Articles | Volume 20, issue 4
https://doi.org/10.5194/cp-20-1039-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/cp-20-1039-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stable isotope evidence for long-term stability of large-scale hydroclimate in the Neogene North American Great Plains
Livia Manser
CORRESPONDING AUTHOR
Department of Earth Sciences, ETH Zürich, Zürich, Switzerland
Invited contribution by Livia Manser, recipient of the EGU Climate: Past, Present & Future Outstanding Student Poster and PICO Award 2019.
Tyler Kukla
Department of Geosciences, Colorado State University, Fort Collins, CO, USA
Jeremy K. C. Rugenstein
CORRESPONDING AUTHOR
Department of Geosciences, Colorado State University, Fort Collins, CO, USA
Related authors
No articles found.
Tyler Kukla, Daniel E. Ibarra, Kimberly V. Lau, and Jeremy K. C. Rugenstein
Geosci. Model Dev., 16, 5515–5538, https://doi.org/10.5194/gmd-16-5515-2023, https://doi.org/10.5194/gmd-16-5515-2023, 2023
Short summary
Short summary
The CH2O-CHOO TRAIN model can simulate how climate and the long-term carbon cycle interact across millions of years on a standard PC. While efficient, the model accounts for many factors including the location of land masses, the spatial pattern of the water cycle, and fundamental climate feedbacks. The model is a powerful tool for investigating how short-term climate processes can affect long-term changes in the Earth system.
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Jeremy K. Caves Rugenstein, Miquel Poyatos-Moré, Cai Puigdefàbregas, Emmanuelle Chanvry, Julian Clark, Andrea Fildani, Eric Verrechia, Kalin Kouzmanov, Matthieu Harlaux, and Sébastien Castelltort
Clim. Past, 16, 227–243, https://doi.org/10.5194/cp-16-227-2020, https://doi.org/10.5194/cp-16-227-2020, 2020
Short summary
Short summary
A geochemical study of a continental section reveals a rapid global warming event (hyperthermal U), occurring ca. 50 Myr ago, only described until now in marine sediment cores. Documenting how the Earth system responded to rapid climatic shifts provides fundamental information to constrain climatic models. Our results suggest that continental deposits can be high-resolution recorders of these warmings. They also give an insight on the climatic conditions occurring during at the time.
Related subject area
Subject: Atmospheric Dynamics | Archive: Terrestrial Archives | Timescale: Cenozoic
Temperature seasonality in the North American continental interior during the Early Eocene Climatic Optimum
Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the late Pliocene Longmen megaflora
Stable isotopic evidence of El Niño-like atmospheric circulation in the Pliocene western United States
Ethan G. Hyland, Katharine W. Huntington, Nathan D. Sheldon, and Tammo Reichgelt
Clim. Past, 14, 1391–1404, https://doi.org/10.5194/cp-14-1391-2018, https://doi.org/10.5194/cp-14-1391-2018, 2018
Short summary
Short summary
Climate equability is a paradox in paleoclimate research, but modeling suggests that strong seasonality should be a feature of greenhouse Earth periods too. Records of temperature from floral assemblages, paleosol geochemistry, clumped isotope thermometry, and downscaled models during the early Eocene show that the mean annual range of temperature was high, and may have increased during warming events. This has implications for predicting future seasonal climate impacts in continental regions.
T. Su, F. M. B. Jacques, R. A. Spicer, Y.-S. Liu, Y.-J. Huang, Y.-W. Xing, and Z.-K. Zhou
Clim. Past, 9, 1911–1920, https://doi.org/10.5194/cp-9-1911-2013, https://doi.org/10.5194/cp-9-1911-2013, 2013
M. J. Winnick, J. M. Welker, and C. P. Chamberlain
Clim. Past, 9, 903–912, https://doi.org/10.5194/cp-9-903-2013, https://doi.org/10.5194/cp-9-903-2013, 2013
Cited articles
Aby, S. B., Morgan, G. S., and Koning, D. J.: A paleontological survey of a part of the Tesuque formation near Chimayo, New Mexico, and a summary of the biostratigraphy of the Pojoaque member (Middle Miocene, Late Barstovian), in: New Mexico Geological Society Guidebook, 62nd Field Conference, Geology of the Tusas Mountains – Ojo Caliente, edited by: Koning, D. J., Karlstrom, K. E., Kelley, S. A., Lueth, V. W., and Aby, S. B., 347–358, https://nmgs.nmt.edu/publications/guidebooks/downloads/62/62_p0347_p0358.pdf (last access: 19 April 2024), 2011. a
Bailey, A., Posmentier, E., and Feng, X.: Patterns of Evaporation and Precipitation Drive Global Isotopic Changes in Atmospheric Moisture, Geophys. Res. Lett., 45, 7093–7101, https://doi.org/10.1029/2018GL078254, 2018. a
Barghoorn, S.: Magnetic-polarity stratigraphy of the Miocene type Tesuque Formation, Santa Fe Group, in: the Espanola Valley, New Mexico., Geol. Soc. Am. Bull., 92, 1027–1041, https://doi.org/10.1130/0016-7606(1981)92<1027:MSOTMT>2.0.CO;2, 1981. a
Barghoorn, S. F.: Magnetic polarity stratigraphy of the Tesuque Formation, Santa Fe Group in the Española Valley, New Mexico, with a taxonomic review of the fossil camels, PhD thesis, Columbia University, https://www.proquest.com/openview/3953a8793e030406f417eb7fb4e4253d/1 (last access: 19 April 2024), 1985. a
Bates, K. L.: America the Beautiful: And Other Poems, Thomas Y. Crowell Company, New York, NY, 305 pp., 1911. a
Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F., Fernandez, A., Hodell, D. A., Jaggi, M., Meckler, A. N., Millan, I., and Ziegler, M.: Reducing Uncertainties in Carbonate Clumped Isotope Analysis Through Consistent Carbonate-Based Standardization, Geochem. Geophy. Geosy., 19, 2895–2914, https://doi.org/10.1029/2017GC007385, 2018. a
