Articles | Volume 19, issue 12
https://doi.org/10.5194/cp-19-2569-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-2569-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Warming drove the expansion of marine anoxia in the equatorial Atlantic during the Cenomanian leading up to Oceanic Anoxic Event 2
Mohd Al Farid Abraham
CORRESPONDING AUTHOR
Organic Geochemistry Unit, School of Chemistry and School of Earth Sciences, University of Bristol, BS8 1TS, United Kingdom
Geology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
Bernhard David A. Naafs
Organic Geochemistry Unit, School of Chemistry and School of Earth Sciences, University of Bristol, BS8 1TS, United Kingdom
Vittoria Lauretano
Organic Geochemistry Unit, School of Chemistry and School of Earth Sciences, University of Bristol, BS8 1TS, United Kingdom
Fotis Sgouridis
School of Geographical Sciences, University of Bristol, BS8 1SS, United Kingdom
Richard D. Pancost
Organic Geochemistry Unit, School of Chemistry and School of Earth Sciences, University of Bristol, BS8 1TS, United Kingdom
Related authors
No articles found.
Nick R. Hayes, Daniel J. Lunt, Yves Goddéris, Richard D. Pancost, and Heather L. Buss
EGUsphere, https://doi.org/10.5194/egusphere-2024-2811, https://doi.org/10.5194/egusphere-2024-2811, 2024
Short summary
Short summary
The breakdown of volcanic rocks by water helps balance the climate of the earth by sequestering atmospheric CO2 . The rate of CO2 sequestration is referred to as "weatherability". Our modelling study finds that continental position strongly impacts CO2 concentrations, that runoff strongly controls weatherability, that changes in weatherability may explain long term trends in atmospheric CO2 concentrations, and that even relatively localised changes in weatherability may have global impacts.
Caitlyn R. Witkowski, Vittoria Lauretano, Alex Farnsworth, Shufeng Li, Shi-Hu Li, Jan Peter Mayser, B. David A. Naafs, Robert A. Spicer, Tao Su, He Tang, Zhe-Kun Zhou, Paul J. Valdes, and Richard D. Pancost
EGUsphere, https://doi.org/10.5194/egusphere-2023-373, https://doi.org/10.5194/egusphere-2023-373, 2023
Preprint archived
Short summary
Short summary
Untangling the complex tectonic evolution in the Tibetan region can help us understand its impacts on climate, the Asian monsoon system, and the development of major biodiversity hotspots. We show that this “missing link” site between high elevation Tibet and low elevation coastal China had a dynamic environment but no temperature change, meaning its been at its current-day elevation for the past 34 million years.
Christopher J. Hollis, Sebastian Naeher, Christopher D. Clowes, B. David A. Naafs, Richard D. Pancost, Kyle W. R. Taylor, Jenny Dahl, Xun Li, G. Todd Ventura, and Richard Sykes
Clim. Past, 18, 1295–1320, https://doi.org/10.5194/cp-18-1295-2022, https://doi.org/10.5194/cp-18-1295-2022, 2022
Short summary
Short summary
Previous studies of Paleogene greenhouse climates identified short-lived global warming events, termed hyperthermals, that provide insights into global warming scenarios. Within the same time period, we have identified a short-lived cooling event in the late Paleocene, which we term a hypothermal, that has potential to provide novel insights into the feedback mechanisms at work in a greenhouse climate.
Felipe S. Freitas, Philip A. Pika, Sabine Kasten, Bo B. Jørgensen, Jens Rassmann, Christophe Rabouille, Shaun Thomas, Henrik Sass, Richard D. Pancost, and Sandra Arndt
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, https://doi.org/10.5194/bg-18-4651-2021, 2021
Short summary
Short summary
It remains challenging to fully understand what controls carbon burial in marine sediments globally. Thus, we use a model–data approach to identify patterns of organic matter reactivity at the seafloor across distinct environmental conditions. Our findings support the notion that organic matter reactivity is a dynamic ecosystem property and strongly influences biogeochemical cycling and exchange. Our results are essential to improve predictions of future changes in carbon cycling and climate.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Alan T. Kennedy-Asser, Daniel J. Lunt, Paul J. Valdes, Jean-Baptiste Ladant, Joost Frieling, and Vittoria Lauretano
Clim. Past, 16, 555–573, https://doi.org/10.5194/cp-16-555-2020, https://doi.org/10.5194/cp-16-555-2020, 2020
Short summary
Short summary
Global cooling and a major expansion of ice over Antarctica occurred ~ 34 million years ago at the Eocene–Oligocene transition (EOT). A large secondary proxy dataset for high-latitude Southern Hemisphere temperature before, after and across the EOT is compiled and compared to simulations from two coupled climate models. Although there are inconsistencies between the models and data, the comparison shows amongst other things that changes in the Drake Passage were unlikely the cause of the EOT.
