Y., Ali, A. A., Anderson, R. S., Beer, R., Behling, H., Briles, C., Brown, K. J., Brunelle, A., Bush, M., Camill, P., Chu, G. Q., Clark, J., Colombaroli, D., Connor, S., Daniau, A. L., Daniels, M., Dodson, J., Doughty, E., Edwards, M. E., Finsinger, W., Foster, D., Frechette, J., Gaillard, M. J., Gavin, D. G., Gobet, E., Haberle, S., Hallett, D. J., Higuera, P., Hope, G., Horn, S., Inoue, J., Kaltenrieder, P., Kennedy, L., Kong, Z. C., Larsen, C., Long, C. J., Lynch, J., Lynch, E. A., McGlone, M., Meeks, S., Mensing, S., Meyer, G., Minckley, T., Mohr, J., Nelson, D. M., New, J., Newnham, R., Noti, R., Oswald, W., Pierce, J., Richard, P. J. H., Rowe, C., Sanchez Goñi, M. F., Shuman, B. N., Takahara, H., Toney, J., Turney, C., Urrego-Sanchez, D. H., Umbanhowar, C., Vandergoes, M., Vanniere, B., Vescovi, E., Walsh, M., Wang, X., Williams, N., Wilmshurst, J., and Zhang, J. H.: Changes in fire regimes since the last glacial maximum: An assessment based on a global synthesis and analysis of charcoal data, Clim. Dynam., 30, 887–907, https://doi.org/10.1007/s00382-007-0334-x, 2008.
Prokopenko, A., Williams, D. F., Kavel, P., and Karabanov, E.: The organic indexes in the surface sediments of Lake Baikal water system and the processes controlling their variation, IPPCCE Newslett., 7, 49–55, 1993.
Purushothama, S., Pan, W. P., Riley, J. T., and Lloyd, W. G.: Analysis of polynuclear aromatic hydrocarbons from coal fly ash, Fuel Process. Technol., 53, 235–242, https://doi.org/10.1016/S0378-3820(97)00056-8, 1998.
Quirk, M. M., Wardroper, A. M. K., Brooks, P. W., Wheatley, A. E., and Maxwell, J. R.: Transformations of acyclic and cyclic isoprenoids in recent sedimentary environments, in: Biogeochimie de la matiere organique a l'interface eau-sediment marin. Centre National de la Recherche Scientifique, Colloque international, Marseille, France, Ed. du CNRS, Paris, 225–232, PASCALGEODEBRGM8120323455, 1980.
Raposeiro, P. M., Hernández, A., Pla-rabes, S., Gonçalves, V., and Bao, R.: Climate change facilitated the early colonization of the Azores Archipelago during medieval times, P. Natl. Acad. Sci. USA, 118, e2108236118, https://doi.org/10.1073/pnas.2108236118, 2021.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org/ (last access: 26 October 2023), 2020.
Rein, G., Cleaver, N., Ashton, C., Pironi, P., and Torero, J. L.: The severity of smouldering peat fires and damage to the forest soil, Catena, 74, 304–309, https://doi.org/10.1016/j.catena.2008.05.008, 2008.
Richter, N., Russell, J. M., Garfinkel, J., and Huang, Y.: Impacts of Norse settlement on terrestrial and aquatic ecosystems in Southwest Iceland, J. Paleolimnol., 65, 255–269, https://doi.org/10.1007/s10933-020-00169-3, 2021.
Rieger, S., Schoephorster, D. B., and Furbush, C. E.: Exploratory soil survey of Alaska, US Department of Agriculture, Soil Conservation Service, 1979.
Routh, J., Hugelius, G., Kuhry, P., Filley, T., Tillman, P. K., Becher, M., and Crill, P.: Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic, Chem. Geol., 368, 104–117, https://doi.org/10.1016/j.chemgeo.2013.12.022, 2014.
Roy, N., Bhiry, N., Woollett, J., and Fréchette, B.: Vegetation History since the Mid-Holocene in Northeastern Iceland, Ecoscience, 25, 109–123, https://doi.org/10.1080/11956860.2018.1443419, 2018.
