Articles | Volume 19, issue 10
https://doi.org/10.5194/cp-19-1891-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1891-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contribution of lakes in sustaining the Sahara greening during the mid-Holocene
Yuheng Li
CORRESPONDING AUTHOR
Department of Civil Engineering, Graduate School of Engineering,
University of Tokyo, Tokyo, Japan
Kanon Kino
Department of Civil Engineering, Graduate School of Engineering,
University of Tokyo, Tokyo, Japan
Alexandre Cauquoin
Institute of Industrial Science, University of Tokyo, Kashiwa, Japan
Taikan Oki
Department of Civil Engineering, Graduate School of Engineering,
University of Tokyo, Tokyo, Japan
Related authors
No articles found.
Giuliano Dreossi, Mauro Masiol, Barbara Stenni, Daniele Zannoni, Claudio Scarchilli, Virginia Ciardini, Mathieu Casado, Amaëlle Landais, Martin Werner, Alexandre Cauquoin, Giampietro Casasanta, Massimo Del Guasta, Vittoria Posocco, and Carlo Barbante
The Cryosphere, 18, 3911–3931, https://doi.org/10.5194/tc-18-3911-2024, https://doi.org/10.5194/tc-18-3911-2024, 2024
Short summary
Short summary
Oxygen and hydrogen stable isotopes have been extensively used to reconstruct past temperatures, with precipitation representing the input signal of the isotopic records in ice cores. We present a 10-year record of stable isotopes in daily precipitation at Concordia Station: this is the longest record for inland Antarctica and represents a benchmark for quantifying post-depositional processes and improving the paleoclimate interpretation of ice cores.
Shinichiro Nakamura, Fuko Nakai, Yuichiro Ito, Ginga Okada, and Taikan Oki
Hydrol. Earth Syst. Sci., 28, 2329–2342, https://doi.org/10.5194/hess-28-2329-2024, https://doi.org/10.5194/hess-28-2329-2024, 2024
Short summary
Short summary
The formation of levee systems is an important factor in determining whether a society fights or adapts to floods. This study presents the levee system transformation process over the past century, from the indigenous levee system to modern continuous levees, and its impacts on human–flood coevolution in the Kiso River basin, Japan, and reveals the interactions between levee systems and human–water systems involving different scales and water phenomena.
Amaelle Landais, Cécile Agosta, Françoise Vimeux, Olivier Magand, Cyrielle Solis, Alexandre Cauquoin, Niels Dutrievoz, Camille Risi, Christophe Leroy-Dos Santos, Elise Fourré, Olivier Cattani, Olivier Jossoud, Bénédicte Minster, Frédéric Prié, Mathieu Casado, Aurélien Dommergue, Yann Bertrand, and Martin Werner
Atmos. Chem. Phys., 24, 4611–4634, https://doi.org/10.5194/acp-24-4611-2024, https://doi.org/10.5194/acp-24-4611-2024, 2024
Short summary
Short summary
We have monitored water vapor isotopes since January 2020 on Amsterdam Island in the Indian Ocean. We show 11 periods associated with abrupt negative excursions of water vapor δ18Ο. Six of these events show a decrease in gaseous elemental mercury, suggesting subsidence of air from a higher altitude. Accurately representing the water isotopic signal during these cold fronts is a real challenge for the atmospheric components of Earth system models equipped with water isotopes.
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-685, https://doi.org/10.5194/egusphere-2024-685, 2024
Short summary
Short summary
The role of post-depositional processes taking place at the ice sheet's surface on the water stable isotope signal measured in polar ice cores is not fully understood. Using field observations and modelling results, we show that the original precipitation isotopic signal at Dome C, East Antarctica, is modified by post-depositional processes and provide the first quantitative estimation of their mean impact on the isotopic signal observed in the snow.
Christophe Leroy-Dos Santos, Elise Fourré, Cécile Agosta, Mathieu Casado, Alexandre Cauquoin, Martin Werner, Benedicte Minster, Frédéric Prié, Olivier Jossoud, Leila Petit, and Amaëlle Landais
The Cryosphere, 17, 5241–5254, https://doi.org/10.5194/tc-17-5241-2023, https://doi.org/10.5194/tc-17-5241-2023, 2023
Short summary
Short summary
In the face of global warming, understanding the changing water cycle and temperatures in polar regions is crucial. These factors directly impact the balance of ice sheets in the Arctic and Antarctic. By studying the composition of water vapor, we gain insights into climate variations. Our 2-year study at Dumont d’Urville station, Adélie Land, offers valuable data to refine models. Additionally, we demonstrate how modeling aids in interpreting signals from ice core samples in the region.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Alexandre Cauquoin, Ayako Abe-Ouchi, Takashi Obase, Wing-Le Chan, André Paul, and Martin Werner
Clim. Past, 19, 1275–1294, https://doi.org/10.5194/cp-19-1275-2023, https://doi.org/10.5194/cp-19-1275-2023, 2023
Short summary
Short summary
Stable water isotopes are tracers of climate processes occurring in the hydrological cycle. They are widely used to reconstruct the past variations of polar temperature before the instrumental era thanks to their measurements in ice cores. However, the relationship between measured isotopes and temperature has large uncertainties. In our study, we investigate how the sea surface conditions (temperature, sea ice, ocean circulation) impact this relationship for a cold to warm climate change.
Jiajia Wang, Hongxi Pang, Shuangye Wu, Spruce W. Schoenemann, Ryu Uemura, Alexey Ekaykin, Martin Werner, Alexandre Cauquoin, Sentia Goursaud Oger, Summer Rupper, and Shugui Hou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-384, https://doi.org/10.5194/essd-2022-384, 2022
Revised manuscript not accepted
Short summary
Short summary
Stable water isotopic observations in surface snow over Antarctica provide a basis for validating isotopic models and interpreting Antarctic ice core records. This study presents a new compilation of Antarctic surface snow isotopic dataset based on published and unpublished sources. The database has a wide range of potential applications in studying spatial distribution of water isotopes, model validation, and reconstruction and interpretation of Antarctic ice core records.
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Short summary
Global hydrological models (GHMs) are usually applied with a spatial resolution of about 50 km, but this time we applied the H08 model, one of the most advanced GHMs, with a high resolution of 2 km to Kyushu island, Japan. Since the model was not accurate as it was, we incorporated local information and improved the model, which revealed detailed water stress in subregions that were not visible with the previous resolution.