Alexandra T. Holland, Christopher J. Williamson, Fotis Sgouridis, Andrew J. Tedstone, Jenine McCutcheon, Joseph M. Cook, Ewa Poniecka, Marian L. Yallop, Martyn Tranter, Alexandre M. Anesio, and The Black & Bloom Group
Biogeosciences, 16, 3283–3296, https://doi.org/10.5194/bg-16-3283-2019, https://doi.org/10.5194/bg-16-3283-2019, 2019
Short summary
Short summary
This paper provides a preliminary data set for dissolved nutrient abundance in the Dark Zone of the Greenland Ice Sheet. This 15-year marked darkening has since been attributed to glacier algae blooms, yet has not been accounted for in current melt rate models. We conclude that the dissolved organic phase dominates surface ice environments and that factors other than macronutrient limitation control the extent and magnitude of the glacier algae blooms.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
David J. Wilton, Marcus P. S. Badger, Euripides P. Kantzas, Richard D. Pancost, Paul J. Valdes, and David J. Beerling
Geosci. Model Dev., 12, 1351–1364, https://doi.org/10.5194/gmd-12-1351-2019, https://doi.org/10.5194/gmd-12-1351-2019, 2019
Short summary
Short summary
Methane is an important greenhouse gas naturally produced in wetlands (areas of land inundated with water). Models of the Earth's past climate need estimates of the amounts of methane wetlands produce; and in order to calculate those we need to model wetlands. In this work we develop a method for modelling the fraction of an area of the Earth that is wetland, repeat this over all the Earth's land surface and apply this to a study of the Earth as it was around 50 million years ago.
Marcus P. S. Badger, Thomas B. Chalk, Gavin L. Foster, Paul R. Bown, Samantha J. Gibbs, Philip F. Sexton, Daniela N. Schmidt, Heiko Pälike, Andreas Mackensen, and Richard D. Pancost
Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, https://doi.org/10.5194/cp-15-539-2019, 2019
Short summary
Short summary
Understanding how atmospheric CO2 has affected the climate of the past is an important way of furthering our understanding of how CO2 may affect our climate in the future. There are several ways of determining CO2 in the past; in this paper, we ground-truth one method (based on preserved organic matter from alga) against the record of CO2 preserved as bubbles in ice cores over a glacial–interglacial cycle. We find that there is a discrepancy between the two.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Pedro Alejandro Ruiz-Ortiz, José Manuel Castro, Ginés Alfonso de Gea, Ian Jarvis, José Miguel Molina, Luis Miguel Nieto, Richard David Pancost, María Luisa Quijano, Matías Reolid, Peter William Skelton, and Helmut Jürg Weissert
Sci. Dril., 21, 41–46, https://doi.org/10.5194/sd-21-41-2016, https://doi.org/10.5194/sd-21-41-2016, 2016
Short summary
Short summary
The Cretaceous was punctuated by several episodes of accelerated global change, defined as Oceanic Anoxic Events (OAE), that reflect abrupt changes in global carbon cycling. In this progress report, we present a new drill core recovering an Aptian section spanning OAE1a in southern Spain. The Cau section is located in the easternmost part of the Prebetic Zone (Betic Cordillera). All the studies performed reveal that the Cau section represents an excellent site to further investigate OAE1a.
Daniel J. Lunt, Alex Farnsworth, Claire Loptson, Gavin L. Foster, Paul Markwick, Charlotte L. O'Brien, Richard D. Pancost, Stuart A. Robinson, and Neil Wrobel
Clim. Past, 12, 1181–1198, https://doi.org/10.5194/cp-12-1181-2016, https://doi.org/10.5194/cp-12-1181-2016, 2016
Short summary
Short summary
We explore the influence of changing geography from the period ~ 150 million years ago to ~ 35 million years ago, using a set of 19 climate model simulations. We find that without any CO2 change, the global mean temperature is remarkably constant, but that regionally there are significant changes in temperature which we link back to changes in ocean circulation. Finally, we explore the implications of our findings for the interpretation of geological indicators of past temperatures.
Kimberley L. Davies, Richard D. Pancost, Mary E. Edwards, Katey M. Walter Anthony, Peter G. Langdon, and Lidia Chaves Torres
Biogeosciences, 13, 2611–2621, https://doi.org/10.5194/bg-13-2611-2016, https://doi.org/10.5194/bg-13-2611-2016, 2016
Fotis Sgouridis, Andrew Stott, and Sami Ullah
Biogeosciences, 13, 1821–1835, https://doi.org/10.5194/bg-13-1821-2016, https://doi.org/10.5194/bg-13-1821-2016, 2016
Short summary
Short summary
Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. The 15N gas-flux method was adapted by lowering the 15N tracer application rate to 0.04–0.5 kg 15N ha−1. The minimum detectable flux rates were 4 μg N m−2 h−1 and 0.2 ng N m−2 h−1 for the N2 and N2O fluxes respectively. The acetylene inhibition technique underestimated denitrification rates by a factor of 4.
Matthew J. Carmichael, Daniel J. Lunt, Matthew Huber, Malte Heinemann, Jeffrey Kiehl, Allegra LeGrande, Claire A. Loptson, Chris D. Roberts, Navjit Sagoo, Christine Shields, Paul J. Valdes, Arne Winguth, Cornelia Winguth, and Richard D. Pancost
Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, https://doi.org/10.5194/cp-12-455-2016, 2016
Short summary
Short summary
In this paper, we assess how well model-simulated precipitation rates compare to those indicated by geological data for the early Eocene, a warm interval 56–49 million years ago. Our results show that a number of models struggle to produce sufficient precipitation at high latitudes, which likely relates to cool simulated temperatures in these regions. However, calculating precipitation rates from plant fossils is highly uncertain, and further data are now required.
