Articles | Volume 19, issue 1
https://doi.org/10.5194/cp-19-35-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-35-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A cosmogenic nuclide-derived chronology of pre-Last Glacial Cycle glaciations during MIS 8 and MIS 6 in northern Patagonia
Tancrède P. M. Leger
CORRESPONDING AUTHOR
School of GeoSciences, University of Edinburgh, Drummond Street,
Edinburgh, EH8 9XP, UK
Andrew S. Hein
School of GeoSciences, University of Edinburgh, Drummond Street,
Edinburgh, EH8 9XP, UK
Ángel Rodés
Scottish Universities Environmental Research Centre, Scottish
Enterprise Technology Park, East Kilbride, G75 OQF, Glasgow, UK
Robert G. Bingham
School of GeoSciences, University of Edinburgh, Drummond Street,
Edinburgh, EH8 9XP, UK
Irene Schimmelpfennig
Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE,
Aix-en-Provence, France
Derek Fabel
Scottish Universities Environmental Research Centre, Scottish
Enterprise Technology Park, East Kilbride, G75 OQF, Glasgow, UK
Pablo Tapia
Instituto de Geografía, Facultad de Historia, Geografía y
Ciencia Política, Pontificia Universidad Católica de Chile,
Santiago, Chile
A full list of authors appears at the end of the paper.
Related authors
No articles found.
Jörg Christian Robl, Fabian Dremel, Kurt Stüwe, Stefan Hergarten, Christoph von Hagke, and Derek Fabel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3256, https://doi.org/10.5194/egusphere-2024-3256, 2024
Short summary
Short summary
The Bohemian Massif is one of several low mountain ranges in Europe, which rises more than 1 km above the surrounding lowlands. Landscape characteristics indicate relief rejuvenation due to recent surface uplift. To constrain the pace of relief formation we determined erosion rates of 20 catchments that range from 22 to 51 m per million years. Correlating these rates with topographic properties reveals that contrasts in bedrock erodibility represent a critical control of landscape evolution.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Julien A. Bodart, Robert G. Bingham, Duncan A. Young, Joseph A. MacGregor, David W. Ashmore, Enrica Quartini, Andrew S. Hein, David G. Vaughan, and Donald D. Blankenship
The Cryosphere, 17, 1497–1512, https://doi.org/10.5194/tc-17-1497-2023, https://doi.org/10.5194/tc-17-1497-2023, 2023
Short summary
Short summary
Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
Helen Ockenden, Robert G. Bingham, Andrew Curtis, and Daniel Goldberg
The Cryosphere, 16, 3867–3887, https://doi.org/10.5194/tc-16-3867-2022, https://doi.org/10.5194/tc-16-3867-2022, 2022
Short summary
Short summary
Hills and valleys hidden under the ice of Thwaites Glacier have an impact on ice flow and future ice loss, but there are not many three-dimensional observations of their location or size. We apply a mathematical theory to new high-resolution observations of the ice surface to predict the bed topography beneath the ice. There is a good correlation with ice-penetrating radar observations. The method may be useful in areas with few direct observations or as a further constraint for other methods.
Alice C. Frémand, Julien A. Bodart, Tom A. Jordan, Fausto Ferraccioli, Carl Robinson, Hugh F. J. Corr, Helen J. Peat, Robert G. Bingham, and David G. Vaughan
Earth Syst. Sci. Data, 14, 3379–3410, https://doi.org/10.5194/essd-14-3379-2022, https://doi.org/10.5194/essd-14-3379-2022, 2022
Short summary
Short summary
This paper presents the release of large swaths of airborne geophysical data (including gravity, magnetics, and radar) acquired between 1994 and 2020 over Antarctica by the British Antarctic Survey. These include a total of 64 datasets from 24 different surveys, amounting to >30 % of coverage over the Antarctic Ice Sheet. This paper discusses how these data were acquired and processed and presents the methods used to standardize and publish the data in an interactive and reproducible manner.
Irene Schimmelpfennig, Joerg M. Schaefer, Jennifer Lamp, Vincent Godard, Roseanne Schwartz, Edouard Bard, Thibaut Tuna, Naki Akçar, Christian Schlüchter, Susan Zimmerman, and ASTER Team
Clim. Past, 18, 23–44, https://doi.org/10.5194/cp-18-23-2022, https://doi.org/10.5194/cp-18-23-2022, 2022
Short summary
Short summary
Small mountain glaciers advance and recede as a response to summer temperature changes. Dating of glacial landforms with cosmogenic nuclides allowed us to reconstruct the advance and retreat history of an Alpine glacier throughout the past ~ 11 000 years, the Holocene. The results contribute knowledge to the debate of Holocene climate evolution, indicating that during most of this warm period, summer temperatures were similar to or warmer than in modern times.
Juan-Luis García, Christopher Lüthgens, Rodrigo M. Vega, Ángel Rodés, Andrew S. Hein, and Steven A. Binnie
E&G Quaternary Sci. J., 70, 105–128, https://doi.org/10.5194/egqsj-70-105-2021, https://doi.org/10.5194/egqsj-70-105-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM) about 21 kyr ago is known to have been global in extent. Nonetheless, we have limited knowledge during the pre-LGM time in the southern middle latitudes. If we want to understand the causes of the ice ages, the complete glacial period must be addressed. In this paper, we show that the Patagonian Ice Sheet in southern South America reached its full glacial extent also by 57 kyr ago and defies a climate explanation.
Daniel Peifer, Cristina Persano, Martin D. Hurst, Paul Bishop, and Derek Fabel
Earth Surf. Dynam., 9, 167–181, https://doi.org/10.5194/esurf-9-167-2021, https://doi.org/10.5194/esurf-9-167-2021, 2021
Short summary
Short summary
Plate tectonics drive the formation of mountain ranges. Yet when tectonic forces cease, mountain ranges persist for hundreds of millions of years, forming major Earth surface features. This work presents denudation rate estimates from one such ancient mountain range that show that denudation is strongly tied to rock type. Resistant rocks denude more slowly despite having much steeper topography, and contrasts in rock type cause increasing relief in the absence of active tectonics.