Bershaw, J., Penny, S. M., and Garzione, C. N.: Stable Isotopes of Modern Water across the Himalaya and Eastern Tibetan Plateau: Implications for Estimates of Paleoelevation and Paleoclimate, J. Geophys. Res.-Atmos., 117, D02110, https://doi.org/10.1029/2011JD016132, 2012. a
Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M., and Prohaska, T.: Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report), Pure Appl. Chem., 86, 425–467, https://doi.org/10.1515/pac-2013-1023, 2014. a
Breecker, D., Sharp, Z., and McFadden, L.: Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA, Geol. Soc. Am. Bull., 121, 630–640, https://doi.org/10.1130/B26413.1, 2009. a, b
Breitenbach, S. F. M. and Bernasconi, S. M.: Carbon and oxygen isotope analysis of small carbonate samples (20 to 100 µg) with a GasBench II preparation device, Rapid Commun. Mass Sp., 25, 1910–1914, https://doi.org/10.1002/rcm.5052, 2011. a
Brock, A. L. and Buck, B. J.: Polygenetic development of the Mormon Mesa, NV petrocalcic horizons: Geomorphic and paleoenvironmental interpretations, CATENA, 77, 65–75, https://doi.org/10.1016/j.catena.2008.12.008, 2009. a
Brown, R. M., Chalk, T. B., Crocker, A. J., Wilson, P. A., and Foster, G. L.: Late Miocene cooling coupled to carbon dioxide with Pleistocene-like climate sensitivity, Nat. Geosci., 15, 664–670, https://doi.org/10.1038/s41561-022-00982-7, 2022. a
Brubaker, K. L., Entekhabi, D., and Eagleson, P. S.: Atmospheric water vapor transport and continental hydrology over the Americas, J. Hydrol., 155, 407–428, https://doi.org/10.1016/0022-1694(94)90180-5, 1994. a
Budyko, M.: Climate and Life, International Geophysical Series, vol. 18, Academic Press, New York, ISBN 0121394506, 1974. a
Burde, G. I., Gandush, C., and Bayarjargal, Y.: Bulk Recycling Models with Incomplete Vertical Mixing. Part II: Precipitation Recycling in the Amazon Basin, J. Climate, 19, 1473–1489, https://doi.org/10.1175/JCLI3688.1, 2006. a
Burls, N. J. and Fedorov, A. V.: Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles, P. Natl. Acad. Sci. USA, 114, 12888–12893, https://doi.org/10.1073/pnas.1703421114, 2017. a
Byerle, L. A.: Modulation of the Great Plains low-level jet and moisture transports by orography and large-scale circulations, J. Geophys. Res., 108, 8611, https://doi.org/10.1029/2002JD003005, 2003. a
Caves, J. K.: Late Miocene Uplift of the Tian Shan and Altai and Reorganization of Central Asia Climate, GSA Today, 27, 20–26, https://doi.org/10.1130/GSATG305A.1, 2017. a, b
Caves, J. K., Sjostrom, D. J., Mix, H. T., Winnick, M. J., and Chamberlain, C. P.: Aridification of Central Asia and Uplift of the Altai and Hangay Mountains, Mongolia: Stable Isotope Evidence, Am. J. Sci., 314, 1171–1201, https://doi.org/10.2475/08.2014.01, 2014. a
Caves, J. K., Winnick, M. J., Graham, S. A., Sjostrom, D. J., Mulch, A., and Chamberlain, C. P.: Role of the westerlies in Central Asia climate over the Cenozoic, Earth Planet. Sc. Lett., 428, 33–43, https://doi.org/10.1016/j.epsl.2015.07.023, 2015. a, b, c
Caves, J. K., Moragne, D. Y., Ibarra, D. E., Bayshashov, B. U., Gao, Y., Jones, M. M., Zhamangara, A., Arzhannikova, A. V., Arzhannikov, S. G., and Chamberlain, C. P.: The Neogene de-greening of Central Asia, Geology, 44, 887–890, https://doi.org/10.1130/G38267.1, 2016. a
Caves Rugenstein, J. K. and Chamberlain, C. P.: The evolution of hydroclimate in Asia over the Cenozoic: A stable-isotope perspective, Earth-Sci. Rev., 185, 1129–1156, https://doi.org/10.1016/j.earscirev.2018.09.003, 2018. a
CenCO2PIP Consortium: Toward a Cenozoic history of atmospheric CO2, Science, 382, eadi5177, https://doi.org/10.1126/science.adi5177, 2023. a, b, c
Chamberlain, C. P., Mix, H. T., Mulch, A., Hren, M. T., Kent-Corson, M. L., Davis, S. J., Horton, T. W., and Graham, S. A.: The Cenozoic climatic and topographic evolution of the western North American Cordillera, Am. J. Sci., 312, 213–262, https://doi.org/10.2475/02.2012.05, 2012. a
Chamberlain, C. P., Winnick, M. J., Mix, H. T., Chamberlain, S. D., and Maher, K.: The impact of neogene grassland expansion and aridification on the isotopic composition of continental precipitation, Global Biogeochem. Cy., 28, 992–1004, https://doi.org/10.1002/2014GB004822, 2014. a, b, c
de Noblet-Ducoudre, N., Boisier, J.-P., Pitman, A., Bonan, G. B., Brovkin, V., Cruz, F., Delire, C., Gayler, V., van den Hurk, B. J. J. M., Lawrence, P. J., van der Molen, M. K., Müller, C., Reick, C. H., Strengers, B. J., and Voldoire, A.: Determining Robust Impacts of Land-Use-Induced Land Cover Changes on Surface Climate over North America and Eurasia: Results from the First Set of LUCID Experiments, J. Climate, 25, 3261–3281, https://doi.org/10.1175/JCLI-D-11-00338.1, 2012. a
Dobson, J. E. and Campbell, J. S.: The Flatness of U.S. States, Geogr. Rev., 104, 1–9, https://doi.org/10.1111/j.1931-0846.2014.12001.x, 2014. a
Driscoll, E., Needham, M. R., Keys, P. W., and Rugenstein, J. K. C.: Cenozoic stable isotope constraints on the Eurasian continental interior hydroclimate response to high CO2, Earth Planet. Sc. Lett., 630, 118623, https://doi.org/10.1016/j.epsl.2024.118623, 2024. a
Duller, R. A., Whittaker, A. C., Swinehart, J. B., Armitage, J. J., Sinclair, H. D., Bair, A., and Allen, P. A.: Abrupt landscape change post-6 Ma on the central Great Plains, USA, Geology, 40, 871–874, https://doi.org/10.1130/G32919.1, 2012. a
Egan, T.: The worst hard time: the untold story of those who survived the great American Dust Bowl, Mariner, Boston, Mass., ISBN 9780618773473, 2006. a
Galbreath, E. C.: A contribution to the Tertiary Geology and Paleontology of Northeastern Colorado, Vertebrata, 4, 1–120, https://kuscholarworks.ku.edu/bitstream/handle/1808/3788/paleo.article.013op.pdf (last access: 19 April 2024), 1953.