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Pre-Cenozoic
Driving mechanisms of organic carbon burial in the Early Cretaceous South Atlantic Cape Basin (DSDP Site 361)
Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks
Dynamic climate-driven controls on the deposition of the Kimmeridge Clay Formation in the Cleveland Basin, Yorkshire, UK
Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation
Water-mass evolution in the Cretaceous Western Interior Seaway of North America and equatorial Atlantic
Late Cretaceous (late Campanian–Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea
Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany)
"OAE 3" – regional Atlantic organic carbon burial during the Coniacian–Santonian
Bridging the Faraoni and Selli oceanic anoxic events: late Hauterivian to early Aptian dysaerobic to anaerobic phases in the Tethys
Wolf Dummann, Sebastian Steinig, Peter Hofmann, Matthias Lenz, Stephanie Kusch, Sascha Flögel, Jens Olaf Herrle, Christian Hallmann, Janet Rethemeyer, Haino Uwe Kasper, and Thomas Wagner
Clim. Past, 17, 469–490, https://doi.org/10.5194/cp-17-469-2021, https://doi.org/10.5194/cp-17-469-2021, 2021
Short summary
Short summary
This study investigates the climatic mechanism that controlled the deposition of organic matter in the South Atlantic Cape Basin during the Early Cretaceous. The presented geochemical and climate modeling data suggest that fluctuations in riverine nutrient supply were the main driver of organic carbon burial on timescales < 1 Myr. Our results have implications for the understanding of Cretaceous atmospheric circulation patterns and climate-land-ocean interactions in emerging ocean basins.
Sebastian Beil, Wolfgang Kuhnt, Ann Holbourn, Florian Scholz, Julian Oxmann, Klaus Wallmann, Janne Lorenzen, Mohamed Aquit, and El Hassane Chellai
Clim. Past, 16, 757–782, https://doi.org/10.5194/cp-16-757-2020, https://doi.org/10.5194/cp-16-757-2020, 2020
Short summary
Short summary
Comparison of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates shows that long-lasting negative δ13C excursions precede the positive δ13C excursions and that the evolution of the marine δ13C positive excursions is similar during both OAEs, although the durations of individual phases differ substantially. Phosphorus speciation data across OAE2 and the Mid-Cenomanian Event suggest a positive feedback loop, enhancing marine productivity during OAEs.
Elizabeth Atar, Christian März, Andrew C. Aplin, Olaf Dellwig, Liam G. Herringshaw, Violaine Lamoureux-Var, Melanie J. Leng, Bernhard Schnetger, and Thomas Wagner
Clim. Past, 15, 1581–1601, https://doi.org/10.5194/cp-15-1581-2019, https://doi.org/10.5194/cp-15-1581-2019, 2019
Short summary
Short summary
We present a geochemical and petrographic study of the Kimmeridge Clay Formation from the Cleveland Basin (Yorkshire, UK). Our results indicate that deposition during this interval was very dynamic and oscillated between three distinct modes of sedimentation. In line with recent modelling results, we propose that these highly dynamic conditions were driven by changes in climate, which affected continental weathering, enhanced primary productivity, and led to organic carbon enrichment.
Martin Schobben, Sebastiaan van de Velde, Jana Gliwa, Lucyna Leda, Dieter Korn, Ulrich Struck, Clemens Vinzenz Ullmann, Vachik Hairapetian, Abbas Ghaderi, Christoph Korte, Robert J. Newton, Simon W. Poulton, and Paul B. Wignall
Clim. Past, 13, 1635–1659, https://doi.org/10.5194/cp-13-1635-2017, https://doi.org/10.5194/cp-13-1635-2017, 2017
Short summary
Short summary
Stratigraphic trends in the carbon isotope composition of calcium carbonate rock can be used as a stratigraphic tool. An important assumption when using these isotope chemical records is that they record a globally universal signal of marine water chemistry. We show that carbon isotope scatter on a confined centimetre stratigraphic scale appears to represent a signal of microbial activity. However, long-term carbon isotope trends are still compatible with a primary isotope imprint.
James S. Eldrett, Paul Dodsworth, Steven C. Bergman, Milly Wright, and Daniel Minisini
Clim. Past, 13, 855–878, https://doi.org/10.5194/cp-13-855-2017, https://doi.org/10.5194/cp-13-855-2017, 2017
Short summary
Short summary
This contribution integrates new data on the main components of organic matter, geochemistry, and stable isotopes for the Cenomanian to Coniacian stages of the Late Cretaceous, along a north–south transect from the Cretaceous Western Interior Seaway to the equatorial western Atlantic and Southern Ocean. Distinct palynological assemblages and geochemical signatures allow insights into palaeoenvironmental conditions and water-mass evolution during this greenhouse climate period.
Nicolas Thibault, Rikke Harlou, Niels H. Schovsbo, Lars Stemmerik, and Finn Surlyk
Clim. Past, 12, 429–438, https://doi.org/10.5194/cp-12-429-2016, https://doi.org/10.5194/cp-12-429-2016, 2016
Short summary
Short summary
We present here for the first time a very high-resolution record of sea-surface temperature changes in the Boreal Chalk Sea for the last 8 million years of the Cretaceous. This record was obtained from 1932 bulk oxygen isotope measurements, and their interpretation into temperature trends is validated by similar trends observed from changes in phytoplankton assemblages.
N. A. G. M. van Helmond, A. Sluijs, J. S. Sinninghe Damsté, G.-J. Reichart, S. Voigt, J. Erbacher, J. Pross, and H. Brinkhuis
Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015, https://doi.org/10.5194/cp-11-495-2015, 2015
Short summary
Short summary
Based on the chemistry and microfossils preserved in sediments deposited in a shallow sea, in the current Lower Saxony region (NW Germany), we conclude that changes in Earth’s orbit around the Sun led to enhanced rainfall and organic matter production. The additional supply of organic matter, depleting oxygen upon degradation, and freshwater, inhibiting the mixing of oxygen-rich surface waters with deeper waters, caused the development of oxygen-poor waters about 94 million years ago.