Keir A. Nichols, Brent M. Goehring, Greg Balco, Joanne S. Johnson, Andrew S. Hein, and Claire Todd
The Cryosphere, 13, 2935–2951, https://doi.org/10.5194/tc-13-2935-2019, https://doi.org/10.5194/tc-13-2935-2019, 2019
Short summary
Short summary
We studied the history of ice masses at three locations in the Weddell Sea Embayment, Antarctica. We measured rare isotopes in material sourced from mountains overlooking the Slessor Glacier, Foundation Ice Stream, and smaller glaciers on the Lassiter Coast. We show that ice masses were between 385 and 800 m thicker during the last glacial cycle than they are at present. The ice masses were both hundreds of metres thicker and remained thicker closer to the present than was previously thought.
Daniel L. Evans, John N. Quinton, Andrew M. Tye, Ángel Rodés, Jessica A. C. Davies, Simon M. Mudd, and Timothy A. Quine
SOIL, 5, 253–263, https://doi.org/10.5194/soil-5-253-2019, https://doi.org/10.5194/soil-5-253-2019, 2019
Short summary
Short summary
Policy to conserve thinning arable soils relies on a balance between the rates of soil erosion and soil formation. Our knowledge of the latter is meagre. Here, we present soil formation rates for an arable hillslope, the first of their kind globally, and a woodland hillslope, the first of their kind in Europe. Rates range between 26 and 96 mm kyr−1. On the arable site, erosion rates are 2 orders of magnitude greater, and in a worst-case scenario, bedrock exposure could occur in 212 years.
Frazer D. W. Christie, Robert G. Bingham, Noel Gourmelen, Eric J. Steig, Rosie R. Bisset, Hamish D. Pritchard, Kate Snow, and Simon F. B. Tett
The Cryosphere, 12, 2461–2479, https://doi.org/10.5194/tc-12-2461-2018, https://doi.org/10.5194/tc-12-2461-2018, 2018
Short summary
Short summary
With a focus on the hitherto little-studied Marie Byrd Land coastline linking Antarctica's more comprehensively studied Amundsen and Ross Sea Embayments, this paper uses both satellite remote sensing (Landsat, ASTER, ICESat, and CryoSat2) and climate and ocean records (i.e. ERA-Interim, Met Office EN4 data) to examine links between ice recession, inter-decadal atmosphere-ocean forcing and other influences acting upon the Pacific-facing coastline of West Antarctica.
Damon Davies, Robert G. Bingham, Edward C. King, Andrew M. Smith, Alex M. Brisbourne, Matteo Spagnolo, Alastair G. C. Graham, Anna E. Hogg, and David G. Vaughan
The Cryosphere, 12, 1615–1628, https://doi.org/10.5194/tc-12-1615-2018, https://doi.org/10.5194/tc-12-1615-2018, 2018
Short summary
Short summary
This paper investigates the dynamics of ice stream beds using repeat geophysical surveys of the bed of Pine Island Glacier, West Antarctica; 60 km of the bed was surveyed, comprising the most extensive repeat ground-based geophysical surveys of an Antarctic ice stream; 90 % of the surveyed bed shows no significant change despite the glacier increasing in speed by up to 40 % over the last decade. This result suggests that ice stream beds are potentially more stable than previously suggested.
K. C. Rose, N. Ross, T. A. Jordan, R. G. Bingham, H. F. J. Corr, F. Ferraccioli, A. M. Le Brocq, D. M. Rippin, and M. J. Siegert
Earth Surf. Dynam., 3, 139–152, https://doi.org/10.5194/esurf-3-139-2015, https://doi.org/10.5194/esurf-3-139-2015, 2015
Short summary
Short summary
We use ice-penetrating-radar data to identify a laterally continuous, gently sloping topographic block, comprising two surfaces separated by a distinct break in slope, preserved beneath the Institute and Möller ice streams, West Antarctica. We interpret these features as extensive erosion surfaces, showing that ancient (pre-glacial) surfaces can be preserved at low elevations beneath ice sheets. Different erosion regimes (e.g. fluvial and marine) may have formed these surfaces.
A. P. Wright, A. M. Le Brocq, S. L. Cornford, R. G. Bingham, H. F. J. Corr, F. Ferraccioli, T. A. Jordan, A. J. Payne, D. M. Rippin, N. Ross, and M. J. Siegert
The Cryosphere, 8, 2119–2134, https://doi.org/10.5194/tc-8-2119-2014, https://doi.org/10.5194/tc-8-2119-2014, 2014
B. W. Goodfellow, A. P. Stroeven, D. Fabel, O. Fredin, M.-H. Derron, R. Bintanja, and M. W. Caffee
Earth Surf. Dynam., 2, 383–401, https://doi.org/10.5194/esurf-2-383-2014, https://doi.org/10.5194/esurf-2-383-2014, 2014
M. J. Siegert, N. Ross, H. Corr, B. Smith, T. Jordan, R. G. Bingham, F. Ferraccioli, D. M. Rippin, and A. Le Brocq
The Cryosphere, 8, 15–24, https://doi.org/10.5194/tc-8-15-2014, https://doi.org/10.5194/tc-8-15-2014, 2014
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, https://doi.org/10.5194/tc-7-375-2013, 2013
Related subject area
Subject: Ice Dynamics | Archive: Terrestrial Archives | Timescale: Pleistocene
The Laurentide Ice Sheet in southern New England and New York during and at the end of the Last Glacial Maximum: a cosmogenic-nuclide chronology
Late Quaternary glacial maxima in southern Patagonia: insights from the Lago Argentino glacier lobe
A Greenland-wide empirical reconstruction of paleo ice sheet retreat informed by ice extent markers: PaleoGrIS version 1.0
Equilibrium line altitudes of alpine glaciers in Alaska suggest Last Glacial Maximum summer temperature was 2–5 °C lower than during the pre-industrial
Allie Balter-Kennedy, Joerg M. Schaefer, Greg Balco, Meredith A. Kelly, Michael R. Kaplan, Roseanne Schwartz, Bryan Oakley, Nicolás E. Young, Jean Hanley, and Arianna M. Varuolo-Clarke
Clim. Past, 20, 2167–2190, https://doi.org/10.5194/cp-20-2167-2024, https://doi.org/10.5194/cp-20-2167-2024, 2024
Short summary
Short summary
We date sedimentary deposits showing that the southeastern Laurentide Ice Sheet was at or near its southernmost extent from ~ 26 000 to 21 000 years ago, when sea levels were at their lowest, with climate records indicating glacial conditions. Slow deglaciation began ~ 22 000 years ago, shown by a rise in modeled local summer temperatures, but significant deglaciation in the region did not begin until ~ 18 000 years ago, when atmospheric CO2 began to rise, marking the end of the last ice age.