Fan, M., Hough, B. G., and Passey, B. H.: Middle to late Cenozoic cooling and high topography in the central Rocky Mountains: Constraints from clumped isotope geochemistry, Earth Planet. Sc. Lett., 408, 35–47, https://doi.org/10.1016/j.epsl.2014.09.050, 2014.
Feng, R., Poulsen, C. J., and Werner, M.: Tropical circulation intensification and tectonic extension recorded by Neogene terrestrial δ18O records of the western United States, Geology, 44, 971–974, https://doi.org/10.1130/G38212.1, 2016. a, b, c, d
Feng, R., Bhattacharya, T., Otto-Bliesner, B. L., Brady, E. C., Haywood, A. M., Tindall, J. C., Hunter, S. J., Abe-Ouchi, A., Chan, W.-L., Kageyama, M., Contoux, C., Guo, C., Li, X., Lohmann, G., Stepanek, C., Tan, N., Zhang, Q., Zhang, Z., Han, Z., Williams, C. J. R., Lunt, D. J., Dowsett, H. J., Chandan, D., and Peltier, W. R.: Past Terrestrial Hydroclimate Sensitivity Controlled by Earth System Feedbacks, Nat. Commun., 13, 1306, https://doi.org/10.1038/s41467-022-28814-7, 2022. a
Ferretti, D. F., Pendall, E., Morgan, J. A., Nelson, J. A., LeCain, D., and Mosier, A. R.: Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes: Seasonal variations and ecosystem implications of elevated atmospheric CO2, Plant Soil, 254, 291–303, https://doi.org/10.1023/A:1025511618571, 2003. a
Fonstad, M., Pugatch, W., and Vogt, B.: Kansas Is Flatter Than a Pancake, Annals of Improbable Research, 9, 16–18, https://doi.org/10.3142/107951403782200100, 2007. a
Forest, C. E., Molnar, P., and Emanuel, K. A.: Palaeoaltimetry from energy conservation principles, Nature, 374, 347–350, 1995. a
Fox, D. L., Honey, J. G., Martin, R. A., and Peláez-Campomanes, P.: Pedogenic carbonate stable isotope record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA: Oxygen isotopes and paleoclimate during the evolution of C4-dominated grasslands, Bull. Geol. Soc. Am., 124, 431–443, https://doi.org/10.1130/B30402.1, 2012. a
Friedman, I., Harris, J., Smith, G., and Johnson, C.: Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories, J. Geophys. Res., 107, 4400, https://doi.org/10.1029/2001JD000565, 2002. a
Fritz, S. A., Eronen, J. T., Schnitzler, J., Hof, C., Janis, C. M., Mulch, A., Böhning-Gaese, K., and Graham, C. H.: Twenty-million-year relationship between mammalian diversity and primary productivity, P. Natl. Acad. Sci. USA, 113, 10908–10913, https://doi.org/10.1073/pnas.1602145113, 2016. a
Frye, J. C., Leonard, A. B., and Glass, H. D.: Late Cenozoic Sediments, Molluscan Faunas, and Clay Minerals in Northern New Mexico, New Mexico Bureau of Mines & Mineral Resources Circular, 160, 32, https://doi.org/10.58799/C-160, 1978. a, b
Fu, B. P.: On the calculation of the evaporation from land surface, Scientia Atmospherica Sinica, 5, 23–31, 1981. a
Gat, J. R. and Matsui, E.: Atmospheric water balance in the Amazon basin: An isotopic evapotranspiration model, J. Geophys. Res., 96, 179–13, https://doi.org/10.1029/91JD00054, 1991. a
Good, S. P., Noone, D., and Bowen, G.: Hydrologic connectivity constrains partitioning of global terrestrial water fluxes, Science, 349, 175–177, https://doi.org/10.1126/science.aaa5931, 2015. a, b
Gregory, K. M. and Chase, C. G.: Tectonic and climatic significance of a late Eocene low-relief, high- level geomorphic surface, Colorado, J. Geophys. Res., 99, 20141–20160, https://doi.org/10.1029/94jb00132, 1994. a
Greve, P., Gudmundsson, L., Orlowsky, B., and Seneviratne, S. I.: Introducing a probabilistic Budyko framework, Geophys. Res. Lett., 42, 2261–2269, https://doi.org/10.1002/2015GL063449, 2015. a, b, c
Godfrey, C., Fan, M., Jesmok, G., Upadhyay, D., and Tripati, A.: Petrography and stable isotope geochemistry of Oligocene-Miocene continental carbonates in south Texas: Implications for paleoclimate and paleoenvironment near sea-level, Sediment. Geol., 367, 69–83, https://doi.org/10.1016/j.sedgeo.2018.02.006, 2018.