M. Wagreich
Clim. Past, 8, 1447–1455, https://doi.org/10.5194/cp-8-1447-2012, https://doi.org/10.5194/cp-8-1447-2012, 2012
K. B. Föllmi, M. Bôle, N. Jammet, P. Froidevaux, A. Godet, S. Bodin, T. Adatte, V. Matera, D. Fleitmann, and J. E. Spangenberg
Clim. Past, 8, 171–189, https://doi.org/10.5194/cp-8-171-2012, https://doi.org/10.5194/cp-8-171-2012, 2012
Cited articles
Adam, P., Schaeffer, P., and Albrecht, P.: C40 monoaromatic lycopane derivatives as indicators of the contribution of the alga Botryococcus braunii race L to the organic matter of Messel oil shale (Eocene, Germany), Org. Geochem., 37, 584–596, https://doi.org/10.1016/j.orggeochem.2006.01.001, 2006.
Arthur, M. A., Schlanger, S. O., and Jenkyns, H. C.: The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation, Geol. Soc. Spec. Publ., 26, 401–420, https://doi.org/10.1144/GSL.SP.1987.026.01.25, 1987.
Arthur, M. A., Dean, W. E., and Pratt, L. M.: Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary, Nature, Nature Publishing Group, 714–717 pp., https://doi.org/10.1038/335714a0, 1988.
Barclay, R. S., McElwain, J. C., and Sageman, B. B.: Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2, Nat. Geosci., 3, 205–208, https://doi.org/10.1038/ngeo757, 2010.
Batenburg, S. J., De Vleeschouwer, D., Sprovieri, M., Hilgen, F. J., Gale, A. S., Singer, B. S., Koeberl, C., Coccioni, R., Claeys, P., and Montanari, A.: Orbital control on the timing of oceanic anoxia in the Late Cretaceous, Clim. Past, 12, 1995–2009, https://doi.org/10.5194/cp-12-1995-2016, 2016.
Berrocoso, Á. J., MacLeod, K. G., Martin, E. E., Bourbon, E., Londoño, C. I., and Basak, C.: Nutrient trap for Late Cretaceous organic-rich black shales in the tropical North Atlantic, Geology, 38, 1111–1114, https://doi.org/10.1130/G31195.1, 2010.
Burdige, D. J.: Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets?, Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
Van Cappellen, P. and Ingall, E. D.: Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus, Paleoceanography, 9, 677–692, https://doi.org/10.1029/94PA01455, 1994.
Clarkson, M. O., Stirling, C. H., Jenkyns, H. C., Dickson, A. J., Porcelli, D., Moy, C. M., Von Strandmann, P. P. A. E., Cooke, I. R., and Lenton, T. M.: Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2, P. Natl. Acad. Sci. USA, 115, 2918–2923, https://doi.org/10.1073/pnas.1715278115, 2018.
Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., and Deconinck, J. F.: A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration, Nat. Commun., 7, 1–12, https://doi.org/10.1038/ncomms10316, 2016.
Eldrett, J. S., Ma, C., Bergman, S. C., Lutz, B., Gregory, F. J., Dodsworth, P., Phipps, M., Hardas, P., Minisini, D., Ozkan, A., Ramezani, J., Bowring, S. A., Kamo, S. L., Ferguson, K., Macaulay, C., and Kelly, A. E.: An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: Implications for global chronostratigraphy, Cretac. Res., 56, 316–344, https://doi.org/10.1016/j.cretres.2015.04.010, 2015.
Erbacher, J., Mosher, D. C., Malone, M. J., and Shipboard Scientific Party, T.: Site 1258, Proc. Ocean Drill. Program, 207 Initial Reports, 207, 1–117, https://doi.org/10.2973/odp.proc.ir.207.105.2004, 2004.
Erbacher, J., Friedrich, O., Wilson, P. A., Birch, H., and Mutterlose, J.: Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic, Geochem., Geophys. Geosyst., 6, Q06010, https://doi.org/10.1029/2004GC000850, 2005.
Forster, A., Schouten, S., Baas, M., and Sinninghe Damsté, J. S.: Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean, Geology, 35, 919–922, https://doi.org/10.1130/G23874A.1, 2007.
French, K. L., Rocher, D., Zumberge, J. E., and Summons, R. E.: Assessing the distribution of sedimentary C40 carotenoids through time, Geobiology, 13, 139–151, https://doi.org/10.1111/GBI.12126, 2015.
Friedrich, O. and Erbacher, J.: Benthic foraminiferal assemblages from Demerara Rise (ODP Leg 207, western tropical Atlantic): possible evidence for a progressive opening of the Equatorial Atlantic Gateway, Cretac. Res., 27, 377–397, https://doi.org/10.1016/j.cretres.2005.07.006, 2006.
Friedrich, O., Erbacher, J., Moriya, K., Wilson, P. A., and Kuhnert, H.: Warm saline intermediate waters in the Cretaceous tropical Atlantic ocean, Nat. Geosci., 1, 453–457, https://doi.org/10.1038/ngeo217, 2008.
Friedrich, O., Erbacher, J., Wilson, P. A., Moriya, K., and Mutterlose, J.: Paleoenvironmental changes across the Mid Cenomanian Event in the tropical Atlantic Ocean (Demerara Rise, ODP Leg 207) inferred from benthic foraminiferal assemblages, Mar. Micropaleontol., 71, 28–40, https://doi.org/10.1016/j.marmicro.2009.01.002, 2009.
Frieling, J., Reichart, G.-J., Middelburg, J. J., Röhl, U., Westerhold, T., Bohaty, S. M., and Sluijs, A.: Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum, Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, 2018.