Matias Romero, Shanti B. Penprase, Maximillian S. Van Wyk de Vries, Andrew D. Wickert, Andrew G. Jones, Shaun A. Marcott, Jorge A. Strelin, Mateo A. Martini, Tammy M. Rittenour, Guido Brignone, Mark D. Shapley, Emi Ito, Kelly R. MacGregor, and Marc W. Caffee
Clim. Past, 20, 1861–1883, https://doi.org/10.5194/cp-20-1861-2024, https://doi.org/10.5194/cp-20-1861-2024, 2024
Short summary
Short summary
Investigating past glaciated regions is crucial for understanding how ice sheets responded to climate forcings and how they might respond in the future. We use two independent dating techniques to document the timing and extent of the Lago Argentino glacier lobe, a former lobe of the Patagonian Ice Sheet, during the late Quaternary. Our findings highlight feedbacks in the Earth’s system responsible for modulating glacier growth in the Southern Hemisphere prior to the global Last Glacial Maximum.
Tancrède P. M. Leger, Christopher D. Clark, Carla Huynh, Sharman Jones, Jeremy C. Ely, Sarah L. Bradley, Christiaan Diemont, and Anna L. C. Hughes
Clim. Past, 20, 701–755, https://doi.org/10.5194/cp-20-701-2024, https://doi.org/10.5194/cp-20-701-2024, 2024
Short summary
Short summary
Projecting the future evolution of the Greenland Ice Sheet is key. However, it is still under the influence of past climate changes that occurred over thousands of years. This makes calibrating projection models against current knowledge of its past evolution (not yet achieved) important. To help with this, we produced a new Greenland-wide reconstruction of ice sheet extent by gathering all published studies dating its former retreat and by mapping its past margins at the ice sheet scale.
Caleb K. Walcott, Jason P. Briner, Joseph P. Tulenko, and Stuart M. Evans
Clim. Past, 20, 91–106, https://doi.org/10.5194/cp-20-91-2024, https://doi.org/10.5194/cp-20-91-2024, 2024
Short summary
Short summary
Available data suggest that Alaska was not as cold as many of the high-latitude areas of the Northern Hemisphere during the Last Ice Age. These results come from isolated climate records, climate models, and data synthesis projects. We used the extents of mountain glaciers during the Last Ice Age and Little Ice Age to show precipitation gradients across Alaska and provide temperature data from across the whole state. Our findings support a relatively warm Alaska during the Last Ice Age.
Cited articles
Ai, X. E., Studer, A. S., Sigman, D. M., Martínez-García, A.,
Fripiat, F., Thöle, L. M., Michel, E., Gottschalk, J., Arnold, L.,
Moretti, S., Schmitt, M., Oleynik, S., Jaccard, S. L., and Haug, G. H.:
Southern Ocean upwelling, Earth's obliquity, and glacial-interglacial
atmospheric CO2 change, Science, 370, 1348–1352,
https://doi.org/10.1126/science.abd2115, 2020.
Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher,
M. Q., Anderson, B. E., and Burckle, L. H.: Wind-Driven Upwelling in the
Southern Ocean and the Deglacial Rise in Atmospheric CO2, Science, 323,
1443–1448, https://doi.org/10.1126/science.1167441, 2009.
Astakhov, V.: Ice margins of northern Russia revisited, in: Quaternary Glaciations – Extent and
Chronology: A Closer Look, edited by: Ehlers, J.,
Gibbard, P. L., and Hughes, P. D., Developments in Quaternary Sciences 15, Elsevier, Amsterdam, 1–14, ISBN-10 0444534474, 2011.
Astakhov, V., Shkatova, V., Zastrozhnov, A., and Chuyko, M.:
Glaciomorphological Map of the Russian Federation, Quat. Int., 420, 4–14,
https://doi.org/10.1016/j.quaint.2015.09.024, 2016.
Augustinus, P., Fink, D., Fletcher, M.-S., and Thomas, I.: Re-assessment of
the mid to late Quaternary glacial and environmental history of the Boco
Plain, western Tasmania., Quat. Sci. Rev., 160, 31–44,
https://doi.org/10.1016/j.quascirev.2017.01.015, 2017.
Balco, G. and Rovey, C. W.: An isochron method for cosmogenic-nuclide dating
of buried soils and sediments, Am. J. Sci., 308, 1083–1114,
https://doi.org/10.2475/10.2008.02, 2008.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and
easily accessible means of calculating surface exposure ages or erosion
rates from 10Be and 26Al measurements, Quat. Geochronol., 3,
174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Barker, S., Diz, P., Vautravers, M. J., Pike, J., Knorr, G., Hall, I. R.,
and Broecker, W. S.: Interhemispheric Atlantic seesaw response during the
last deglaciation, Nature, 457, 1097–1102,
https://doi.org/10.1038/nature07770, 2009.