Gustavson, T. C.: Fluvial and Eolian Depositional Systems, Paleosols, and Paleoclimate of the Upper Cenozoic Ogallala and Blackwater Draw Formations, Southern High Plains, Texas and New Mexico, Bureau of Economic Geology, Report of Investigations No. 239, https://doi.org/10.23867/RI0239D, 1996. a, b, c, d, e
Gustavson, T. C. and Holliday, V. T.: Eolian sedimentation and soil development on a semiarid to subhumid grassland, Tertiary Ogallala and Quaternary Blackwater Draw formations, Texas and New Mexico High Plains, J. Sediment. Res., 69, 622–634, https://doi.org/10.2110/jsr.69.622, 1999. a, b, c
Gustavson, T. C. and Winkler, D. A.: Depositional facies of the Miocene-Pliocene Ogallala Formation, northwestern Texas and eastern New Mexico, Geology, 16, 203, https://doi.org/10.1130/0091-7613(1988)016<0203:DFOTMP>2.3.CO;2, 1988. a, b
Held, I. and Soden, B.: Robust responses of the hydrological cycle to global warming, J. Climate, 19, 5686–5699, 2006. a
Helfand, H. M. and Schubert, S. D.: Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States, J. Climate, 8, 784–806, https://doi.org/10.1175/1520-0442(1995)008<0784:COTSGP>2.0.CO;2, 1995. a, b
Heller, P. L., Dueker, K., and McMillan, M. E.: Post-Paleozoic alluvial gravel transport as evidence of continental tilting in the U.S. Cordillera, Geol. Soc. Am. Bull., 115, 1122–1132, https://doi.org/10.1130/B25219.1, 2003. a, b
Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C., Caballero-Gill, R., and Kelly, C. S.: Late Miocene global cooling and the rise of modern ecosystems, Nat. Geosci., 9, 843–847, https://doi.org/10.1038/ngeo2813, 2016. a, b, c, d
Hetherington, A. M. and Woodward, F. I.: The role of stomata in sensing and driving environmental change, Nature, 424, 901–908, 2003. a
Hoch, J. and Markowski, P.: A Climatology of Springtime Dryline Position in the U.S. Great Plains Region, J. Climate, 18, 2132–2137, https://doi.org/10.1175/JCLI3392.1, 2005. a, b
Huth, T. E., Cerling, T. E., Marchetti, D. W., Bowling, D. R., Ellwein, A. L., and Passey, B. H.: Seasonal Bias in Soil Carbonate Formation and Its Implications for Interpreting High-Resolution Paleoarchives: Evidence From Southern Utah, J. Geophys. Res.-Biogeo., 124, 616–632, https://doi.org/10.1029/2018JG004496, 2019. a, b
Ibarra, D. E., Oster, J. L., Winnick, M. J., Rugenstein, J. K., Byrne, M. P., and Chamberlain, C. P.: Warm and cold wet states in the western United States during the Pliocene-Pleistocene, Geology, 46, 355–358, https://doi.org/10.1130/G39962.1, 2018. a
Izett, G. A. and Obradovich, J. D.: 40Ar 39Ar ages of Miocene tuffs in basin-fill deposits (Santa Fe group, New Mexico, and troublesome formation, Colorado) of the Rio Grande rift system, Mountain Geologist, 38, 77–86, 2001. a
Jacobs, B. F., Kingston, J. D., and Jacobs, L. L.: The Origin of Grass-Dominated Ecosystems, Ann. Mo. Bot. Gard., 86, 590–643, 1999. a
Janis, C. M., Damuth, J., and Theodor, J. M.: Miocene ungulates and terrestrial primary productivity: Where have all the browsers gone?, P. Natl. Acad. Sci. USA, 97, 7899–7904, https://doi.org/10.1073/pnas.97.14.7899, 2000. a
Karlstrom, K. E., Hansen, S. M., McKeon, R., Ouimet, W., MacCarthy, J., Aslan, A., Kelley, S., Dueker, K., Garcia, R. V., Feldman, J., Kirby, E., Schmandt, B., Coblentz, D., Heizler, M., Aster, R., Darling, A., Donahue, M. S., Stockli, D. F., Karlstrom, K. E., Crow, R., Crossey, L. J., Hoffman, M., Lazear, G., Van Wijk, J., and Stachnik, J.: Mantle-driven dynamic uplift of the Rocky Mountains and Colorado Plateau and its surface response: Toward a unified hypothesis, Lithosphere, 4, 3–22, https://doi.org/10.1130/l150.1, 2011. a, b
Kelson, J. R., Huntington, K. W., Breecker, D. O., Burgener, L. K., Gallagher, T. M., Hoke, G. D., and Petersen, S. V.: A Proxy for All Seasons? A Synthesis of Clumped Isotope Data from Holocene Soil Carbonates, Quaternary Sci. Rev., 234, 106259, https://doi.org/10.1016/j.quascirev.2020.106259, 2020. a
Kelson, J. R., Huth, T. E., Passey, B. H., Levin, N. E., Petersen, S. V., Ballato, P., Beverly, E. J., Breecker, D. O., Hoke, G. D., Hudson, A. M., Ji, H., Licht, A., Oerter, E. J., and Quade, J.: Triple oxygen isotope compositions of globally distributed soil carbonates record widespread evaporation of soil waters, Geochim. Cosmochim. Ac., 355, 138–160, https://doi.org/10.1016/j.gca.2023.06.034, 2023. a, b
Kendall, C. and Coplen, T. B.: Distribution of oxygen-18 and deuterium in river waters across the United States, Hydrol. Process., 15, 1363–1393, https://doi.org/10.1002/hyp.217, 2001. a
Kim, S. T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475, https://doi.org/10.1016/S0016-7037(97)00169-5, 1997. a, b, c
Kocsis, L., Ozsvárt, P., Becker, D., Ziegler, R., Scherler, L., and Codrea, V.: Orogeny forced terrestrial climate variation during the late Eocene-early Oligocene in Europe, Geology, 42, 727–730, https://doi.org/10.1130/G35673.1, 2014. a
Koning, D. J., Grauch, V., Connell, S. D., Ferguson, J., McIntosh, W., Slate, J. L., Wan, E., and Baldridge, W. S.: Structure and tectonic evolution of the eastern Española Basin, Rio Grande rift, north-central New Mexico, Geol. S. Am. S., 494, 185–219, https://doi.org/10.1130/2013.2494(08), 2013. a, b
Korus, J. and Joeckel, R.: Telescopic Megafans on the High Plains, USA Were Signal Buffers in a Major Source-To-Sink System, Sedimentary Record, 21, 1–14, https://doi.org/10.2110/001c.89096, 2023a. a
Korus, J. T. and Joeckel, R. M.: Exhumed fluvial landforms reveal evolution of late Eocene-Pliocene rivers on the Central and Northern Great Plains, USA, Geosphere, 19, 695–718, https://doi.org/10.1130/GES02587.1, 2023b. a