Haq, B. U.: Cretaceous eustasy revisited, Glob. Planet. Change, 113, 44–58, https://doi.org/10.1016/j.gloplacha.2013.12.007, 1 February, 2014.
Hasegawa, H., Tada, R., Jiang, X., Suganuma, Y., Imsamut, S., Charusiri, P., Ichinnorov, N., and Khand, Y.: Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse, Clim. Past, 8, 1323–1337, https://doi.org/10.5194/cp-8-1323-2012, 2012.
Hedges, J. I. and Stern, J. H.: Carbon and nitrogen determinations of carbonate-containing solids, Limnol. Oceanogr., 3, https://doi.org/10.4319/lo.1984.29.3.0657, May 1984.
Hetzel, A., Brumsack, H.-J., Schnetger, B., and Böttcher, M. E.: Inorganic geochemical characterization of lithologic units recovered during ODP Leg 207 (Demerara Rise), in: Proc. ODP, Sci. Results, edited by: Mosher, D. C., Erbacher, J., and Malone, M. J., 207, College Station, TX (Ocean Drilling Program), 1–37, https://doi.org/10.2973/odp.proc.sr.207.107.2006, 2006.
Hopmans, E. C., Weijers, J. W. H., Schefuß, E., Herfort, L., Sinninghe Damsté, J. S., and Schouten, S.: A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids, Earth Planet. Sci. Lett., 224, 107–116, https://doi.org/10.1016/j.epsl.2004.05.012, 2004.
Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: The effect of improved chromatography on GDGT-based palaeoproxies, Org. Geochem., 93, 1–6, https://doi.org/10.1016/j.orggeochem.2015.12.006, 2016.
Hülse, D., Arndt, S., and Ridgwell, A.: Mitigation of Extreme Ocean Anoxic Event Conditions by Organic Matter Sulfurization, Paleoceanogr. Paleoclimatology, 34, 476–489, https://doi.org/10.1029/2018PA003470, 2019.
Jarvis, I., Gale, A. S., Jenkyns, H. C., and Pearce, M. A.: Secular variation in Late Cretaceous carbon isotopes: A new δ13C carbonate reference curve for the Cenomanian-Campanian (99.6–70.6 Ma), Geol. Mag., 143, 561–608, https://doi.org/10.1017/S0016756806002421, 2006.
Jarvis, I., Lignum, J. S., Grcke, D. R., Jenkyns, H. C., and Pearce, M. A.: Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event, Paleoceanography, 26, 1–17, https://doi.org/10.1029/2010PA002081, 2011.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophys. Geosyst., 11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
Joo, Y. J. and Sageman, B. B.: Cenomanian to campanian carbon isotope chemostratigraphy from the Western Interior Basin, U.S.A., J. Sediment. Res., 84, 529–542, https://doi.org/10.2110/jsr.2014.38, 2014.
Joo, Y. J., Sageman, B. B., and Hurtgen, M. T.: Data-model comparison reveals key environmental changes leading to Cenomanian-Turonian Oceanic Anoxic Event 2, https://doi.org/10.1016/j.earscirev.2020.103123, 1 April 2020.
Kim, J. H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N., Hopmans, E. C., and Damsté, J. S. S.: New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions, Geochim. Cosmochim. Acta, 74, 4639–4654, https://doi.org/10.1016/j.gca.2010.05.027, 2010.
Koopmans, M. P., Köster, J., Van Kaam-Peters, H. M. E., Kenig, F., Schouten, S., Hartgers, W. A., De Leeuw, J. W., and Sinninghe Damsté, J. S.: Diagenetic and catagenetic products of isorenieratene: Molecular indicators for photic zone anoxia, Geochim. Cosmochim. Acta, 60, 4467–4496, https://doi.org/10.1016/S0016-7037(96)00238-4, 1996.
Laugié, M., Donnadieu, Y., Ladant, J. B., Bopp, L., Ethé, C., and Raisson, F.: Exploring the Impact of Cenomanian Paleogeography and Marine Gateways on Oceanic Oxygen, Paleoceanogr. Paleoclimatology, 36, e2020PA004202, https://doi.org/10.1029/2020PA004202, 2021.
Laurin, J., Meyers, S. R., Galeotti, S., and Lanci, L.: Frequency modulation reveals the phasing of orbital eccentricity during Cretaceous Oceanic Anoxic Event II and the Eocene hyperthermals, Earth Planet. Sci. Lett., 442, 143–156, https://doi.org/10.1016/j.epsl.2016.02.047, 2016.
Li, Y. X., Montañez, I. P., Liu, Z., and Ma, L.: Astronomical constraints on global carbon-cycle perturbation during Oceanic Anoxic Event 2 (OAE2), Earth Planet. Sci. Lett., 462, 35–46, https://doi.org/10.1016/j.epsl.2017.01.007, 2017.
Lüning, S., Kolonic, S., Belhadj, E. M., Belhadj, Z., Cota, L., Barić, G., and Wagner, T.: Integrated depositional model for the Cenomanian-Turonian organic-rich strata in North Africa, Earth-Sci. Rev., 64, 51–117, https://doi.org/10.1016/S0012-8252(03)00039-4, 2004.
Ma, J., French, K. L., Cui, X., Bryant, D. A., and Summons, R. E.: Carotenoid biomarkers in Namibian shelf sediments: Anoxygenic photosynthesis during sulfide eruptions in the Benguela Upwelling System, P. Natl. Acad. Sci. USA, 118, e2106040118, https://doi.org/10.1073/pnas.2106040118, 2021.