Barrows, T. T., Stone, J. O., Fifield, L. K., and Cresswell, R. G.: The
timing of the Last Glacial Maximum in Australia, Quat. Sci. Rev., 21,
159–173, https://doi.org/10.1016/S0277-3791(01)00109-3, 2002.
Beets, D. J., Meijer, T., Beets, C. J., Cleveringa, P., Laban, C., and van
der Spek, A. J. F.: Evidence for a Middle Pleistocene glaciation of MIS 8
age in the southern North Sea, Quat. Int., 133–134, 7–19,
https://doi.org/10.1016/j.quaint.2004.10.002, 2005.
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T.
F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA
Dome C CO2 record from 800 to 600 kyr before present: Analytical bias
in the EDC CO2 record, Geophys. Res. Lett., 42, 542–549,
https://doi.org/10.1002/2014GL061957, 2015.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last
10 million years, Quat. Sci. Rev., 10, 297–317,
https://doi.org/10.1016/0277-3791(91)90033-Q, 1991.
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N.,
Nishiizumi, K., Phillips, F., Schaefer, J., and Stone, J.: Geological
calibration of spallation production rates in the CRONUS-Earth project,
Quat. Geochronol., 31, 188–198,
https://doi.org/10.1016/j.quageo.2015.01.009, 2016.
Briner, J. P., Kaufman, D. S., Manley, W. F., Finkel, R. C., and Caffee, M.
W.: Cosmogenic exposure dating of late Pleistocene moraine stabilization in
Alaska, Geol. Soc. Am. Bull., 117, 1108,
https://doi.org/10.1130/B25649.1, 2005.
Broecker, W. S.: Paleocean circulation during the Last Deglaciation: A
bipolar seesaw?, Paleoceanography, 13, 119–121,
https://doi.org/10.1029/97PA03707, 1998.
Caldenius, C. C. Z.: Las Glaciaciones Cuaternarias en la Patagonia y Tierra
del Fuego: Una investigación regional, estratigráfica y
geocronológica, – Una comparación con la escala geocronológica
sueca, Geogr. Ann., 14, 1–164,
https://doi.org/10.1080/20014422.1932.11880545, 1932.
Caley, T., Giraudeau, J., Malaizé, B., Rossignol, L., and Pierre, C.:
Agulhas leakage as a key process in the modes of Quaternary climate changes,
P. Natl. Acad. Sci. USA, 109, 6835–6839,
https://doi.org/10.1073/pnas.1115545109, 2012.
Clapperton, C. M.: The glaciation of the Andes: Quat. Sci. Rev., 2, 83–155, https://doi.org/10.1016/0277-3791(83)90005-7, 1983
Clapperton, C. M.: Quaternary geology and geomorphology of South America:
Amsterdam, Elsevier Science Publishers B.V., 779 pp., ISBN-10 0444882472, 1993.
Cogez, A., Herman, F., Pelt, É., Reuschlé, T., Morvan, G., Darvill, C. M., Norton, K. P., Christl, M., Märki, L., and Chabaux, F.: U-Th and 10Be constraints on sediment recycling in proglacial settings, Lago Buenos Aires, Patagonia, Earth Surf. Dynam., 6, 121–140, https://doi.org/10.5194/esurf-6-121-2018, 2018.
Colhoun, E. A. and Barrows, T. T.: The glaciation of Australia, in: uaternary Glaciations – Extent and
Chronology: A Closer Look. Developments in Quaternary Sciences 15, edited by: Ehlers, J., Gibbard, P. L., and Hughes, P. D., Elsevier,
Amsterdam, 1037–1045, 2011.
Darvill, C. M., Bentley, M. J., Stokes, C. R., Hein, A. S., and Rodés,
Á.: Extensive MIS 3 glaciation in southernmost Patagonia revealed by
cosmogenic nuclide dating of outwash sediments, Earth Planet. Sci. Lett.,
429, 157–169, https://doi.org/10.1016/j.epsl.2015.07.030,
2015.
Darvill, C. M., Bentley, M. J., Stokes, C. R., and Shulmeister, J.: The
timing and cause of glacial advances in the southern mid-latitudes during
the last glacial cycle based on a synthesis of exposure ages from Patagonia
and New Zealand, Quat. Sci. Rev., 149, 200–214,
https://doi.org/10.1016/j.quascirev.2016.07.024, 2016.
Davies, B. J., Roberts, D. H., Bridgland, D. R., Ó Cofaigh, C., Riding,
J. B., Demarchi, B., Penkman, K. E. H., and Pawley, S. M.: Timing and
depositional environments of a Middle Pleistocene glaciation of northeast
England: New evidence from Warren House Gill, County Durham, Quat. Sci.
Rev., 44, 180–212,
https://doi.org/10.1016/j.quascirev.2010.02.003, 2012.
Davies, B. J., Darvill, C. M., Lovell, H., Bendle, J. M., Dowdeswell, J. A.,
Fabel, D., García, J.-L., Geiger, A., Glasser, N. F., Gheorghiu, D. M.,
Harrison, S., Hein, A. S., Kaplan, M. R., Martin, J. R. V., Mendelova, M.,
Palmer, A., Pelto, M., Rodés, Á., Sagredo, E. A., Smedley, R. K.,
Smellie, J. L., and Thorndycraft, V. R.: The evolution of the Patagonian Ice
Sheet from 35 ka to the present day (PATICE), Earth-Sci. Rev., 204, 103152,
https://doi.org/10.1016/j.earscirev.2020.103152, 2020.
De Boer, A. M., Graham, R. M., Thomas, M. D., and Kohfeld, K. E.: The
control of the Southern Hemisphere Westerlies on the position of the
Subtropical Front, J. Geophys. Res.-Oceans, 118, 5669–5675,
https://doi.org/10.1002/jgrc.20407, 2013.
Denton, G. H., Lowell, T. V., Heusser, C. J., Schluchter, C., Andersen, B.