Rundel, P. W., Stichler, W., Zander, R. H., and Ziegler, H.: Carbon and hydrogen isotope ratios of bryophytes from arid and humid regions, Oecologia, 44, 91–94, 1979.
Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E., Feakins, S. J., Freeman, K. H., Magill, C. R., McInerney, F. A., van der Meer, M. T. J., Polissar, P., Robins, R. J., Sachs, J. P., Schmidt, H., Sessions, A. L., White, J. W. C. C., West, J. B., Kahmen, A., and Meer, M. T. J. Van Der: Molecular Paleohydrology: Interpreting the Hydrogen-Isotopic Composition of Lipid Biomarkers from Photosynthesizing Organisms, Annu. Rev. Earth Planet. Sci., 40, 221–249, https://doi.org/10.1146/annurev-earth-042711-105535, 2012.
Santana, V. M. and Marrs, R. H.: Flammability properties of British heathland and moorland vegetation: Models for predicting fire ignition, J. Environ. Manage., 139, 88–96, https://doi.org/10.1016/j.jenvman.2014.02.027, 2014.
Santana, V. M., Baeza, M. J., and Vallejo, V. R.: Fuel structural traits modulating soil temperatures in different species patches of Mediterranean Basin shrublands, Int. J. Wildl. Fire, 20, 668–677, https://doi.org/10.1071/WF10083, 2011.
Scarff, F. R. and Westoby, M.: Leaf litter flammability in some semi-arid Australian woodlands, Funct. Ecol., 20, 745–752, https://doi.org/10.1111/j.1365-2435.2006.01174.x, 2006.
Sear, D. A., Allen, M. S., Hassall, J. D., Maloney, A. E., Langdon, P. G., Morrison, A. E., Henderson, A. C. G., Mackay, H., Croudace, I. W., Clarke, C., Sachs, J. P., Macdonald, G., Chiverrell, R. C., Leng, M. J., Cisneros-Dozal, L. M., and Fonville, T.: Human settlement of East Polynesia earlier, incremental, and coincident with prolonged South Pacific drought, P. Natl. Acad. Sci. USA, 201920975, https://doi.org/10.1073/pnas.1920975117, 2020.
Segato, D., Villoslada Hidalgo, M. D. C., Edwards, R., Barbaro, E., Vallelonga, P., Kjær, H. A., Simonsen, M., Vinther, B., Maffezzoli, N., Zangrando, R., Turetta, C., Battistel, D., Vésteinsson, O., Barbante, C., and Spolaor, A.: Five thousand years of fire history in the high North Atlantic region: Natural variability and ancient human forcing, Clim. Past, 17, 1533–1545, https://doi.org/10.5194/cp-17-1533-2021, 2021.
Shillito, L.-M., Whelton, H. L., Blong, J. C., Jenkins, D. L., Connolly, T. J., and Bull, I. D.: Pre-Clovis occupation of the Americas identified by human faecal biomarkers in coprolites from Paisley Caves, Oregon, Sci. Adv., 6, 1–9, https://doi.org/10.1126/sciadv.aba6404, 2020.
Siao, W. S., Balasubramanian, R., Rianawati, E., Karthikeyan, S., and Streets, D. G.: Characterization and source apportionment of particulate matter ≤2.5 µm in Sumatra, Indonesia, during a recent peat fire episode, Environ. Sci. Technol., 41, 3488–3494, https://doi.org/10.1021/es061943k, 2007.
Simpson, I. A., Van Bergen, P. F., Perret, V., Elhmmali, M. M., Roberts, D. J., and Evershed, R. P.: Lipid biomarkers of manuring practice in relict anthropogenic soils, Holocene, 9, 223–229, https://doi.org/10.1191/095968399666898333, 1999.
Sistiaga, A., Berna, F., Laursen, R., and Goldberg, P.: Steroidal biomarker analysis of a 14,000 years old putative human coprolite from Paisley Cave, Oregon, J. Archaeol. Sci., 41, 813–817, https://doi.org/10.1016/j.jas.2013.10.016, 2014.