Daisuke Tokuda, Hyungjun Kim, Dai Yamazaki, and Taikan Oki
Geosci. Model Dev., 14, 5669–5693, https://doi.org/10.5194/gmd-14-5669-2021, https://doi.org/10.5194/gmd-14-5669-2021, 2021
Short summary
Short summary
We developed TCHOIR, a hydrologic simulation framework, to solve fluvial- and thermodynamics of the river–lake continuum. This provides an algorithm for upscaling high-resolution topography as well, which enables the representation of those interactions at the global scale. Validation against in situ and satellite observations shows that the coupled mode outperforms river- or lake-only modes. TCHOIR will contribute to elucidating the role of surface hydrology in Earth’s energy and water cycle.
Marcus Breil, Emanuel Christner, Alexandre Cauquoin, Martin Werner, Melanie Karremann, and Gerd Schädler
Clim. Past, 17, 1685–1699, https://doi.org/10.5194/cp-17-1685-2021, https://doi.org/10.5194/cp-17-1685-2021, 2021
Short summary
Short summary
For the first time an isotope-enabled regional climate simulation for Greenland is performed for the mid-Holocene. Simulation results are compared with observed isotope ratios in ice cores. Compared to global climate simulations, a regional downscaling improves the agreement with measured isotope concentrations. Thus, an isotope-enabled regional climate simulation constitutes a useful supplement to reconstruct regional paleo-climate conditions during the mid-Holocene in Greenland.
Alexandre Cauquoin, Martin Werner, and Gerrit Lohmann
Clim. Past, 15, 1913–1937, https://doi.org/10.5194/cp-15-1913-2019, https://doi.org/10.5194/cp-15-1913-2019, 2019
Short summary
Short summary
We present here the first model results of a newly developed isotope-enhanced version of the Earth system model MPI-ESM. Our model setup has a finer spatial resolution compared to other isotope-enabled fully coupled models. We evaluate the model for preindustrial and mid-Holocene climate conditions. Our analyses show a good to very good agreement with various isotopic data. The spatial and temporal links between isotopes and climate variables under warm climatic conditions are also analyzed.
Cherry May R. Mateo, Dai Yamazaki, Hyungjun Kim, Adisorn Champathong, Jai Vaze, and Taikan Oki
Hydrol. Earth Syst. Sci., 21, 5143–5163, https://doi.org/10.5194/hess-21-5143-2017, https://doi.org/10.5194/hess-21-5143-2017, 2017
Short summary
Short summary
Providing large-scale (regional or global) simulation of floods at fine spatial resolution is difficult due to computational constraints but is necessary to provide consistent estimates of hazards, especially in data-scarce regions. We assessed the capability of an advanced global-scale river model to simulate an extreme flood at fine resolution. We found that when multiple flow connections in rivers are represented, the model can provide reliable fine-resolution predictions of flood inundation.
Alexandre Cauquoin and Camille Risi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-178, https://doi.org/10.5194/gmd-2017-178, 2017
Revised manuscript not accepted
Short summary
Short summary
AGCMs are known to have a warm and isotopically enriched bias over Antarctica. We test here the hypothesis that these biases are consequences of a too diffusive advection. We show here that a good representation of the advection, especially on the horizontal, is very important to reduce the bias in the isotopic contents of precipitation above this area and to improve the modelled water isotopes – temperature relationship, essential when using GCMs for paleoclimate applications.
Eduardo Eiji Maeda, Xuanlong Ma, Fabien Hubert Wagner, Hyungjun Kim, Taikan Oki, Derek Eamus, and Alfredo Huete
Earth Syst. Dynam., 8, 439–454, https://doi.org/10.5194/esd-8-439-2017, https://doi.org/10.5194/esd-8-439-2017, 2017
Short summary
Short summary
The Amazon River basin continuously transfers massive volumes of water from the land surface to the atmosphere, thereby having massive influence on global climate patterns. Nonetheless, the characteristics of ET across the Amazon basin, as well as the relative contribution of the multiple drivers to this process, are still uncertain. This study carries out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers across the Amazon Basin.
Grant M. Raisbeck, Alexandre Cauquoin, Jean Jouzel, Amaelle Landais, Jean-Robert Petit, Vladimir Y. Lipenkov, Juerg Beer, Hans-Arno Synal, Hans Oerter, Sigfus J. Johnsen, Jorgen P. Steffensen, Anders Svensson, and Françoise Yiou
Clim. Past, 13, 217–229, https://doi.org/10.5194/cp-13-217-2017, https://doi.org/10.5194/cp-13-217-2017, 2017
Short summary
Short summary
Using records of a long-lived radioactive nuclide (10Be) that is formed globally in the atmosphere and deposited within a few years to the earth’s surface, we have synchronized three Antarctic ice cores to one from Greenland. This permits the climate and other environmental parameters registered in these ice cores to be put on a common timescale with a precision of a few decades, thus allowing different models and mechanisms associated with these parameters to be tested with the same precision.
Hannes Müller Schmied, Linda Adam, Stephanie Eisner, Gabriel Fink, Martina Flörke, Hyungjun Kim, Taikan Oki, Felix Theodor Portmann, Robert Reinecke, Claudia Riedel, Qi Song, Jing Zhang, and Petra Döll
Proc. IAHS, 374, 53–62, https://doi.org/10.5194/piahs-374-53-2016, https://doi.org/10.5194/piahs-374-53-2016, 2016
Short summary
Short summary
We analyzed simulated water balance components on global and continental scale as impacted by the uncertainty of climate forcing datasets. On average, around 62 % of precipitation on global land area evapotranspires and 38 % is discharge to oceans and inland sinks. Human water use increased during the 20th century by a factor of 5. Uncertainty of precipitation variable has most impact on model results, followed by shortwave downward radiation. Model calibration reduces this uncertainty.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
Hannes Müller Schmied, Linda Adam, Stephanie Eisner, Gabriel Fink, Martina Flörke, Hyungjun Kim, Taikan Oki, Felix Theodor Portmann, Robert Reinecke, Claudia Riedel, Qi Song, Jing Zhang, and Petra Döll
Hydrol. Earth Syst. Sci., 20, 2877–2898, https://doi.org/10.5194/hess-20-2877-2016, https://doi.org/10.5194/hess-20-2877-2016, 2016
Short summary
Short summary
The assessment of water balance components of the global land surface by means of hydrological models is affected by large uncertainties, in particular related to meteorological forcing. We analyze the effect of five state-of-the-art forcings on water balance components at different spatial and temporal scales modeled with WaterGAP. Furthermore, the dominant effect (precipitation/human alteration) for long-term changes in river discharge is assessed.