G., Heusser, L. E., Moreno, P. I., and Marchant, D. R.: Geomorphology,
Stratigraphy, and Radiocarbon Chronology of LlanquihueDrift in the Area of
the Southern Lake District, Seno Reloncavi, and Isla Grande de Chiloe,
Chile, Geogr. Ann. Ser. Phys. Geogr., 81, 167–229,
https://doi.org/10.1111/j.0435-3676.1999.00057.x, 1999.
Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer,
J. M., and Putnam, A. E.: The Last Glacial Termination, Science, 328,
1652–1656, https://doi.org/10.1126/science.1184119, 2010.
Denton, G. H., Putnam, A. E., Russell, J. L., Barrell, D. J. A., Schaefer,
J. M., Kaplan, M. R., and Strand, P. D.: The Zealandia Switch: Ice age
climate shifts viewed from Southern Hemisphere moraines, Quat. Sci. Rev.,
257, 106771, https://doi.org/10.1016/j.quascirev.2020.106771,
2021.
Douglass, D. C., Singer, B. S., Ackert, R. P., Kaplan, M. R., and Caffee, M. W.:
Constraining Boulder Erosion Rates and Ages of Mid-Pleistocene Moraines,
Lago Buenos Aires, Argentina, Geological Society of America Abstracts and
Programs, Northeastern Section, 42nd Annual Meeting, 2007.
Dunai, T. J.: Cosmogenic nuclides: principles, concepts and applications in the earth surface sciences: Cambridge University Press, 2010.
Evans, D. J. A., Roberts, D. H., Bateman, M. D., Ely, J., Medialdea, A.,
Burke, M. J., Chiverrell, R. C., Clark, C. D., and Fabel, D.: A chronology
for North Sea Lobe advance and recession on the Lincolnshire and Norfolk
coasts during MIS 2 and 6, Proc. Geol. Assoc., 130, 523–540,
https://doi.org/10.1016/j.pgeola.2018.10.004, 2019.
Fernandes, M., Oliva, M., Vieira, G., Palacios, D.,
Fernández-Fernández, J. M., Delmas, M., García-Oteyza, J.,
Schimmelpfennig, I., Ventura, J., ASTER Team, Aumaître, G., and
Keddadouche, K.: Maximum glacier extent of the Penultimate Glacial Cycle in
the Upper Garonne Basin (Pyrenees): new chronological evidence, Environ.
Earth Sci., 80, 796,
https://doi.org/10.1007/s12665-021-10022-z, 2021.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315,
https://doi.org/10.1002/joc.5086, 2017.
García, J.-L., Hein, A. S., Binnie, S. A., Gómez, G. A.,
González, M. A., and Dunai, T. J.: The MIS 3 maximum of the Torres del
Paine and Última Esperanza ice lobes in Patagonia and the pacing of
southern mountain glaciation, Quat. Sci. Rev., 185, 9–26,
https://doi.org/10.1016/j.quascirev.2018.01.013, 2018.
García, J.-L., Lüthgens, C., Vega, R. M., Rodés, Á., Hein, A. S., and Binnie, S. A.: A composite 10Be, IR-50 and 14C chronology of the pre-Last Glacial Maximum (LGM) full ice extent of the western Patagonian Ice Sheet on the Isla de Chiloé, south Chile (42∘ S), E&G Quaternary Sci. J., 70, 105–128, https://doi.org/10.5194/egqsj-70-105-2021, 2021.
Garreaud, R., Lopez, P., Minvielle, M., and Rojas, M.: Large-Scale Control
on the Patagonian Climate, J. Clim., 26, 215–230,
https://doi.org/10.1175/JCLI-D-12-00001.1, 2013.
Glasser, N. and Jansson, K.: The Glacial Map of southern South America, J.
Maps, 4, 175–196, https://doi.org/10.4113/jom.2008.1020, 2008.
Gómez, G. A., García, J.-L., Villagrán, C., Lüthgens, C.,
and Abarzúa, A. M.: Vegetation, glacier, and climate changes before the
global last glacial maximum in the Isla Grande de Chiloé, southern Chile
(42∘ S), Quat. Sci. Rev., 276, 107301,
https://doi.org/10.1016/j.quascirev.2021.107301, 2022.
Gosse, J. C. and Phillips, F. M.: Terrestrial in situ cosmogenic nuclides:
theory and application, Quat. Sci. Rev., 20, 1475–1560,
https://doi.org/10.1016/S0277-3791(00)00171-2, 2001.
Granger, D. E. and Muzikar, P. F.: Dating sediment burial with in
situ-produced cosmogenic nuclides: theory, techniques, and limitations,
Earth Planet. Sci. Lett., 188, 269–281,
https://doi.org/10.1016/S0012-821X(01)00309-0, 2001.
Haller, M., Lech, R. R., Martinez, O. A., Meister, C. M., and Page, S. M.: Hoja
Geologica 4373IV/III, Trevelin, Provincia del Chubut, Programa Nacional de
Cartas Geologicas de la Republica Argentina: Servicio Geologico Nacional,
Buenos Aires, scale 1:250 000, https://repositorio.segemar.gov.ar/handle/308849217/4230 (last access: 19 December 2022), 2003.
Hein, A. S., Hulton, N. R. J., Dunai, T. J., Schnabel, C., Kaplan, M. R.,
Naylor, M., and Xu, S.: Middle Pleistocene glaciation in Patagonia dated by
cosmogenic-nuclide measurements on outwash gravels, Earth Planet. Sci.
Lett., 286, 184–197,
https://doi.org/10.1016/j.epsl.2009.06.026, 2009.
Hein, A. S., Dunai, T. J., Hulton, N. R. J., and Xu, S.: Exposure dating
outwash gravels to determine the age of the greatest Patagonian glaciations,
Geology, 39, 103–106, https://doi.org/10.1130/G31215.1, 2011.
Hein, A. S., Cogez, A., Darvill, C. M., Mendelova, M., Kaplan, M. R.,
Herman, F., Dunai, T. J., Norton, K., Xu, S., Christl, M., and Rodés,
Á.: Regional mid-Pleistocene glaciation in central Patagonia, Quat. Sci.