Meyers, S. R., Sageman, B. B., and Arthur, M. A.: Obliquity forcing of organic matter accumulation during Oceanic Anoxic Event 2, Paleoceanography, 27, PA3212, https://doi.org/10.1029/2012PA002286, 2012.
Moldowan, J. M., Seifert, W. K., Arnold, E., and Clardy, J.: Structure proof and significance of stereoisomeric 28,30-bisnorhopanes in petroleum and petroleum source rocks, Geochim. Cosmochim. Acta, 48, 1651–1661, https://doi.org/10.1016/0016-7037(84)90334-X, 1984.
Monteiro, F. M., Pancost, R. D., Ridgwell, A., and Donnadieu, Y.: Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison, Paleoceanography, 27, PA4209, https://doi.org/10.1029/2012PA002351, 2012.
Mort, H. P., Adatte, T., Föllmi, K. B., Keller, G., Steinmann, P., Matera, V., Berner, Z., and Stüben, D.: Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2, Geology, 35, 483–486, https://doi.org/10.1130/G23475A.1, 2007.
Naafs, B. D. A., Monteiro, F. M., Pearson, A., Higgins, M. B., Pancost, R. D., and Ridgwell, A.: Fundamentally different global marine nitrogen cycling in response to severe ocean deoxygenation, P. Natl. Acad. Sci. USA, 116, 24979–24984, https://doi.org/10.1073/pnas.1905553116, 2019.
Nana Yobo, L., Brandon, A. D., Lauckner, L. M., Eldrett, J. S., Bergman, S. C., and Minisini, D.: Enhanced continental weathering activity at the onset of the mid-Cenomanian Event (MCE), Geochemical Perspect. Lett., 23, 17–22, https://doi.org/10.7185/geochemlet.2231, 2022.
Nederbragt, A. J., Thurow, J., and Pearce, R.: Sediment composition and cyclicity in the Mid-Cretaceous at Demerara Rise, ODP Leg 207, Proc. Ocean Drill. Progr. Sci. Results, 207, 1–31, https://doi.org/10.2973/odp.proc.sr.207.103.2007, 2005.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J. S., Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C., Brassell, S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N., Jenkyns, H. C., Linnert, C., Littler, K., Markwick, P., McAnena, A., Mutterlose, J., Naafs, B. D. A., Püttmann, W., Sluijs, A., van Helmond, N. A. G. M., Vellekoop, J., Wagner, T., and Wrobel, N. E.: Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes, Earth-Sci. Rev., 172, 224–247, https://doi.org/10.1016/j.earscirev.2017.07.012, 1 September 2017.
Ostrander, C. M., Owens, J. D., and Nielsen, S. G.: Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ∼ 94 Ma), Sci. Adv., 3, e1701020, https://doi.org/10.1126/sciadv.1701020, 2017.
Owens, J. D., Reinhard, C. T., Rohrssen, M., Love, G. D., and Lyons, T. W.: Empirical links between trace metal cycling and marine microbial ecology during a large perturbation to Earth's carbon cycle, Earth Planet. Sci. Lett., 449, 407–417, https://doi.org/10.1016/j.epsl.2016.05.046, 2016.
Pancost, R. D., Freeman, K. H., Herrmann, A. D., Patzkowsky, M. E., Ainsaar, L., and Martma, T.: Reconstructing Late Ordovician carbon cycle variations, Geochim. Cosmochim. Acta, 105, 433–454, https://doi.org/10.1016/j.gca.2012.11.033, 2013.
Peters, K. E., Walters, C. C., and Moldowan, J. M.: The Biomarker Guide, 2nd Edn., Cambridge: Cambridge University Press, https://doi.org/10.1017/cbo9781107326040, 2004.
Pogge Von Strandmann, P. A. E., Jenkyns, H. C., and Woodfine, R. G.: Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2, Nat. Geosci., 6, 668–672, https://doi.org/10.1038/ngeo1875, 2013.
Rattanasriampaipong, R., Zhang, Y. G., Pearson, A., Hedlund, B. P., and Zhang, S.: Archaeal lipids trace ecology and evolution of marine ammonia-oxidizing archaea, P. Natl. Acad. Sci. USA, 119, 1–10, https://doi.org/10.1073/pnas.2123193119, 2022.
Raven, M. R., Fike, D. A., Gomes, M. L., Webb, S. M., Bradley, A. S., and McClelland, H. L. O.: Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization, Nat. Commun., 9, 1–9, https://doi.org/10.1038/s41467-018-05943-6, 2018.
Robinson, S. A., Dickson, A. J., Pain, A., Jenkyns, H. C., O'Brien, C. L., Farnsworth, A., and Lunt, D. J.: Southern Hemisphere sea-surface temperatures during the Cenomanian-Turonian: Implications for the termination of Oceanic Anoxic Event 2, Geology, 47, 131–134, https://doi.org/10.1130/G45842.1, 2019.
Sageman, B. B., Meyers, S. R., and Arthur, M. A.: Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype, Geology, 34, 125–128, https://doi.org/10.1130/G22074.1, 2006.
Scaife, J. D., Ruhl, M., Dickson, A. J., Mather, T. A., Jenkyns, H. C., Percival, L. M. E., Hesselbo, S. P., Cartwright, J., Eldrett, J. S., Bergman, S. C., and Minisini, D.: Sedimentary Mercury Enrichments as a Marker for Submarine Large Igneous Province Volcanism? Evidence From the Mid-Cenomanian Event and Oceanic Anoxic Event 2 (Late Cretaceous), Geochem. Geophys. Geosyst., 18, 4253–4275, https://doi.org/10.1002/2017GC007153, 2017.