Rajan Bhattarai, Kei Yoshimura, Shinta Seto, Shinichiro Nakamura, and Taikan Oki
Nat. Hazards Earth Syst. Sci., 16, 1063–1077, https://doi.org/10.5194/nhess-16-1063-2016, https://doi.org/10.5194/nhess-16-1063-2016, 2016
Short summary
Short summary
The assessment of flood risk is important for policymakers to evaluate flood damage and for disaster preparation. Large population densities and high property concentration make cities more vulnerable to floods and have higher damage per year. In Japan, about one billion USD in damage occurs annually due to floods related to rainfall only. In this paper, we report a damage occurrence probability function and a damage cost function for pluvial flood damage to estimate annual flood damage.
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
A. Cauquoin, A. Landais, G. M. Raisbeck, J. Jouzel, L. Bazin, M. Kageyama, J.-Y. Peterschmitt, M. Werner, E. Bard, and ASTER Team
Clim. Past, 11, 355–367, https://doi.org/10.5194/cp-11-355-2015, https://doi.org/10.5194/cp-11-355-2015, 2015
Short summary
Short summary
We present a new 10Be record at EDC between 269 and 355ka. Our 10Be-based accumulation rate is in good agreement with the one associated with the EDC3 timescale except for the warm MIS 9.3 optimum. This suggests that temperature reconstruction from water isotopes may be underestimated by 2.4K for the difference between the MIS 9.3 and present day. The CMIP5-PMIP3 models do not quantitatively reproduce changes in precipitation vs. temperature increase during glacial–interglacial transitions.
Related subject area
Subject: Climate Modelling | Archive: Modelling only | Timescale: Holocene
Insights into the Australian mid-Holocene climate using downscaled climate models
Modelling Mediterranean ocean biogeochemistry of the Last Glacial Maximum
Mid-Holocene climate at mid-latitudes: assessing the impact of Saharan greening
Dynamic interaction between lakes, climate, and vegetation across northern Africa during the mid-Holocene
Simulating dust emissions and secondary organic aerosol formation over northern Africa during the mid-Holocene Green Sahara period
Quantifying effects of Earth orbital parameters and greenhouse gases on mid-Holocene climate
Did the Bronze Age deforestation of Europe affect its climate? A regional climate model study using pollen-based land cover reconstructions
Indian Ocean variability changes in the Paleoclimate Modelling Intercomparison Project
CHELSA-TraCE21k – high-resolution (1 km) downscaled transient temperature and precipitation data since the Last Glacial Maximum
Investigating hydroclimatic impacts of the 168–158 BCE volcanic quartet and their relevance to the Nile River basin and Egyptian history
Simulations of the Holocene climate in Europe using an interactive downscaling within the iLOVECLIM model (version 1.1)
Mid-Holocene climate of the Tibetan Plateau and hydroclimate in three major river basins based on high-resolution regional climate simulations
Comparison of the green-to-desert Sahara transitions between the Holocene and the last interglacial
Influence of long-term changes in solar irradiance forcing on the Southern Annular Mode
Simulated range of mid-Holocene precipitation changes from extended lakes and wetlands over North Africa
Calendar effects on surface air temperature and precipitation based on model-ensemble equilibrium and transient simulations from PMIP4 and PACMEDY
The long-standing dilemma of European summer temperatures at the mid-Holocene and other considerations on learning from the past for the future using a regional climate model
Mid-Holocene monsoons in South and Southeast Asia: dynamically downscaled simulations and the influence of the Green Sahara
The remote response of the South Asian Monsoon to reduced dust emissions and Sahara greening during the middle Holocene
Impact of dust in PMIP-CMIP6 mid-Holocene simulations with the IPSL model
Technical note: Characterising and comparing different palaeoclimates with dynamical systems theory
Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations
CMIP6/PMIP4 simulations of the mid-Holocene and Last Interglacial using HadGEM3: comparison to the pre-industrial era, previous model versions and proxy data
Water isotopes – climate relationships for the mid-Holocene and preindustrial period simulated with an isotope-enabled version of MPI-ESM
Effects of land use and anthropogenic aerosol emissions in the Roman Empire
Strengths and challenges for transient Mid- to Late Holocene simulations with dynamical vegetation
Physical processes of cooling and mega-drought during the 4.2 ka BP event: results from TraCE-21ka simulations
Comparing the spatial patterns of climate change in the 9th and 5th millennia BP from TRACE-21 model simulations
Abrupt cold events in the North Atlantic Ocean in a transient Holocene simulation
Rapid increase in simulated North Atlantic dust deposition due to fast change of northwest African landscape during the Holocene
Evaluation of PMIP2 and PMIP3 simulations of mid-Holocene climate in the Indo-Pacific, Australasian and Southern Ocean regions
Biome changes in Asia since the mid-Holocene – an analysis of different transient Earth system model simulations
Modeling precipitation δ18O variability in East Asia since the Last Glacial Maximum: temperature and amount effects across different timescales
Mid-to-late Holocene temperature evolution and atmospheric dynamics over Europe in regional model simulations
Effects of melting ice sheets and orbital forcing on the early Holocene warming in the extratropical Northern Hemisphere
The biogeophysical climatic impacts of anthropogenic land use change during the Holocene
The link between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle
Stability of ENSO and its tropical Pacific teleconnections over the Last Millennium
Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes
The impact of Sahara desertification on Arctic cooling during the Holocene
Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere–ocean model
Reexamining the barrier effect of the Tibetan Plateau on the South Asian summer monsoon
Model–data comparison and data assimilation of mid-Holocene Arctic sea ice concentration
Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations
Mid-Holocene ocean and vegetation feedbacks over East Asia
A regional climate palaeosimulation for Europe in the period 1500–1990 – Part 1: Model validation
Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum
Can an Earth System Model simulate better climate change at mid-Holocene than an AOGCM? A comparison study of MIROC-ESM and MIROC3
Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity
The sensitivity of the Arctic sea ice to orbitally induced insolation changes: a study of the mid-Holocene Paleoclimate Modelling Intercomparison Project 2 and 3 simulations
Andrew L. Lowry and Hamish A. McGowan
Clim. Past, 20, 2309–2325, https://doi.org/10.5194/cp-20-2309-2024, https://doi.org/10.5194/cp-20-2309-2024, 2024
Short summary
Short summary
We present simulations of the mid-Holocene and pre-industrial climate of Australia using coarse- (2°) and finer-resolution (0.44°) climate models. These simulations are compared to bioclimatic representations of the palaeoclimate of the mid-Holocene. The finer-resolution simulations reduce the bias between the model and the bioclimatic results and highlight the improved value of using finer-resolution models to simulate the palaeoclimate.