Rev., 164, 77–94,
https://doi.org/10.1016/j.quascirev.2017.03.023, 2017.
Hervé, F., Fuentes, F. J., Calderón, M., Fanning, M., Quezada, P.,
Pankhurst, R., and Rapela, C.: Ultramafic rocks in the North Patagonian
Andes: is their emplacement associated with the Neogene tectonics of the
Liquiñe–Ofqui Fault Zone?, Andean Geol., 44, 1,
https://doi.org/10.5027/andgeoV44n1-a01, 2017.
Hughes, P. D., Gibbard, P. L., and Ehlers, J.: The “missing glaciations”
of the Middle Pleistocene, Quat. Res., 96, 161–183,
https://doi.org/10.1017/qua.2019.76, 2020.
Huybers, P. and Denton, G.: Antarctic temperature at orbital timescales
controlled by local summer duration, Nat. Geosci., 1, 787–792,
https://doi.org/10.1038/ngeo311, 2008.
Jones, R. S., Small, D., Cahill, N., Bentley, M. J., and Whitehouse, P. L.:
iceTEA: Tools for plotting and analysing cosmogenic-nuclide surface-exposure
data from former ice margins, Quat. Geochronol., 51, 72–86,
https://doi.org/10.1016/j.quageo.2019.01.001, 2019.
Kaplan, M. R., Douglass, D. C., Singer, B. S., Ackert, R. P., and Caffee, M.
W.: Cosmogenic nuclide chronology of pre-last glacial maximum moraines at
Lago Buenos Aires, 46∘ S, Argentina, Quat. Res., 63, 301–315,
https://doi.org/10.1016/j.yqres.2004.12.003, 2005.
Kaplan, M. R., Hein, A. S., Hubbard, A., and Lax, S. M.: Can glacial erosion
limit the extent of glaciation?, Geomorphology, 103, 172–179,
https://doi.org/10.1016/j.geomorph.2008.04.020, 2009.
Kaplan, M. R., Schaefer, J. M., Denton, G. H., Barrell, D. J. A., Chinn, T.
J. H., Putnam, A. E., Andersen, B. G., Finkel, R. C., Schwartz, R., and
Doughty, A. M.: Glacier retreat in New Zealand during the Younger Dryas
stadial, Nature, 467, 194–197,
https://doi.org/10.1038/nature09313, 2010.
Kaplan, M. R., Strelin, J. A., Schaefer, J. M., Denton, G. H., Finkel, R.
C., Schwartz, R., Putnam, A. E., Vandergoes, M. J., Goehring, B. M., and
Travis, S. G.: In-situ cosmogenic 10Be production rate at Lago Argentino,
Patagonia: Implications for late-glacial climate chronology, Earth Planet.
Sci. Lett., 309, 21–32,
https://doi.org/10.1016/j.epsl.2011.06.018, 2011.
Kiernan, K., Fifield, L. K., and Chappell, J.: Cosmogenic nuclide ages for
Last Glacial Maximum moraine at Schnells Ridge, Southwest Tasmania, Quat.
Res., 61, 335–338,
https://doi.org/10.1016/j.yqres.2004.02.004, 2004.
Kiernan, K., Fink, D., Greig, D., and Mifud, C.: Cosmogenic radionuclide
chronology of pre-last glacial cycle moraines in the Western Arthur range,
Southwest Tasmania, Quat. Sci. Rev., 29, 3286–3297,
https://doi.org/10.1016/j.quascirev.2010.07.023, 2010.
Kiernan, K., McMinn, M. S., and Fink, D.: Topographic and microclimatic
impacts on glaciation of the Denison Range, southwest Tasmania, Quat. Sci.
Rev., 97, 136–147,
https://doi.org/10.1016/j.quascirev.2014.05.008, 2014.
Kiernan, K., Fink, D., and McConnell, A.: Cosmogenic 10Be and 26Al exposure
ages of glaciations in the Frankland Range, southwest Tasmania reveal a
limited MIS-2 ice advance, Quat. Sci. Rev., 157, 141–151,
https://doi.org/10.1016/j.quascirev.2016.12.008, 2017.
Koffman, B. G., Goldstein, S. L., Winckler, G., Borunda, A., Kaplan, M. R.,
Bolge, L., Cai, Y., Recasens, C., Koffman, T. N. B., and Vallelonga, P.: New
Zealand as a source of mineral dust to the atmosphere and ocean, Quat. Sci.
Rev., 251, 106659,
https://doi.org/10.1016/j.quascirev.2020.106659, 2021.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production
rates and erosion models, Earth Planet. Sci. Lett., 104, 424–439,
https://doi.org/10.1016/0012-821X(91)90220-C, 1991.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene, P. Natl. Acad. Sci. USA, 111, 15296–15303,
https://doi.org/10.1073/pnas.1411762111, 2014.
Lambert, F., Delmonte, B., Petit, J. R., Bigler, M., Kaufmann, P. R.,
Hutterli, M. A., Stocker, T. F., Ruth, U., Steffensen, J. P., and Maggi, V.:
Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice
core, Nature, 452, 616–619,
https://doi.org/10.1038/nature06763, 2008.
Leger, T. P. M., Hein, A. S., Bingham, R. G., Martini, M. A., Soteres, R.
L., Sagredo, E. A., and Martínez, O. A.: The glacial geomorphology of
the Río Corcovado, Río Huemul and Lago Palena/General Vintter
valleys, northeastern Patagonia (43∘ S, 71∘ W), J. Maps,
16, 651–668, https://doi.org/10.1080/17445647.2020.1794990,
2020.
Leger, T. P. M., Hein, A. S., Bingham, R. G., Rodés, Á., Fabel, D.,
and Smedley, R. K.: Geomorphology and 10Be chronology of the Last
Glacial Maximum and deglaciation in northeastern Patagonia, 43∘ S–71∘ W, Quat. Sci. Rev., 272, 107194,
https://doi.org/10.1016/j.quascirev.2021.107194, 2021a.