Koster, R. D.: Regions of Strong Coupling Between Soil Moisture and Precipitation, Science, 305, 1138–1140, https://doi.org/10.1126/science.1100217, 2004. a, b
Kuhle, A. J. and Smith, G. A.: Alluvial-slope deposition of the skull ridge member of the Tesuque formation, Española Basin, New Mexico, New Mexico Geology, 23, 30–37, https://doi.org/10.58799/NMG-v23n2.30, 2001. a, b
Kukla, T., Rugenstein, J. K. C., Driscoll, E., Ibarra, D. E., and Chamberlain, C. P.: The PATCH Lab V1.0: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction, Am. J. Sci., 322, 1124–1158, https://doi.org/10.2475/10.2022.02, 2022a (data available at: https://geocentroid.shinyapps.io/PATCH-Lab/, last access: 17 April 2024). a, b, c
Kukla, T., Rugenstein, J. K. C., Ibarra, D. E., Winnick, M. J., Strömberg, C. A., and Chamberlain, C. P.: Drier winters drove Cenozoic open habitat expansion in North America, AGU Advances, 3, e2021AV000566, https://doi.org/10.1029/2021AV000566, 2022b. a, b
Laguë, M. M., Bonan, G. B., and Swann, A. L. S.: Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System, J. Climate, 32, 5725–5744, https://doi.org/10.1175/jcli-d-18-0812.1, 2019. a, b
LaRiviere, J. P., Ravelo, A. C., Crimmins, A., Dekens, P. S., Ford, H. L., Lyle, M., and Wara, M. W.: Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing, Nature, 486, 97–100, https://doi.org/10.1038/nature11200, 2012. a
Lechler, A. R. and Galewsky, J.: Refining paleoaltimetry reconstructions of the Sierra Nevada, California, using air parcel trajectories, Geology, 41, 259–262, https://doi.org/10.1130/G33553.1, 2013. a, b, c, d
Lee, J.: Understanding Neogene Oxygen Isotopes in the Southern Great Plains Using Isotope‐Enabled General Circulation Model Simulations, J. Geophys. Res.-Atmos., 124, 2452–2464, https://doi.org/10.1029/2018JD028894, 2019. a, b
Lee, J.-E., Fung, I., DePaolo, D. J., and Henning, C. C.: Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model, J. Geophys. Res., 112, D16306, https://doi.org/10.1029/2006JD007657, 2007. a
Lehman, T. and Schnable, J.: Geology of the Southern High Plains, Southwestern Association of Student Geological Societies, Lubbock, Texas, 120 pp., https://ttu-ir.tdl.org/bitstreams/42eb7632-ccd1-4f32-9850-bbe6a224876c/download (last access: 19 April 2024), 1992.
Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I., and Scheff, J.: Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2, P. Natl. Acad. Sci. USA, 115, 201720712, https://doi.org/10.1073/pnas.1720712115, 2018. a, b
Leonard, A. B. and Frye, J. C.: Paleontology of Ogallala Formation, northeastern New Mexico, New Mexico Bureau of Mines & Mineral Resources Circular, 161, 21, https://doi.org/10.58799/C-161, 1978. a
Leonard, E. M.: Geomorphic and tectonic forcing of late Cenozoic warping of the Colorado piedmont, Geology, 30, 595–598, https://doi.org/10.1130/0091-7613(2002)030<0595:GATFOL>2.0.CO;2, 2002. a
Li, L. and Garzione, C. N.: Spatial Distribution and Controlling Factors of Stable Isotopes in Meteoric Waters on the Tibetan Plateau: Implications for Paleoelevation Reconstruction, Earth Planet. Sc. Lett., 460, 302–314, https://doi.org/10.1016/j.epsl.2016.11.046, 2017. a
Liu, Z., Bowen, G. J., and Welker, J. M.: Atmospheric circulation is reflected in precipitation isotope gradients over the conterminous United States, J. Geophys. Res., 115, D22120, https://doi.org/10.1029/2010JD014175, 2010. a
Lucas, S. G., Hunt, A. P., Kues, B. S., Heckert, A. B., and McLemore, V. T.: First-day road log, from Tucumcari to the edge of the Llano Estacado at Gruhlkey, Texas, Palo Duro Canyon, Texas, and San Jon Hill, New Mexico, in: Geology of the Llano Estacado, edited by: Lucas, S. and Ulmer-Scholle, D., New Mexico Geological Society 52nd Annual Fall Field Conference Guidebook, 1–23, https://doi.org/10.56577/ffc-52.1, 2001.
Ludvigson, G. A., Sawin, R. S., Franseen, E. K., Watney, W. L., West, R. R., and Smith, J. J.: A Review of the Stratigraphy of the Ogallala Formation and Revision of Neogene (“Tertiary”) Nomenclature in Kansas, Kansas Current Research in Earth Sciences Bulletin, 256, 1–9, 2009. a
Ludvigson, G. A., Mandel, R., MacFarlane, A., and Smith, J. J.: Capturing the Record of Neogene Climate Change from Strata of the High Plains Aquifer in Kansas: Research Activities and Findings, Tech. rep., Kansas Geological Survey, https://www.kgs.ku.edu/Publications/OFR/2016/OFR16_31/ (last access: 20 April 2024), 2016. a
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017. a
McDermott, F., Atkinson, T. C., Fairchild, I. J., Baldini, L. M., and Mattey, D. P.: A first evaluation of the spatial gradients in δ18O recorded by European Holocene speleothems, Global Planet. Change, 79, 275–287, https://doi.org/10.1016/j.gloplacha.2011.01.005, 2011. a
McIntosh, W. C. and Quade, J.: 40Ar 39Ar geochronology of tephra layers in the Santa Fe Group, Espanola Basin, New Mexico, in: Geology of the Santa Fe Region, edited by: Bauer, P. W., Kues, B. S., Dunbar, N. W., Karlstrom, K. E., and Harrison, B., New Mexico Geological Society 46th Annual Fall Field Conference Guidebook, 279–287, https://doi.org/10.56577/FFC-46.279, 1996. a
Mejía, L. M., Méndez-Vicente, A., Abrevaya, L., Lawrence, K. T., Ladlow, C., Bolton, C., Cacho, I., and Stoll, H.: A diatom record of CO2 decline since the late Miocene, Earth Planet. Sc. Lett., 479, 18–33, https://doi.org/10.1016/j.epsl.2017.08.034, 2017. a