Katharina D. Six, Uwe Mikolajewicz, and Gerhard Schmiedl
Clim. Past, 20, 1785–1816, https://doi.org/10.5194/cp-20-1785-2024, https://doi.org/10.5194/cp-20-1785-2024, 2024
Short summary
Short summary
We use a physical and biogeochemical ocean model of the Mediterranean Sea to obtain a picture of the Last Glacial Maximum. The shallowing of the Strait of Gibraltar leads to a shallower pycnocline and more efficient nutrient export. Consistent with the sediment data, an increase in organic matter deposition is simulated, although this is based on lower biological production. This unexpected but plausible result resolves the apparent contradiction between planktonic and benthic proxy data.
Marco Gaetani, Gabriele Messori, Francesco S. R. Pausata, Shivangi Tiwari, M. Carmen Alvarez Castro, and Qiong Zhang
Clim. Past, 20, 1735–1759, https://doi.org/10.5194/cp-20-1735-2024, https://doi.org/10.5194/cp-20-1735-2024, 2024
Short summary
Short summary
Palaeoclimate reconstructions suggest that, around 6000 years ago, a greening of the Sahara took place, accompanied by climate changes in the Northern Hemisphere at middle to high latitudes. In this study, a climate model is used to investigate how this drastic environmental change in the Sahara impacted remote regions. Specifically, climate simulations reveal significant modifications in atmospheric circulation over the North Atlantic, affecting North American and European climates.
Nora Farina Specht, Martin Claussen, and Thomas Kleinen
Clim. Past, 20, 1595–1613, https://doi.org/10.5194/cp-20-1595-2024, https://doi.org/10.5194/cp-20-1595-2024, 2024
Short summary
Short summary
We close the terrestrial water cycle across the Sahara and Sahel by integrating a new endorheic-lake model into a climate model. A factor analysis of mid-Holocene simulations shows that both dynamic lakes and dynamic vegetation individually contribute to a precipitation increase over northern Africa that is collectively greater than that caused by the interaction between lake and vegetation dynamics. Thus, the lake–vegetation interaction causes a relative drying response across the entire Sahel.
Putian Zhou, Zhengyao Lu, Jukka-Pekka Keskinen, Qiong Zhang, Juha Lento, Jianpu Bian, Twan van Noije, Philippe Le Sager, Veli-Matti Kerminen, Markku Kulmala, Michael Boy, and Risto Makkonen
Clim. Past, 19, 2445–2462, https://doi.org/10.5194/cp-19-2445-2023, https://doi.org/10.5194/cp-19-2445-2023, 2023
Short summary
Short summary
A Green Sahara with enhanced rainfall and larger vegetation cover existed in northern Africa about 6000 years ago. Biosphere–atmosphere interactions are found to be critical to explaining this wet period. Based on modeled vegetation reconstruction data, we simulated dust emissions and aerosol formation, which are key factors in biosphere–atmosphere interactions. Our results also provide a benchmark of aerosol climatology for future paleo-climate simulation experiments.
Yibo Kang and Haijun Yang
Clim. Past, 19, 2013–2026, https://doi.org/10.5194/cp-19-2013-2023, https://doi.org/10.5194/cp-19-2013-2023, 2023
Short summary
Short summary
We simulated the climate difference between the mid-Holocene (MH) and the preindustrial (PI) periods and quantified the effects of Earth orbital parameters (ORBs) and greenhouse gases (GHGs) on the climate difference. We think the insignificant difference in the Atlantic meridional overturning circulation between the MH and PI periods has resulted from the competing effects of the ORBs and the GHGs on the climate.
Gustav Strandberg, Jie Chen, Ralph Fyfe, Erik Kjellström, Johan Lindström, Anneli Poska, Qiong Zhang, and Marie-José Gaillard
Clim. Past, 19, 1507–1530, https://doi.org/10.5194/cp-19-1507-2023, https://doi.org/10.5194/cp-19-1507-2023, 2023
Short summary
Short summary
The impact of land use and land cover change (LULCC) on the climate around 2500 years ago is studied using reconstructions and models. The results suggest that LULCC impacted the climate in parts of Europe. Reconstructed LULCC shows up to 1.5 °C higher temperature in parts of Europe in some seasons. This relatively strong response implies that anthropogenic LULCC that had occurred by the late prehistoric period may have already affected the European climate by 2500 years ago.
Chris Brierley, Kaustubh Thirumalai, Edward Grindrod, and Jonathan Barnsley
Clim. Past, 19, 681–701, https://doi.org/10.5194/cp-19-681-2023, https://doi.org/10.5194/cp-19-681-2023, 2023
Short summary
Short summary
Year-to-year variations in the weather conditions over the Indian Ocean have important consequences for the substantial fraction of the Earth's population that live near it. This work looks at how these variations respond to climate change – both past and future. The models rarely agree, suggesting a weak, uncertain response to climate change.
Dirk Nikolaus Karger, Michael P. Nobis, Signe Normand, Catherine H. Graham, and Niklaus E. Zimmermann
Clim. Past, 19, 439–456, https://doi.org/10.5194/cp-19-439-2023, https://doi.org/10.5194/cp-19-439-2023, 2023
Short summary
Short summary
Here we present global monthly climate time series for air temperature and precipitation at 1 km resolution for the last 21 000 years. The topography at all time steps is created by combining high-resolution information on glacial cover from current and Last Glacial Maximum glacier databases with the interpolation of an ice sheet model and a coupling to mean annual temperatures from a global circulation model.