Leger, T. P. M., Hein, A. S., Goldberg, D., Schimmelpfennig, I., Van Wyk de
Vries, M. S., Bingham, R. G., and ASTER Team: Northeastern Patagonian
Glacier Advances (43∘ S) Reflect Northward Migration of the
Southern Westerlies Towards the End of the Last Glaciation, Front. Earth
Sci., 9, 751987, https://doi.org/10.3389/feart.2021.751987,
2021b.
Leger, T. P. M., Hein, A. S., Rodés, Á., Bingham, R. G., Schimmelpfennig, I., Fabel, D., Gonzalez, P. T., and ASTER Team: 10Be and 26Al TCN exposure age input data for CRONUS-Earth online calculator version 3, https://doi.org/10.17632/gg4b3sh9k2.1, 2022.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide
production rates using analytical approximations to atmospheric cosmic-ray
fluxes, Earth Planet. Sci. Lett., 386, 149–160,
https://doi.org/10.1016/j.epsl.2013.10.052, 2014.
Lindner, L. and Marks, L.: New approach to stratigraphy of palaeolake and
glacial sediments of the younger Middle Pleistocene in mid-eastern Poland, Geol. Q., 43, 1–8, 1999.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography, 20, PA1003,
https://doi.org/10.1029/2004PA001071, 2005.
Lorrey, A. M. and Bostock, H.: The Quaternary climate of New Zealand. Advances
in Quaternary Science – the New Zealand Landscape, Springer-Verlag,
67–139, https://doi.org/10.2991/978-94-6239-237-3_3, 2017.
Margari, V., Skinner, L. C., Hodell, D. A., Martrat, B., Toucanne, S.,
Grimalt, J. O., Gibbard, P. L., Lunkka, J. P., and Tzedakis, P. C.:
Land-ocean changes on orbital and millennial time scales and the penultimate
glaciation, Geology, 42, 183–186,
https://doi.org/10.1130/G35070.1, 2014.
Meglioli, A.: Glacial geology and chronology of southernmost Patagonia and
Tierra del Fuego, Argentina and Chile, Ph.D. thesis, Bethlehem,
Pennsylvania, Lehigh University, 216 pp., https://www.proquest.com/dissertations-theses/glacial-geology-chronology-southernmost-patagonia/docview/304013276/se-2 (last access: 19 December 2022), 1992.
Mendelová, M., Hein, A. S., Rodés, Á., and Xu, S.: Extensive
mountain glaciation in central Patagonia during Marine Isotope Stage 5,
Quat. Sci. Rev., 227, 105996,
https://doi.org/10.1016/j.quascirev.2019.105996, 2020.
Mercer, J. H.: Glacial history of Southernmost South America, Quat. Res., 6,
125–166, https://doi.org/10.1016/0033-5894(76)90047-8, 1976.
Mercer, J. H.: Simultaneous climatic change in both hemispheres and similar
bipolar interglacial warming: Evidence and implications, in: Geophysical
Monograph Series, vol. 29, edited by: Hansen, J. E. and Takahashi, T.,
American Geophysical Union, Washington, D. C., 307–313,
https://doi.org/10.1029/GM029p0307, 1984.
Parrenin, F., Masson-Delmotte, V., Köhler, P., Raynaud, D., Paillard,
D., Schwander, J., Barbante, C., Landais, A., Wegner, A., and Jouzel, J.:
Synchronous Change of Atmospheric CO2 and Antarctic Temperature During
the Last Deglacial Warming, Science, 339, 1060–1063,
https://doi.org/10.1126/science.1226368, 2013.
Peltier, C., Kaplan, M. R., Birkel, S. D., Soteres, R. L., Sagredo, E. A.,
Aravena, J. C., Araos, J., Moreno, P. I., Schwartz, R., and Schaefer, J. M.:
The large MIS 4 and long MIS 2 glacier maxima on the southern tip of South
America, Quat. Sci. Rev., 262, 106858,
https://doi.org/10.1016/j.quascirev.2021.106858, 2021.
Phillips, F. M., Zreda, M. G., Smith, S. S., Elmore, D., Kubik, P. W., and
Sharma, P.: Cosmogenic Chlorine-36 Chronology for Glacial Deposits at Bloody
Canyon, Eastern Sierra Nevada, Science, 248, 1529–1532,
https://doi.org/10.1126/science.248.4962.1529, 1990.
Preusser, F., Graf, H. R., Keller, O., Krayss, E., and Schlüchter, C.: Quaternary glaciation history of northern Switzerland, E&G Quaternary Sci. J., 60, 282–305, https://doi.org/10.3285/eg.60.2-3.06, 2011.
Putkonen, J. and Swanson, T.: Accuracy of cosmogenic ages for moraines,
Quat. Res., 59, 255–261,
https://doi.org/10.1016/S0033-5894(03)00006-1, 2003.
Putnam, A. E., Schaefer, J. M., Barrell, D. J. A., Vandergoes, M., Denton,
G. H., Kaplan, M. R., Finkel, R. C., Schwartz, R., Goehring, B. M., and
Kelley, S. E.: In situ cosmogenic 10Be production-rate calibration from the
Southern Alps, New Zealand, Quat. Geochronol., 5, 392–409,
https://doi.org/10.1016/j.quageo.2009.12.001, 2010.
Putnam, A. E., Schaefer, J. M., Denton, G. H., Barrell, D. J. A., Birkel, S.
D., Andersen, B. G., Kaplan, M. R., Finkel, R. C., Schwartz, R., and
Doughty, A. M.: The Last Glacial Maximum at 44∘ S documented by a
10Be moraine chronology at Lake Ohau, Southern Alps of New Zealand, Quat.
Sci. Rev., 62, 114–141,
https://doi.org/10.1016/j.quascirev.2012.10.034, 2013.