Slater, G. F., Benson, A. A., Marvin, C., and Muir, D.: PAH fluxes to Siskiwit revisted: Trends in fluxes and sources of pyrogenic PAH and perylene constrained via radiocarbon analysis, Environ. Sci. Technol., 47, 5066–5073, https://doi.org/10.1021/es400272z, 2013.
Smith, B. N. and Epstein, S.: Two Categories of ratios for Higher Plants, Plant Physiol., 47, 380–384, https://doi.org/10.1104/pp.47.3.380, 1971.
Smith, K. P.: Landnám: the settlement of Iceland in archaeological and historical perspective, World Archaeol., 26, 319–347, https://doi.org/10.1080/00438243.1995.9980280, 1995.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling system, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Stogiannidis, E., Laane, R., and Broderick, G.: Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities, Rev. Environ. Contam. Toxicol., 234, 49–133, https://doi.org/10.1007/978-3-319-10638-0, 2015.
Sugiyama, S., Minowa, M., Fukamachi, Y., Hata, S., Yamamoto, Y., Sauter, T., Schneider, C., and Schaefer, M.: Subglacial discharge controls seasonal variations in the thermal structure of a glacial lake in Patagonia, Nat. Commun., 12, 1–9, https://doi.org/10.1038/s41467-021-26578-0, 2021.
Sveinbjarnardóttir, G., Erlendsson, E., Vickers, K., McGovern, T. H., Milek, K. B., Edwards, K. J., Simpson, I. A., and Cook, G.: The palaeoecology of a high status Icelandic farm, Environ. Archaeol., 12, 187–206, https://doi.org/10.1179/174963107x226453, 2007.
Sveinbjörnsdóttir, Á. E., Stefánsson, A., Heinemeier, J., Arnórsson, S., Eiríksdóttir, E. S., and Ólafsdóttir, R.: Assessing the sources of inorganic carbon in surface-, soil-and non-thermal groundwater in Iceland by δ13C and 14C, Geochim. Cosmochim. Ac., 279, 165–188, 2020.
Thomas, E. K., Briner, J. P., Ryan-Henry, J. J., and Huang, Y.: A major increase in winter snowfall during the middle Holocene on western Greenland caused by reduced sea ice in Baffin Bay and the Labrador Sea, Geophys. Res. Lett., 43, 5302–5308, https://doi.org/10.1002/2016GL068513, 2016.
Thorarinsson, S.: The eruptions of Hekla in historical times, in: The eruption of Hekla 1947–1948 I, edited by: Einarsson, T., Kjartansson, G., and Thorarinsson, S., Soc. Sci. Isl., Reykjavik, 1–177, 1967.
Thorarinsson, S.: Vötnin stríð, Saga Skeidarárhlaupa og Grímsvatnagosa [The swift Flow. rivers Hist. Grímsvötn jökulhlaups eruptions. Icelandic], Menn. Reykjavík, https://bokalind.is/vara/votnin-strid-saga-skeidararhlaupa-og-grimsvatnagosa/ (last access: 26 October 2023), 1974.
Thordarson, T. and Höskuldsson, Á.: Postglacial volcanism in Iceland, Jökull, 58, 197–228, https://doi.org/10.33799/jokull2008.58.197, 2008.
Tierney, J. E., Pausata, F. S. R., and DeMenocal, P. B.: Rainfall regimes of the Green Sahara, Sci. Adv., 3, e1601503, https://doi.org/10.1126/sciadv.1601503, 2017.
Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., and Frank, D. C.: Persistent Positive North Atlantic Oscillation Mode Dominated the Medieval Climate Anomaly, Science, 324, 78–80, https://doi.org/10.1126/science.1166349, 2009.
Tyagi, P., Edwards, D. R., and Coyne, M. S.: Fecal sterol and bile acid biomarkers: Runoff concentrations in animal waste-amended pastures, Water. Air Soil Pollut., 198, 45–54, https://doi.org/10.1007/s11270-008-9824-7, 2009.