Ram Singh, Kostas Tsigaridis, Allegra N. LeGrande, Francis Ludlow, and Joseph G. Manning
Clim. Past, 19, 249–275, https://doi.org/10.5194/cp-19-249-2023, https://doi.org/10.5194/cp-19-249-2023, 2023
Short summary
Short summary
This work is a modeling effort to investigate the hydroclimatic impacts of a volcanic
quartetduring 168–158 BCE over the Nile River basin in the context of Ancient Egypt's Ptolemaic era (305–30 BCE). The model simulated a robust surface cooling (~ 1.0–1.5 °C), suppressing the African monsoon (deficit of > 1 mm d−1 over East Africa) and agriculturally vital Nile summer flooding. Our result supports the hypothesized relation between volcanic eruptions, hydroclimatic shocks, and societal impacts.
Frank Arthur, Didier M. Roche, Ralph Fyfe, Aurélien Quiquet, and Hans Renssen
Clim. Past, 19, 87–106, https://doi.org/10.5194/cp-19-87-2023, https://doi.org/10.5194/cp-19-87-2023, 2023
Short summary
Short summary
This paper simulates transcient Holocene climate in Europe by applying an interactive downscaling to the standard version of the iLOVECLIM model. The results show that downscaling presents a higher spatial variability in better agreement with proxy-based reconstructions as compared to the standard model, particularly in the Alps, the Scandes, and the Mediterranean. Our downscaling scheme is numerically cheap, which can perform kilometric multi-millennial simulations suitable for future studies.
Yiling Huo, William Richard Peltier, and Deepak Chandan
Clim. Past, 18, 2401–2420, https://doi.org/10.5194/cp-18-2401-2022, https://doi.org/10.5194/cp-18-2401-2022, 2022
Short summary
Short summary
Understanding the hydrological changes on the Tibetan Plateau (TP) during the mid-Holocene (MH; a period with warmer summers than today) will help us understand expected future changes. This study analyses the hydroclimates over the headwater regions of three major rivers originating on the TP using dynamically downscaled climate simulations. Model–data comparisons show that the dynamic downscaling significantly improves both the present-day and MH regional climate simulations of the TP.
Huan Li, Hans Renssen, and Didier M. Roche
Clim. Past, 18, 2303–2319, https://doi.org/10.5194/cp-18-2303-2022, https://doi.org/10.5194/cp-18-2303-2022, 2022
Short summary
Short summary
In past warm periods, the Sahara region was covered by vegetation. In this paper we study transitions from this
greenstate to the desert state we find today. For this purpose, we have used a global climate model coupled to a vegetation model to perform transient simulations. We analyzed the model results to assess the effect of vegetation shifts on the abruptness of the transition. We find that the vegetation feedback was more efficient during the last interglacial than during the Holocene.
Nicky M. Wright, Claire E. Krause, Steven J. Phipps, Ghyslaine Boschat, and Nerilie J. Abram
Clim. Past, 18, 1509–1528, https://doi.org/10.5194/cp-18-1509-2022, https://doi.org/10.5194/cp-18-1509-2022, 2022
Short summary
Short summary
The Southern Annular Mode (SAM) is a major mode of climate variability. Proxy-based SAM reconstructions show changes that last millennium climate simulations do not reproduce. We test the SAM's sensitivity to solar forcing using simulations with a range of solar values and transient last millennium simulations with large-amplitude solar variations. We find that solar forcing can alter the SAM and that strong solar forcing transient simulations better match proxy-based reconstructions.
Nora Farina Specht, Martin Claussen, and Thomas Kleinen
Clim. Past, 18, 1035–1046, https://doi.org/10.5194/cp-18-1035-2022, https://doi.org/10.5194/cp-18-1035-2022, 2022
Short summary
Short summary
Palaeoenvironmental records only provide a fragmentary picture of the lake and wetland extent in North Africa during the mid-Holocene. Therefore, we investigate the possible range of mid-Holocene precipitation changes caused by an estimated small and maximum lake extent and a maximum wetland extent. Results show a particularly strong monsoon precipitation response to lakes and wetlands over the Western Sahara and an increased monsoon precipitation when replacing lakes with vegetated wetlands.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Emmanuele Russo, Bijan Fallah, Patrick Ludwig, Melanie Karremann, and Christoph C. Raible
Clim. Past, 18, 895–909, https://doi.org/10.5194/cp-18-895-2022, https://doi.org/10.5194/cp-18-895-2022, 2022
Short summary
Short summary
In this study a set of simulations are performed with the regional climate model COSMO-CLM for Europe, for the mid-Holocene and pre-industrial periods. The main aim is to better understand the drivers of differences between models and pollen-based summer temperatures. Results show that a fundamental role is played by spring soil moisture availability. Additionally, results suggest that model bias is not stationary, and an optimal configuration could not be the best under different forcing.
Yiling Huo, William Richard Peltier, and Deepak Chandan
Clim. Past, 17, 1645–1664, https://doi.org/10.5194/cp-17-1645-2021, https://doi.org/10.5194/cp-17-1645-2021, 2021
Short summary
Short summary
Regional climate simulations were constructed to more accurately capture regional features of the South and Southeast Asian monsoon during the mid-Holocene. Comparison with proxies shows that our high-resolution simulations outperform those with the coarser global model in reproducing the monsoon rainfall anomalies. Incorporating the Green Sahara climate conditions over northern Africa into our simulations further strengthens the monsoon precipitation and leads to better agreement with proxies.
Francesco S. R. Pausata, Gabriele Messori, Jayoung Yun, Chetankumar A. Jalihal, Massimo A. Bollasina, and Thomas M. Marchitto
Clim. Past, 17, 1243–1271, https://doi.org/10.5194/cp-17-1243-2021, https://doi.org/10.5194/cp-17-1243-2021, 2021
Short summary
Short summary
Far-afield changes in vegetation such as those that occurred over the Sahara during the middle Holocene and the consequent changes in dust emissions can affect the intensity of the South Asian Monsoon (SAM) rainfall and the lengthening of the monsoon season. This remote influence is mediated by anomalies in Indian Ocean sea surface temperatures and may have shaped the evolution of the SAM during the termination of the African Humid Period.