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., and Shi, W.: North American regional reanalysis: A long-term, consistens, high-resolution climate dataset for the North American domian, as a major improvement upon the earlier global reanalysis datasets in both resolution and accuracy, B. Am. Meteorol. Soc., 87, 343–360, https://doi.org/10.1175/BAMS-87-3-343, 2006. a, b, c, d, e
Meyer-Christoffer, A., Becker, A., Finger, P., Rudolf, B., Schneider, U., and Ziese, M.: GPCC Climatology Version 2011 at 0.25°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges Built on GTS-Based and Historic Data, in: GPCC: Offenbach, Germany, Global Precipitation Climatology Centre (GPCC), at Deutscher Wetterdienst, Offenbach, https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2015_025, 2011. a
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011. a
Mix, H. T., Mulch, A., Kent-Corson, M. L., and Chamberlain, C. P.: Cenozoic migration of topography in the North American Cordillera, Geology, 39, 87–90, https://doi.org/10.1130/G31450.1, 2011. a, b
Mix, H. T., Caves Rugenstein, J. K., Reilly, S. P., Ritch, A. J., Winnick, M. J., Kukla, T., and Chamberlain, C. P.: Atmospheric flow deflection in the late Cenozoic Sierra Nevada, Earth Planet. Sc. Lett., 518, 76–85, https://doi.org/10.1016/j.epsl.2019.04.050, 2019. a, b
Molnar, P. and England, P.: Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?, Nature, 346, 29–34, https://doi.org/10.1038/346029a0, 1990. a, b, c
Moucha, R., Forte, A. M., Rowley, D. B., Mitrovica, J. X., Simmons, N. A., and Grand, S. P.: Deep mantle forces and the uplift of the Colorado Plateau, Geophys. Res. Lett., 36, L19310, https://doi.org/10.1029/2009GL039778, 2009. a, b
Nativ, R. and Riggio, R.: Precipitation in the southern High Plains: Meteorologic and isotopic features, J. Geophys. Res., 95, 22559, https://doi.org/10.1029/JD095iD13p22559, 1990. a
Osborne, C. P. and Sack, L.: Evolution of C4 plants: A new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics, Philos. T. R. Soc. B, 367, 583–600, https://doi.org/10.1098/rstb.2011.0261, 2012. a
Oster, J. L., Montañez, I. P., and Kelley, N. P.: Response of a modern cave system to large seasonal precipitation variability, Geochim. Cosmochim. Ac., 91, 92–108, https://doi.org/10.1016/j.gca.2012.05.027, 2012. a
Overpeck, J. T. and Udall, B.: Climate change and the aridification of North America, P. Natl. Acad. Sci. USA, 117, 11856–11858, https://doi.org/10.1073/pnas.2006323117, 2020. a
Poage, M. A. and Chamberlain, C. P.: Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change, Am. J. Sci., 301, 1–15, https://doi.org/10.2475/ajs.301.1.1, 2001. a
Powell, J. W.: Report on the lands of the arid region of the United States, with a more detailed account of the lands of Utah, Government Printing Office, Washington, D.C., https://doi.org/10.3133/70039240, 1879. a, b
Ring, S. J., Mutz, S. G., and Ehlers, T. A.: Cenozoic Proxy Constraints on Earth System Sensitivity to Greenhouse Gases, Paleoceanography and Paleoclimatology, 37, e2021PA004364, https://doi.org/10.1029/2021PA004364, 2022. a
Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R.: Isotopic patterns in modern global precipitation, in: Climate Change in Continental Isotopic Records, edited by: Swart, P. K., Lohmann, K. C., McKenzie, J. A., and Savin, S. M., Wiley Online Library, 1–36, https://doi.org/10.1029/GM078p0001, 1993. a
Rugenstein, J. K. C., Methner, K., Kukla, T., Mulch, A., Lüdecke, T., Fiebig, J., Wegmann, K. W., Zeitler, P. K., and Chamberlain, C. P.: Clumped isotope constraints on warming and precipitation seasonality in Mongolia following Altai uplift, American J. Sci., 322, 28–54, https://doi.org/10.2475/01.2022.02, 2022. a
Salati, E., Dall'Olio, A., Matsui, E., and Gat, J. R.: Recycling of water in the Amazon Basin: An isotopic study, Water Resour. Res., 15, 1250–1258, https://doi.org/10.1029/WR015i005p01250, 1979. a
San Jose, M., Caves Rugenstein, J. K., Cosentino, D., Faccenna, C., Fellin, M. G., Ghinassi, M., and Martini, I.: Stable Isotope Evidence for Rapid Uplift of the Central Apennines since the Late Pliocene, Earth Planet. Sc. Lett., 544, 116376, https://doi.org/10.1016/j.epsl.2020.116376, 2020. a
Scheff, J.: Drought Indices, Drought Impacts, CO2, and Warming: a Historical and Geologic Perspective, Current Climate Change Reports, 4, 202–209, https://doi.org/10.1007/s40641-018-0094-1, 2018. a
Scheff, J., Seager, R., Liu, H., and Coats, S.: Are Glacials Dry? Consequences for Paleoclimatology and for Greenhouse Warming, J. Climate, 30, 6593–6609, https://doi.org/10.1175/JCLI-D-16-0854.1, 2017. a
Scheff, J., Coats, S., and Laguë, M. M.: Why do the Global Warming Responses of Land-Surface Models and Climatic Dryness Metrics Disagree?, Earth's Future, 10, e2022EF002814, https://doi.org/10.1029/2022EF002814, 2022. a
Schubert, S. D.: On the Cause of the 1930s Dust Bowl, Science, 303, 1855–1859, https://doi.org/10.1126/science.1095048, 2004. a
Schultz, G. E.: Clarendonian and Hemphillian Vertebrate Faunas from the Ogallala Formation (Late Miocene-Early Pliocene) of the Texas Panhandle and Adjacent Oklahoma, in: Geologic framework and regional hydrology: Upper Cenozoic Blackwater Draw and Ogallala Formations, Great Plains, edited by: Gustavson, T. C., Bureau of Economic Geology, The University of Texas, Austin, TX, 56–97, https://store.beg.utexas.edu/symposia/3521-sp0006.html (last access: 20 April 2024), 1990. a
Seager, R., Feldman, J., Lis, N., Ting, M., Williams, A. P., Nakamura, J., Liu, H., and Henderson, N.: Whither the 100th Meridian? The Once and Future Physical and Human Geography of America’s Arid–Humid Divide. Part II: The Meridian Moves East, Earth Interact., 22, 1–24, https://doi.org/10.1175/EI-D-17-0012.1, 2018a. a, b, c