Schimmelmann, A., Qi, H., Coplen, T. B., Brand, W. A., Fong, J., Meier-Augenstein, W., Kemp, H. F., Toman, B., Ackermann, A., Assonov, S., Aerts-Bijma, A. T., Brejcha, R., Chikaraishi, Y., Darwish, T., Elsner, M., Gehre, M., Geilmann, H., Gröning, M., Hélie, J. F., Herrero-Martín, S., Meijer, H. A. J., Sauer, P. E., Sessions, A. L., and Werner, R. A.: Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio Measurements: Caffeines, n-Alkanes, Fatty Acid Methyl Esters, Glycines, l -Valines, Polyethylenes, and Oils, Anal. Chem., 88, 4294–4302, https://doi.org/10.1021/acs.analchem.5b04392, 2016.
Schlanger, S. and Jenkyns, H.: Cretaceous oceanic anoxic event cause an consequences, Geol. Mijnb., 55, 179–184, 1976.
Schlanger, S. O., Arthur, M. A., Jenkyns, H. C., and Scholle, P. A.: The Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion, Geol. Soc. Spec. Publ., 26, 371–399, https://doi.org/10.1144/GSL.SP.1987.026.01.24, 1987.
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J. S.: Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures?, Earth Planet. Sci. Lett., 204, 265–274, https://doi.org/10.1016/S0012-821X(02)00979-2, 2002.
Schouten, S., Hopmans, E. C., Rosell-Melé, A., Pearson, A., Adam, P., Bauersachs, T., Bard, E., Bernasconi, S. M., Bianchi, T. S., Brocks, J. J., Carlson, L. T., Castañeda, I. S., Derenne, S., Selver, A. D., Dutta, K., Eglinton, T., Fosse, C., Galy, V., Grice, K., Hinrichs, K. U., Huang, Y., Huguet, A., Huguet, C., Hurley, S., Ingalls, A., Jia, G., Keely, B., Knappy, C., Kondo, M., Krishnan, S., Lincoln, S., Lipp, J., Mangelsdorf, K., Martínez-García, A., Ménot, G., Mets, A., Mollenhauer, G., Ohkouchi, N., Ossebaar, J., Pagani, M., Pancost, R. D., Pearson, E. J., Peterse, F., Reichart, G. J., Schaeffer, P., Schmitt, G., Schwark, L., Shah, S. R., Smith, R. W., Smittenberg, R. H., Summons, R. E., Takano, Y., Talbot, H. M., Taylor, K. W. R., Tarozo, R., Uchida, M., Van Dongen, B. E., Van Mooy, B. A. S., Wang, J., Warren, C., Weijers, J. W. H., Werne, J. P., Woltering, M., Xie, S., Yamamoto, M., Yang, H., Zhang, C. L., Zhang, Y., Zhao, M., and Damsté, J. S. S.: An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures, Geochem. Geophys. Geosyst., 14, 5263–5285, https://doi.org/10.1002/2013GC004904, 2013.
Schröder-Adams, C. J., Herrle, J. O., Selby, D., Quesnel, A., and Froude, G.: Influence of the High Arctic Igneous Province on the Cenomanian/Turonian boundary interval, Sverdrup Basin, High Canadian Arctic, Earth Planet. Sci. Lett., 511, 76–88, https://doi.org/10.1016/j.epsl.2019.01.023, 2019.
Scotese, C. R.: An atlas of phanerozoic paleogeographic maps: The seas come in and the seas go out, Annu. Rev. Earth Planet. Sci., 49, 679–728, https://doi.org/10.1146/annurev-earth-081320-064052, 30 May 2021.
Sinninghe Damsté, J. S. and Köster, J.: A euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event, Earth Planet. Sci. Lett., 158, 165–173, https://doi.org/10.1016/S0012-821X(98)00052-1, 1998.
Sinninghe Damsté, J. S., Kohnen, M. E. L., and De Leeuw, J. W.: Thiophenic biomarkers for palaeoenvironmental assessment and molecular stratigraphy, Nature, 345, 609–611, https://doi.org/10.1038/345609a0, 1990.
Sinninghe Damsté, J. S., Van Duin, A. C. T., Hollander, D., Kohnen, M. E. L., and De Leeuw, J. W.: Early diagenesis of bacteriohopanepolyol derivatives: Formation of fossil homohopanoids, Geochim. Cosmochim. Acta, 59, 5141–5157, https://doi.org/10.1016/0016-7037(95)00338-X, 1995.
Sinninghe Damsté, J. S., Schouten, S., and Van Duin, A. C. T.: Isorenieratene derivatives in sediments: Possible controls on their distribution, Geochim. Cosmochim. Acta, 65, 1557–1571, https://doi.org/10.1016/S0016-7037(01)00549-X, 2001.
Sinninghe Damsté, J. S., Kuypers, M. M. M., Schouten, S., Schulte, S., and Rullkötter, J.: The lycopane/C31 n-alkane ratio as a proxy to assess palaeoxicity during sediment deposition, Earth Planet. Sci. Lett., 209, 215–226, https://doi.org/10.1016/S0012-821X(03)00066-9, 2003.
Sinninghe Damsté, J. S., Kuypers, M. M. M., Pancost, R. D., and Schouten, S.: The carbon isotopic response of algae, (cyano)bacteria, archaea and higher plants to the late Cenomanian perturbation of the global carbon cycle: Insights from biomarkers in black shales from the Cape Verde Basin (DSDP Site 367), Org. Geochem., 39, 1703–1718, https://doi.org/10.1016/j.orggeochem.2008.01.012, 2008.