Pascale Braconnot, Samuel Albani, Yves Balkanski, Anne Cozic, Masa Kageyama, Adriana Sima, Olivier Marti, and Jean-Yves Peterschmitt
Clim. Past, 17, 1091–1117, https://doi.org/10.5194/cp-17-1091-2021, https://doi.org/10.5194/cp-17-1091-2021, 2021
Short summary
Short summary
We investigate how mid-Holocene dust reduction affects the Earth’s energetics from a suite of climate simulations. Our analyses confirm the peculiar role of the dust radiative effect over bright surfaces such as African deserts. We highlight a strong dependence on the dust pattern. The relative dust forcing between West Africa and the Middle East impacts the relative response of Indian and African monsoons and between the western tropical Atlantic and the Atlantic meridional circulation.
Gabriele Messori and Davide Faranda
Clim. Past, 17, 545–563, https://doi.org/10.5194/cp-17-545-2021, https://doi.org/10.5194/cp-17-545-2021, 2021
Short summary
Short summary
The palaeoclimate community must both analyse large amounts of model data and compare very different climates. Here, we present a seemingly very abstract analysis approach that may be fruitfully applied to palaeoclimate numerical simulations. This approach characterises the dynamics of a given climate through a small number of metrics and is thus suited to face the above challenges.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Charles J. R. Williams, Maria-Vittoria Guarino, Emilie Capron, Irene Malmierca-Vallet, Joy S. Singarayer, Louise C. Sime, Daniel J. Lunt, and Paul J. Valdes
Clim. Past, 16, 1429–1450, https://doi.org/10.5194/cp-16-1429-2020, https://doi.org/10.5194/cp-16-1429-2020, 2020
Short summary
Short summary
Computer simulations of the geological past are an important tool to improve our understanding of climate change. We present results from two simulations using the latest version of the UK's climate model, the mid-Holocene (6000 years ago) and Last Interglacial (127 000 years ago). The simulations reproduce temperatures consistent with the pattern of incoming radiation. Model–data comparisons indicate that some regions (and some seasons) produce better matches to the data than others.
Alexandre Cauquoin, Martin Werner, and Gerrit Lohmann
Clim. Past, 15, 1913–1937, https://doi.org/10.5194/cp-15-1913-2019, https://doi.org/10.5194/cp-15-1913-2019, 2019
Short summary
Short summary
We present here the first model results of a newly developed isotope-enhanced version of the Earth system model MPI-ESM. Our model setup has a finer spatial resolution compared to other isotope-enabled fully coupled models. We evaluate the model for preindustrial and mid-Holocene climate conditions. Our analyses show a good to very good agreement with various isotopic data. The spatial and temporal links between isotopes and climate variables under warm climatic conditions are also analyzed.
Anina Gilgen, Stiig Wilkenskjeld, Jed O. Kaplan, Thomas Kühn, and Ulrike Lohmann
Clim. Past, 15, 1885–1911, https://doi.org/10.5194/cp-15-1885-2019, https://doi.org/10.5194/cp-15-1885-2019, 2019
Short summary
Short summary
Using the global aerosol–climate model ECHAM-HAM-SALSA, the effect of humans on European climate in the Roman Empire was quantified. Both land use and novel estimates of anthropogenic aerosol emissions were considered. We conducted simulations with fixed sea-surface temperatures to gain a first impression about the anthropogenic impact. While land use effects induced a regional warming for one of the reconstructions, aerosol emissions led to a cooling associated with aerosol–cloud interactions.
Pascale Braconnot, Dan Zhu, Olivier Marti, and Jérôme Servonnat
Clim. Past, 15, 997–1024, https://doi.org/10.5194/cp-15-997-2019, https://doi.org/10.5194/cp-15-997-2019, 2019
Short summary
Short summary
This study discusses a simulation of the last 6000 years realized with a climate model in which the vegetation and carbon cycle are fully interactive. The long-term southward shift in Northern Hemisphere tree line and Afro-Asian monsoon rain are reproduced. The results show substantial change in tree composition with time over Eurasia and the role of trace gases in the recent past. They highlight the limitations due to model setup and multiple preindustrial vegetation states.
Mi Yan and Jian Liu
Clim. Past, 15, 265–277, https://doi.org/10.5194/cp-15-265-2019, https://doi.org/10.5194/cp-15-265-2019, 2019
Liang Ning, Jian Liu, Raymond S. Bradley, and Mi Yan
Clim. Past, 15, 41–52, https://doi.org/10.5194/cp-15-41-2019, https://doi.org/10.5194/cp-15-41-2019, 2019
Andrea Klus, Matthias Prange, Vidya Varma, Louis Bruno Tremblay, and Michael Schulz
Clim. Past, 14, 1165–1178, https://doi.org/10.5194/cp-14-1165-2018, https://doi.org/10.5194/cp-14-1165-2018, 2018
Short summary
Short summary
Numerous proxy records from the northern North Atlantic suggest substantial climate variability including the occurrence of multi-decadal-to-centennial cold events during the Holocene. We analyzed two abrupt cold events in a Holocene simulation using a comprehensive climate model. It is shown that the events were ultimately triggered by prolonged phases of positive North Atlantic Oscillation causing changes in ocean circulation followed by severe cooling, freshening, and expansion of sea ice.
Sabine Egerer, Martin Claussen, and Christian Reick
Clim. Past, 14, 1051–1066, https://doi.org/10.5194/cp-14-1051-2018, https://doi.org/10.5194/cp-14-1051-2018, 2018
Short summary
Short summary
We find a rapid increase in simulated dust deposition between 6 and
4 ka BP that is fairly consistent with an abrupt change in dust deposition that was observed in marine sediment records at around 5 ka BP. This rapid change is caused by a rapid increase in simulated dust emissions in the western Sahara due to a fast decline in vegetation cover and a locally strong reduction of lake area. Our study identifies spatial and temporal heterogeneity in the transition of the North African landscape.
Duncan Ackerley, Jessica Reeves, Cameron Barr, Helen Bostock, Kathryn Fitzsimmons, Michael-Shawn Fletcher, Chris Gouramanis, Helen McGregor, Scott Mooney, Steven J. Phipps, John Tibby, and Jonathan Tyler
Clim. Past, 13, 1661–1684, https://doi.org/10.5194/cp-13-1661-2017, https://doi.org/10.5194/cp-13-1661-2017, 2017
Short summary
Short summary
A selection of climate models have been used to simulate both pre-industrial (1750 CE) and mid-Holocene (6000 years ago) conditions. This study presents an assessment of the temperature, rainfall and flow over Australasia from those climate models. The model data are compared with available proxy data reconstructions (e.g. tree rings) for 6000 years ago to identify whether the models are reliable. Places where there is both agreement and conflict are highlighted and investigated further.