Seager, R., Lis, N., Feldman, J., Ting, M., Williams, A. P., Nakamura, J., Liu, H., and Henderson, N.: Whither the 100th Meridian? The Once and Future Physical and Human Geography of America’s Arid–Humid Divide. Part I: The Story So Far, Earth Interact., 22, 1–22, https://doi.org/10.1175/EI-D-17-0011.1, 2018b. a, b, c, d, e, f, g, h
Seni, S. J.: Sand-body geometry and depositional systems, Ogallala Formation, Texas, Bureau of Economic Geology, University of Texas, Report of Investigations, 105, 36, https://repositories.lib.utexas.edu/bitstreams/b4fbcaf5-33e6-415e-824e-e7be531c4eb7/download (last access: 24 April 2024), 1980. a, b
Shapiro, A., Fedorovich, E., and Rahimi, S.: A Unified Theory for the Great Plains Nocturnal Low-Level Jet, J. Atmos. Sci., 73, 3037–3057, https://doi.org/10.1175/JAS-D-15-0307.1, 2016. a
Siler, N., Roe, G. H., and Armour, K. C.: Insights into the zonal-mean response of the hydrologic cycle to global warming from a diffusive energy balance model, J. Climate, 31, 7481–7493, https://doi.org/10.1175/JCLI-D-18-0081.1, 2018. a
Sjostrom, D. J., Hren, M. T., Horton, T. W., Waldbauer, J. R., and Chamberlain, C. P.: Stable isotopic evidence for a pre–late Miocene elevation gradient in the Great Plains–Rocky Mountain region, USA, in: Special Paper 398: Tectonics, Climate, and Landscape Evolution, Geological Society of America, 398, 309–319, https://doi.org/10.1130/2006.2398(19), 2006. a
Skinner, M. F., Skinner, S., and Gooris, R.: Stratigraphy and biostratigraphy of late Cenozoic deposits in central Sioux County, western Nebraska, B. Am. Mus. Nat. Hist., 158, 263–370, 1977. a
Smith, J. J. and Platt, B. F.: Reconstructing late Miocene depositional environments in the central High Plains, USA: Lithofacies and architectural elements of the Ogallala Formation, Sediment. Geol., 443, 106303, https://doi.org/10.1016/j.sedgeo.2022.106303, 2023. a, b, c, d
Smith, J. J., Platt, B. F., Ludvigson, G. A., and Thomasson, J. R.: Ant-nest ichnofossils in honeycomb calcretes, Neogene Ogallala Formation, High Plains region of western Kansas, U.S.A., Palaeogeogr. Palaeocl., 308, 383–394, https://doi.org/10.1016/j.palaeo.2011.05.046, 2011.
Smith, J. J., Platt, B. F., Ludvigson, G. A., Sawin, R. S., Marshall, C. P., and Olcott-Marshall, A.: Enigmatic red beds exposed at point of rocks, Cimarron national Grassland, Morton county, Kansas: Chronostratigraphic constraints from uranium-lead dating of detrital zircons, Current Research in Earth Sciences: Kansas Geological Survey, 261, 1–17, http://www.kgs.ku.edu/Current/2015/Smith/index.html (last access: 19 April 2024), 2015.
Smith, J. J., Layzell, A., Lukens, W., Morgan, M., Keller, S., Martin, R. A., and Fox, D. L.: Getting to the bottom of the High Plains aquifer, in: Unfolding the Geology of the West, vol. 44, Geological Society of America, 93–124, https://doi.org/10.1130/2016.0044(04), 2016. a, b
Smith, J. J., Ludvigson, G. A., Layzell, A., Möller, A., Harlow, R. H., Turner, E., Platt, B., and Petronis, M.: Discovery of Paleogene Deposits of the Central High Plains Aquifer In the Western Great Plains, U.S.A., J. Sediment. Res., 87, 880–896, https://doi.org/10.2110/jsr.2017.48, 2017. a
Smith, J. J., Turner, E., Möller, A., Joeckel, R. M., and Otto, R. E.: First U-Pb zircon ages for late Miocene ashfall Konservat-Lagerstätte and Grove Lake ashes from eastern Great Plains, USA, PLoS ONE, 13, 1–19, https://doi.org/10.1371/journal.pone.0207103, 2018. a, b
Smith, R. B.: The Influence of Mountains on the Atmosphere, Adv. Geophys., 21, 87–230, https://doi.org/10.1016/S0065-2687(08)60262-9, 1979. a
Smith, R. B. and Barstad, I.: A Linear Theory of Orographic Precipitation, J. Atmos. Sci., 61, 1377–1391, https://doi.org/10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2, 2004. a
Song, F., Feng, Z., Leung, L. R., Houze Jr, R. A., Wang, J., Hardin, J., and Homeyer, C. R.: Contrasting Spring and Summer Large-Scale Environments Associated with Mesoscale Convective Systems over the U.S. Great Plains, J. Climate, 32, 6749–6767, https://doi.org/10.1175/JCLI-D-18-0839.1, 2019. a
Sosdian, S. M., Greenop, R., Hain, M. P., Foster, G. L., Pearson, P. N., and Lear, C. H.: Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy, Earth Planet. Sc. Lett., 498, 362–376, https://doi.org/10.1016/j.epsl.2018.06.017, 2018. a
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015. a
Steinthorsdottir, M., Coxall, H. K., de Boer, A. M., Huber, M., Barbolini, N., Bradshaw, C. D., Burls, N. J., Feakins, S. J., Gasson, E., Henderiks, J., Holbourn, A. E., Kiel, S., Kohn, M. J., Knorr, G., Kürschner, W. M., Lear, C. H., Liebrand, D., Lunt, D. J., Mörs, T., Pearson, P. N., Pound, M. J., Stoll, H., and Strömberg, C. A. E.: The Miocene: The Future of the Past, Paleoceanography and Paleoclimatology, 36, e2020PA004037, https://doi.org/10.1029/2020PA004037, 2021. a, b
Stromberg, C. A. E.: Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America, P. Natl. Acad. Sci. USA, 102, 11980–11984, https://doi.org/10.1073/pnas.0505700102, 2005. a, b
Strömberg, C. A. E. and McInerney, F. A.: The Neogene transition from C3 to C4 grasslands in North America: assemblage analysis of fossil phytoliths, Paleobiology, 37, 50–71, https://doi.org/10.1666/09067.1, 2011. a
Swann, A. L. S., Hoffman, F. M., Koven, C. D., and Randerson, J. T.: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity, P. Natl. Acad. Sci. USA, 113, 10019–10024, https://doi.org/10.1073/pnas.1604581113, 2016. a