Vachula, R. S., Huang, Y., Longo, W. M., Dee, S. G., Daniels, W. C., and Russell, J. M.: Evidence of Ice Age humans in eastern Beringia suggests early migration to North America, Quaternary Sci. Rev., 205, 35–44, https://doi.org/10.1016/j.quascirev.2018.12.003, 2019.
Vachula, R. S., Huang, Y., Russell, J. M., Abbott, M. B., Finkenbinder, M. S., and O'Donnell, J. A.: Sedimentary biomarkers reaffirm human impacts on northern Beringian ecosystems during the Last Glacial period, Boreas, 49, 514–525, https://doi.org/10.1111/bor.12449, 2020.
Varga, G., Dagsson-Walhauserová, P., Gresina, F., and Helgadottir, A.: Saharan dust and giant quartz particle transport towards Iceland, Sci. Rep., 11, 1–12, https://doi.org/10.1038/s41598-021-91481-z, 2021.
Vázquez, C., Vallejo, A., Vergès, J. M., and Barrio, R. J.: Livestock activity biomarkers: Estimating domestication and diet of livestock in ancient samples, J. Archaeol. Sci. Rep., 40, 103220, https://doi.org/10.1016/j.jasrep.2021.103220, 2021.
Wallace, J. M. and Hobbs, P. V.: Atmospheric science: an introductory survey, Academic Press, ISBN 0-12-732951-X, 2006.
Wang, Q. and Huang, H.: Perylene preservation in an oxidizing paleoenvironment and its limitation as a redox proxy, Palaeogeogr. Palaeoclimatol. Palaeoecol., 562, 110104, https://doi.org/10.1016/j.palaeo.2020.110104, 2021.
Wardroper, A. M. K., Maxwell, J. R., and Morris, R. J.: Sterols of a diatomaceous ooze from walvis bay, Steroids, 32, 203–221, https://doi.org/10.1016/0039-128X(78)90006-5, 1978.
Wilkie, K. M. K., Chapligin, B., Meyer, H., Burns, S., Petsch, S., and Brigham-Grette, J.: Modern isotope hydrology and controls on äD of plant leaf waxes at Lake El'gygytgyn, NE Russia, Clim. Past, 9, 335–352, https://doi.org/10.5194/cp-9-335-2013, 2013.
Wooller, M., Wang, Y., and Axford, Y.: A multiple stable isotope record of Late Quaternary limnological changes and chironomid paleoecology from northeastern Iceland, J. Paleolimnol., 40, 63–77, https://doi.org/10.1007/s10933-007-9144-8, 2008.
Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, H., Goyette, D., and Sylvestre, S.: PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition, Org. Geochem., 33, 489–515, https://doi.org/10.1016/S0146-6380(02)00002-5, 2002.
Zennaro, P., Kehrwald, N., McConnell, J. R., Schüpbach, S., Maselli, O. J., Marlon, J., Vallelonga, P., Leuenberger, D., Zangrando, R., Spolaor, A., Borrotti, M., Barbaro, E., Gambaro, A., and Barbante, C.: Fire in ice: Two millennia of boreal forest fire history from the Greenland NEEM ice core, Clim. Past, 10, 1905–1924, https://doi.org/10.5194/cp-10-1905-2014, 2014.
Zennaro, P., Kehrwald, N., Marlon, J., Ruddiman, W. F., Brücher, T., Agostinelli, C., Dahl-Jensen, D., Zangrando, R., Gambaro, A., and Barbante, C.: Europe on fire three thousand years ago: Arson or climate?, Geophys. Res. Lett., 42, 5023–2033, https://doi.org/10.1002/2015GL064259, 2015.
Short summary
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and human activities influenced environmental changes (erosion, wildfires) over the last 11 000 years. We found increased fire activity around 3000 and 1500 years ago, predating human settlement, likely driven by natural factors like precipitation shifts. Declining summer temperatures increased erosion vulnerability, exacerbated by farming and animal husbandry, which in turn may have reduced wildfires.
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and...