Anne Dallmeyer, Martin Claussen, Jian Ni, Xianyong Cao, Yongbo Wang, Nils Fischer, Madlene Pfeiffer, Liya Jin, Vyacheslav Khon, Sebastian Wagner, Kerstin Haberkorn, and Ulrike Herzschuh
Clim. Past, 13, 107–134, https://doi.org/10.5194/cp-13-107-2017, https://doi.org/10.5194/cp-13-107-2017, 2017
Short summary
Short summary
The vegetation distribution in eastern Asia is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate–vegetation relationship is lacking. To assess the Holocene vegetation change, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient climate simulations.
Xinyu Wen, Zhengyu Liu, Zhongxiao Chen, Esther Brady, David Noone, Qingzhao Zhu, and Jian Guan
Clim. Past, 12, 2077–2085, https://doi.org/10.5194/cp-12-2077-2016, https://doi.org/10.5194/cp-12-2077-2016, 2016
Short summary
Short summary
In this paper, we challenge the usefulness of temperature effect and amount effect, the basic assumptions in past climate reconstruction using a stable water isotope proxy, in East Asia on multiple timescales. By modeling several time slices in the past 22 000 years using an isotope-enabled general circulation model, we suggest great caution when interpreting δ18O records in this area as indicators of surface temperature and/or local monsoonal precipitation, especially on a millennial timescale.
Emmanuele Russo and Ulrich Cubasch
Clim. Past, 12, 1645–1662, https://doi.org/10.5194/cp-12-1645-2016, https://doi.org/10.5194/cp-12-1645-2016, 2016
Short summary
Short summary
In this study we use a RCM for three different goals.
Proposing a model configuration suitable for paleoclimate studies; evaluating the added value of a regional climate model for paleoclimate studies; investigating temperature evolution of the European continent during mid-to-late Holocene.
Results suggest that the RCM seems to produce results in better agreement with reconstructions than its driving GCM. Simulated temperature evolution seems to be too sensitive to changes in insolation.
Yurui Zhang, Hans Renssen, and Heikki Seppä
Clim. Past, 12, 1119–1135, https://doi.org/10.5194/cp-12-1119-2016, https://doi.org/10.5194/cp-12-1119-2016, 2016
Short summary
Short summary
We explore how forcings contributed to climate change during the early Holocene that marked the final transition to the warm and stable stage. Our results indicate that 1) temperature at the Holocene onset was lower than in the preindustrial over the northern extratropics with the exception in Alaska, and the magnitude of this cooling varies regionally as a response to varying climate forcings and diverse mechanisms, and 2) the rate of the early Holocene warming was also spatially heterogeneous.
M. Clare Smith, Joy S. Singarayer, Paul J. Valdes, Jed O. Kaplan, and Nicholas P. Branch
Clim. Past, 12, 923–941, https://doi.org/10.5194/cp-12-923-2016, https://doi.org/10.5194/cp-12-923-2016, 2016
Short summary
Short summary
We used climate modelling to estimate the biogeophysical impacts of agriculture on the climate over the last 8000 years of the Holocene. Our results show statistically significant surface temperature changes (mainly cooling) from as early as 7000 BP in the JJA season and throughout the entire annual cycle by 2–3000 BP. The changes were greatest in the areas of land use change but were also seen in other areas. Precipitation was also affected, particularly in Europe, India, and the ITCZ region.
Sabine Egerer, Martin Claussen, Christian Reick, and Tanja Stanelle
Clim. Past, 12, 1009–1027, https://doi.org/10.5194/cp-12-1009-2016, https://doi.org/10.5194/cp-12-1009-2016, 2016
Short summary
Short summary
We demonstrate for the first time the direct link between dust accumulation in marine sediment cores and Saharan land surface by simulating the mid-Holocene and pre-industrial dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6-HAM2.1. Mid-Holocene surface characteristics, including vegetation cover and lake surface area, are derived from proxy data and simulations.
S. C. Lewis and A. N. LeGrande
Clim. Past, 11, 1347–1360, https://doi.org/10.5194/cp-11-1347-2015, https://doi.org/10.5194/cp-11-1347-2015, 2015
P. J. Bartlein, M. E. Edwards, S. W. Hostetler, S. L. Shafer, P. M. Anderson, L. B. Brubaker, and A. V. Lozhkin
Clim. Past, 11, 1197–1222, https://doi.org/10.5194/cp-11-1197-2015, https://doi.org/10.5194/cp-11-1197-2015, 2015
Short summary
Short summary
The ongoing warming of the Arctic is producing changes in vegetation and hydrology that, coupled with rising sea level, could mediate global changes. We explored this possibility using regional climate model simulations of a past interval of warming in Beringia and found that the regional-scale changes do strongly mediate the responses to global changes, amplifying them in some cases, damping them in others, and, overall, generating considerable spatial heterogeneity in climate change.