Swinehart, J. B. and Diffendal Jr., R. F.: Duer Ranch, Merrill County, Nebraska : Contrast between Cenozoic fluvial and eolian deposition, in: Geological Society of America Centennial Field Guide–North-Central Section, edited by: Biggs, D., Geological Society of America, Charlottesville, VA, 23–28, https://doi.org/10.1130/0-8137-5403-8.23, 1987. a
Tanner, T., Hernández-Almeida, I., Drury, A. J., Guitián, J., and Stoll, H.: Decreasing Atmospheric CO2 During the Late Miocene Cooling, Paleoceanography and Paleoclimatology, 35, 1–25, https://doi.org/10.1029/2020PA003925, 2020. a
Tedford, R. and Barghoorn, S. F.: Neogene stratigraphy and mammalian biochronology of the Española Basin, northern New Mexico, New Mexico Museum of Natural History and Science Bulletin, 2, 159–168, 1993. a
Tedford, R. H.: Rocks and faunas, Ogallala Group, Pawnee Buttes area, Weld County, Colorado, in: The Tertiary record of Weld County, Northeastern Colorado, edited by: Evanoff, E., Tedford, R. H., and Graham, R. W., Denver Museum of Natural History, Denver, Colorado, 31–47, https://coloscisoc.org/wp-content/uploads/2018/09/Rocks_and_Faunas_Ogallala_Group_Pawnee_Buttes_Area_CO.pdf (last access: 20 April 2024), 1999. a
Tedford, R. H., Albright, L. B., Barnosky, A. D., Ferrusquia-Villafranca, I., Hunt, R. M., Storer, J. E., Swisher, C. C., Voorhies, M. R., Webb, S. D., and Whistler, D. P.: Mammalian Biochronology of the Arikareean Through Hemphillian Interval (Late Oligocene Through Early Pliocene Epochs), in: Late Cretaceous and Cenozoic Mammals of North America, edited by: Woodburne, M. O., Chap. 6, Columbia University Press, New York, NY, USA, 169–231, https://doi.org/10.7312/wood13040-008, 2004. a, b, c, d, e
Ting, M. and Wang, H.: The Role of the North American Topography on the Maintenance of the Great Plains Summer Low-Level Jet, J. Atmos. Sci., 63, 1056–1068, https://doi.org/10.1175/JAS3664.1, 2006. a
Trimble, D. E.: Cenozoic tectonic history of the Great Plains contrasted with that of the Southern Rocky Mountains: A synthesis, The Mountain Geologist, 17, 59–69, 1980. a
van der Ent, R. J., Savenije, H. H. G., Schaefli, B., and Steele-Dunne, S. C.: Origin and fate of atmospheric moisture over continents, Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127, 2010. a
van Dijk, J., Fernandez, A., Bernasconi, S. M., Caves Rugenstein, J. K., Passey, S. R., and White, T.: Spatial Pattern of Super-Greenhouse Warmth Controlled by Elevated Specific Humidity, Nat. Geosci., 13, 739–744, https://doi.org/10.1038/s41561-020-00648-2, 2020. a, b
Webb, W. P.: The Great Plains, Ginn and Company, Boston, MA, ISBN 0803297025, 1931. a
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1388, https://doi.org/10.1126/SCIENCE.ABA6853, 2020. a, b
Wheeler, L. B. and Galewsky, J.: Atmospheric Flow Patterns Around the Southern Alps of New Zealand and Implications for Paleoaltimetry, Geophys. Res. Lett., 44, 11601–11605, https://doi.org/10.1002/2017GL074753, 2017. a, b
Winkler, D. A.: Vertebrate-bearing eolian unit from the Ogallala Group (Miocene) in northwestern Texas (USA), Geology, 15, 705–708, https://doi.org/10.1130/0091-7613(1987)15<705:VEUFTO>2.0.CO;2, 1987. a
Winkler, D. A.: Sedimentary facies and biochronology of the Upper Tertiary Ogallala Group, Blanco and Yellowhouse canyons, Texas Panhandle, in: Geologic frame work and regional hydrology; Upper Cenozoic Blackwater Draw and Ogallala formations, Great Plains, edited by: Gustavson, T. C., The University of Texas at Austin, Bureau of Economic Geology, Austin, TX, 39–55, https://store.beg.utexas.edu/symposia/3521-sp0006.html (last access: 20 April 2024), 1990. a
Winnick, M. J., Chamberlain, C. P., Caves, J. K., and Welker, J. M.: Quantifying the isotopic “continental effect”, Earth Planet. Sc. Lett., 406, 123–133, https://doi.org/10.1016/j.epsl.2014.09.005, 2014. a, b, c
Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., and Briggs, P. R.: A rational function approach for estimating mean annual evapotranspiration, Water Resour. Res., 40, 1–14, https://doi.org/10.1029/2003WR002710, 2004. a
Zhang, P., Molnar, P., and Downs, W. R.: Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates, Nature, 410, 891–897, https://doi.org/10.1038/35073504, 2001. a, b, c
Zhou, W., Leung, L. R., Song, F., and Lu, J.: Future Changes in the Great Plains Low-Level Jet Governed by Seasonally Dependent Pattern Changes in the North Atlantic Subtropical High, Geophys. Res. Lett., 48, e2020GL090356, https://doi.org/10.1029/2020GL090356, 2021b. a
Zhu, L., Fan, M., Hough, B., and Li, L.: Spatiotemporal distribution of river water stable isotope compositions and variability of lapse rate in the central Rocky Mountains: Controlling factors and implications for paleoelevation reconstruction, Earth Planet. Sc. Let., 496, 215–226, https://doi.org/10.1016/j.epsl.2018.05.047, 2018. a, b
Download
- Article
(10224 KB) - Full-text XML
Short summary
The Great Plains host the single most important climatic boundary in North America, separating the humid east from the semi-arid west. How this boundary will move as the world warms holds implications for the societies and ecosystems of the Plains. We study how this boundary changed in the past during a period of globally warmer temperatures. We find that this climatic boundary appears to be in the same location as today, suggesting that the Great Plains climate is resilient to global changes.
The Great Plains host the single most important climatic boundary in North America, separating...
Special issue