Rabassa, J. and Clapperton, C. M.: Quaternary glaciations of the southern
Andes, Quat. Sci. Rev., 9, 153–174,
https://doi.org/10.1016/0277-3791(90)90016-4, 1990.
Rabassa, J. and Coronato, A.: Glaciations in Patagonia and Tierra del Fuego
during the Ensenadan Stage/Age (Early Pleistocene–earliest Middle
Pleistocene), Quat. Int., 210, 18–36,
https://doi.org/10.1016/j.quaint.2009.06.019, 2009.
Rinterknecht, V., Braucher, R., Böse, M., Bourlès, D., and Mercier,
J. L.: Late Quaternary ice sheet extents in northeastern Germany inferred
from surface exposure dating, Quat. Sci. Rev., 44, 89–95,
https://doi.org/10.1016/j.quascirev.2010.07.026, 2012.
Sarmiento, J. L. and Toggweiler, J. R.: A new model for the role of the
oceans in determining atmospheric , Nature, 308, 621–624,
https://doi.org/10.1038/308621a0, 1984.
Schaefer, J. M., Putnam, A. E., Denton, G. H., Kaplan, M. R., Birkel, S.,
Doughty, A. M., Kelley, S., Barrell, D. J. A., Finkel, R. C., Winckler, G.,
Anderson, R. F., Ninneman, U. S., Barker, S., Schwartz, R., Andersen, B. G.,
and Schluechter, C.: The Southern Glacial Maximum 65,000 years ago and its
Unfinished Termination, Quat. Sci. Rev., 114, 52–60,
https://doi.org/10.1016/j.quascirev.2015.02.009, 2015.
Shakun, J. D., Lea, D. W., Lisiecki, L. E., and Raymo, M. E.: An 800-kyr
record of global surface ocean δ 18 O and implications for ice
volume-temperature coupling, Earth Planet. Sci. Lett., 426, 58–68,
https://doi.org/10.1016/j.epsl.2015.05.042, 2015.
Sime, L. C., Kohfeld, K. E., Le Quéré, C., Wolff, E. W., de Boer, A.
M., Graham, R. M., and Bopp, L.: Southern Hemisphere westerly wind changes
during the Last Glacial Maximum: model-data comparison, Quat. Sci. Rev., 64,
104–120, https://doi.org/10.1016/j.quascirev.2012.12.008,
2013.
Singer, B. S., Ackert Jr., R. P., and Guillou, H.: 40Ar/39Ar
and K-Ar chronology of Pleistocene glaciations in Patagonia, Geol. Soc. Am. Bull., 116, 434–450, https://doi.org/10.1130/B25177.1, 2004.
Spratt, R. M. and Lisiecki, L. E.: A Late Pleistocene sea level stack, Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, 2016.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys.
Res.-Sol. Ea., 105, 23753–23759,
https://doi.org/10.1029/2000JB900181, 2000.
Sugden, D. E., McCulloch, R. D., Bory, A. J.-M., and Hein, A. S.: Influence
of Patagonian glaciers on Antarctic dust deposition during the last glacial
period, Nat. Geosci., 2, 281–285,
https://doi.org/10.1038/ngeo474, 2009.
Sylwan, C., Beraza, L., and Caselli, A.: Magnetoestratigrafi a de la
secuencia morenica en el valle del Lago Pueyrredon, provincia de Santa Cruz,
Revista de la Asociación Geológica Argentina, 46, 235–238,
1991.
Terrizzano, C. M., García Morabito, E., Christl, M., Likerman, J.,
Tobal, J., Yamin, M., and Zech, R.: Climatic and Tectonic forcing on
alluvial fans in the Southern Central Andes, Quat. Sci. Rev., 172, 131–141,
https://doi.org/10.1016/j.quascirev.2017.08.002, 2017.
Toucanne, S., Zaragosi, S., Bourillet, J. F., Cremer, M., Eynaud, F., Van
Vliet-Lanoë, B., Penaud, A., Fontanier, C., Turon, J. L., and Cortijo,
E.: Timing of massive “Fleuve Manche” discharges over the last 350 kyr:
insights into the European ice-sheet oscillations and the European drainage
network from MIS 10 to 2, Quat. Sci. Rev., 28, 1238–1256,
https://doi.org/10.1016/j.quascirev.2009.01.006, 2009.
Trombotto, D.: Geocryology of Southern South America, in: Developments in
Quaternary Sciences, vol. 11, Elsevier, 255–268,
https://doi.org/10.1016/S1571-0866(07)10012-9, 2008.
White, T. S., Bridgland, D. R., Westaway, R., Howard, A. J., and White, M.
J.: Evidence from the Trent terrace archive, Lincolnshire, UK, for lowland
glaciation of Britain during the Middle and Late Pleistocene, Proc. Geol.
Assoc., 121, 141–153,
https://doi.org/10.1016/j.pgeola.2010.05.001, 2010.
White, T. S., Bridgland, D. R., Westaway, R., and Straw, A.: Evidence for
late Middle Pleistocene glaciation of the British margin of the southern
North Sea: Late Middle Pleistocene Glaciation Of The British North Sea
Margin, J. Quat. Sci., 32, 261–275,
https://doi.org/10.1002/jqs.2826, 2017.
Co-editor-in-chief
This paper is providing new data about Southern Hemisphere ice sheet extent and dynamics during glaciations older than those occurring during the last climate cycle, a useful dataset that climate models require to calibrate their own reconstructions.
This paper is providing new data about Southern Hemisphere ice sheet extent and dynamics during...
Short summary
Over the past 800 thousand years, variations in the Earth’s orbit and tilt have caused antiphased solar insolation intensity in the Northern and Southern Hemispheres. Paradoxically, glacial records suggest that global ice sheets have responded synchronously to major cold glacial and warm interglacial episodes. To address this puzzle, we present a new detailed glacier chronology that estimates the timing of multiple Patagonian ice-sheet waxing and waning cycles over the past 300 thousand years.
Over the past 800 thousand years, variations in the Earth’s orbit and tilt have caused...