Sinninghe Damsté, J. S., van Bentum, E. C., Reichart, G. J., Pross, J., and Schouten, S.: A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-Cretaceous Oceanic Anoxic Event 2, Earth Planet. Sci. Lett., 293, 97–103, https://doi.org/10.1016/j.epsl.2010.02.027, 2010.
Sinninghe Damsté, J. S., Ossebaar, J., Schouten, S., and Verschuren, D.: Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: Extracting reliable TEX 86 and MBT/CBT palaeotemperatures from an equatorial African lake, Quaternary Sci. Rev., 50, 43–54, https://doi.org/10.1016/j.quascirev.2012.07.001, 2012.
Sinninghe Damsté, J. S., Schouten, S., and Volkman, J. K.: C27-C30 neohop-13(18)-enes and their saturated and aromatic derivatives in sediments: Indicators for diagenesis and water column stratification, Geochim. Cosmochim. Acta, 133, 402–421, https://doi.org/10.1016/j.gca.2014.03.008, 2014.
Słowakiewicz, M., Tucker, M. E., Perri, E., and Pancost, R. D.: Nearshore euxinia in the photic zone of an ancient sea, Palaeogeogr. Palaeoclimatol. Palaeoecol., 426, 242–259, https://doi.org/10.1016/j.palaeo.2015.03.022, 2015.
Snow, L. J., Duncan, R. A., and Bralower, T. J.: Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and ocean anoxic event 2, Paleoceanography, 20, 1–14, https://doi.org/10.1029/2004PA001093, 2005.
Takashima, R., Nishi, H., Yamanaka, T., Hayashi, K., Waseda, A., Obuse, A., Tomosugi, T., Deguchi, N., and Mochizuki, S.: High-resolution terrestrial carbon isotope and planktic foraminiferal records of the Upper Cenomanian to the Lower Campanian in the Northwest Pacific, Earth Planet. Sci. Lett., 289, 570–582, https://doi.org/10.1016/j.epsl.2009.11.058, 2010.
Taylor, K. W. R., Huber, M., Hollis, C. J., Hernandez-Sanchez, M. T., and Pancost, R. D.: Re-evaluating modern and Palaeogene GDGT distributions: Implications for SST reconstructions, https://doi.org/10.1016/j.gloplacha.2013.06.011, 1 September 2013.
Tierney, J. E. and Tingley, M. P.: A Bayesian, spatially-varying calibration model for the TEX86 proxy, Geochim. Cosmochim. Acta, 127, 83–106, https://doi.org/10.1016/j.gca.2013.11.026, 2014.
Topper, R. P. M., Trabucho Alexandre, J., Tuenter, E., and Meijer, P. Th.: A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation, Clim. Past, 7, 277–297, https://doi.org/10.5194/cp-7-277-2011, 2011.
Trabucho Alexandre, J., Tuenter, E., Henstra, G. A., Van Der Zwan, K. J., Van De Wal, R. S. W., Dijkstra, H. A., and De Boer, P. L.: The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs, Paleoceanography, 25, PA4201, https://doi.org/10.1029/2010PA001925, 2010.
Valisolalao, J., Perakis, N., Chappe, B., and Albrecht, P.: A novel sulfur containing C35 hopanoid in sediments, Tetrahedron Lett., 25, 1183–1186, https://doi.org/10.1016/S0040-4039(01)91555-2, 1984.
van Bentum, E. C., Hetzel, A., Brumsack, H. J., Forster, A., Reichart, G. J., and Sinninghe Damsté, J. S.: Reconstruction of water column anoxia in the equatorial Atlantic during the Cenomanian-Turonian oceanic anoxic event using biomarker and trace metal proxies, Palaeogeogr. Palaeoclimatol. Palaeoecol., 280, 489–498, https://doi.org/10.1016/j.palaeo.2009.07.003, 2009.
Voigt, S., Erbacher, J., Mutterlose, J., Weiss, W., Westerhold, T., Wiese, F., Wilmsen, M., and Wonik, T.: The Cenomanian – Turonian of the Wunstorf section – (North Germany): Global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2, Newsletters Stratigr., 43, 65–89, https://doi.org/10.1127/0078-0421/2008/0043-0065, 2008.
Weijers, J. W. H., Schouten, S., Spaargaren, O. C., and Sinninghe Damsté, J. S.: Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index, Org. Geochem., 37, 1680–1693, https://doi.org/10.1016/j.orggeochem.2006.07.018, 2006.
Werne, J. P., Hollander, D. J., Lyons, T. W., and Sinninghe Damsté, J. S.: Organic sulfur biogeochemistry: Recent advances and future research directions, Spec. Pap. Geol. Soc. Am., 379, 135–150, https://doi.org/10.1130/0-8137-2379-5.135, 2004.
Zhang, Y. G., Zhang, C. L., Liu, X. L., Li, L., Hinrichs, K. U., and Noakes, J. E.: Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates, Earth Planet. Sci. Lett., 307, 525–534, https://doi.org/10.1016/j.epsl.2011.05.031, 2011.
Short summary
Oceanic Anoxic Event 2 (OAE 2), about 93.5 million years ago, is characterized by widespread deoxygenated ocean and massive burial of organic-rich sediments. Our results show that the marine deoxygenation at the equatorial Atlantic that predates the OAE 2 interval was driven by global warming and associated with the nutrient status of the site, with factors like temperature-modulated upwelling and hydrology-induced weathering contributing to enhanced nutrient delivery over various timescales.
Oceanic Anoxic Event 2 (OAE 2), about 93.5 million years ago, is characterized by widespread...