F. J. Davies, H. Renssen, M. Blaschek, and F. Muschitiello
Clim. Past, 11, 571–586, https://doi.org/10.5194/cp-11-571-2015, https://doi.org/10.5194/cp-11-571-2015, 2015
J. R. Alder and S. W. Hostetler
Clim. Past, 11, 449–471, https://doi.org/10.5194/cp-11-449-2015, https://doi.org/10.5194/cp-11-449-2015, 2015
G.-S. Chen, Z. Liu, and J. E. Kutzbach
Clim. Past, 10, 1269–1275, https://doi.org/10.5194/cp-10-1269-2014, https://doi.org/10.5194/cp-10-1269-2014, 2014
F. Klein, H. Goosse, A. Mairesse, and A. de Vernal
Clim. Past, 10, 1145–1163, https://doi.org/10.5194/cp-10-1145-2014, https://doi.org/10.5194/cp-10-1145-2014, 2014
A. Perez-Sanz, G. Li, P. González-Sampériz, and S. P. Harrison
Clim. Past, 10, 551–568, https://doi.org/10.5194/cp-10-551-2014, https://doi.org/10.5194/cp-10-551-2014, 2014
Z. Tian and D. Jiang
Clim. Past, 9, 2153–2171, https://doi.org/10.5194/cp-9-2153-2013, https://doi.org/10.5194/cp-9-2153-2013, 2013
J. J. Gómez-Navarro, J. P. Montávez, S. Wagner, and E. Zorita
Clim. Past, 9, 1667–1682, https://doi.org/10.5194/cp-9-1667-2013, https://doi.org/10.5194/cp-9-1667-2013, 2013
R. O'ishi and A. Abe-Ouchi
Clim. Past, 9, 1571–1587, https://doi.org/10.5194/cp-9-1571-2013, https://doi.org/10.5194/cp-9-1571-2013, 2013
R. Ohgaito, T. Sueyoshi, A. Abe-Ouchi, T. Hajima, S. Watanabe, H.-J. Kim, A. Yamamoto, and M. Kawamiya
Clim. Past, 9, 1519–1542, https://doi.org/10.5194/cp-9-1519-2013, https://doi.org/10.5194/cp-9-1519-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
M. Berger, J. Brandefelt, and J. Nilsson
Clim. Past, 9, 969–982, https://doi.org/10.5194/cp-9-969-2013, https://doi.org/10.5194/cp-9-969-2013, 2013
Cited articles
Adkins, J., deMenocal, P., and Eshel, G.: The “African humid period” and
the record of marine upwelling from excess 230Th in Ocean Drilling Program Hole 658C, Paleoceanography, 21, PA4203, https://doi.org/10.1029/2005PA001200, 2006.
Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S., Gajewski, K., Guiot, J., Harrison-Prentice, T. I., Henderson, A., Peyron, O., and Prentice, I. C.: Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis, Clim Dynam., 37, 775–802, https://doi.org/10.1007/s00382-010-0904-1, 2010.
Bercos-Hickey, E., Nathan, T. R., and Chen, S.-H.: On the relationship between the African Easterly Jet, Saharan Mineral Dust Aerosols, and West
African Precipitation, J. Climate, 33, 3533–3546, https://doi.org/10.1175/jcli-d-18-0661.1, 2020.
Berger, A.: Milankovitch theory and climate, Rev. Geophys., 26, 624–657,
https://doi.org/10.1029/RG026i004p00624, 1988.
Biasutti, M. and Sobel, A. H.: Delayed Sahel rainfall and global seasonal
cycle in a warmer climate, Geophys. Res. Lett., 36, L23707,
https://doi.org/10.1029/2009gl041303, 2009.
Braconnot, P., Joussaume, S., Marti, O., and De Noblet, N.: Synergistic
feedbacks from ocean and vegetation on the African monsoon response to
mid-Holocene insolation, Geophys. Res. Lett., 26, 2481–2484,
https://doi.org/10.1029/1999GL006047, 1999.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J. Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, T., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, https://doi.org/10.5194/cp-3-261-2007, 2007.
Braconnot, P., Albani, S., Balkanski, Y., Cozic, A., Kageyama, M., Sima, A.,
Marti, O., and Peterschmitt, J.-Y.: Impact of dust in PMIP-CMIP6 mid-Holocene simulations with the IPSL model, Clim. Past, 17, 1091–1117,
https://doi.org/10.5194/cp-17-1091-2021, 2021.
Brierley, C. M., Zhao, A., Harrison, S. P., Braconnot, P., Williams, C. J.,
Thornalley, D. J. R., Shi, X., Peterschmitt, J.-Y., Ohgaito, R., Kaufman, D.
S., Kageyama, M., Hargreaves, J. C., Erb, M. P., Emile-Geay, J., D'Agostino,
R., Chandan, D., Carré, M., Bartlein, P. J., Zheng, W., Zhang, Z., Zhang, Q., Yang, H., Volodin, E. M., Tomas, R. A., Routson, C., Peltier, W. R., Otto-Bliesner, B., Morozova, P. A., McKay, N. P., Lohmann, G., Legrande, A. N., Guo, C., Cao, J., Brady, E., Annan, J. D., and Abe-Ouchi, A.: Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations, Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, 2020.
Broström, A., Coe, M., Harrison, S. P., Gallimore, R., Kutzbach, J. E.,
Foley, J., Prentice, I. C., and Behling, P.: Land surface feedbacks and
palaeomonsoons in northern Africa, Geophys. Res. Lett., 25, 3615–3618,
https://doi.org/10.1029/98gl02804, 1998.
Budyko, M. I. and Miller, D. H. (Eds.): Climate and life, Academic Press, New York, ISBN 0121394506, 1974.
Carrington, D. P., Gallimore, R. G., and Kutzbach, J. E.: Climate sensitivity to wetlands and wetland vegetation in mid-Holocene North Africa, Clim. Dynam., 17, 151–157, https://doi.org/10.1007/s003820000099, 2001.
Cauquoin, A., Werner, M., and Lohmann, G.: Water isotopes – climate relationships for the mid-Holocene and preindustrial period simulated with
an isotope-enabled version of MPI-ESM, Clim. Past, 15, 1913–1937, https://doi.org/10.5194/cp-15-1913-2019, 2019.
Chandan, D. and Peltier, W. R.: African Humid Period Precipitation Sustained by Robust Vegetation, Soil, and Lake Feedbacks, Geophys. Res. Lett., 47, e2020GL088728, https://doi.org/10.1029/2020gl088728, 2020.
Cheddadi, R., Carre, M., Nourelbait, M., Francois, L., Rhoujjati, A., Manay,
R., Ochoa, D., and Schefuß, E.: Early Holocene greening of the Sahara requires Mediterranean winter rainfall, P. Natl. Acad. Sci. USA, 118, e2024898118, https://doi.org/10.1073/pnas.2024898118, 2021.
Chen, W.: Wetlands of North African during mid-Holocene, Mendeley Data [data set], https://doi.org/10.17632/8vfhhv8s2f.1, 2021.
Chen, W., Ciais, P., Zhu, D., Ducharne, A., Viovy, N., Qiu, C., and Huang, C.: Feedbacks of soil properties on vegetation during the Green Sahara
period, Quaternary Sci. Rev., 240, 106389, https://doi.org/10.1016/j.quascirev.2020.106389, 2020.
Chen, W., Ciais, P., Qiu, C., Ducharne, A., Zhu, D., Peng, S., Braconnot, P., and Huang, C.: Wetlands of North Africa During the Mid-Holocene Were at Least Five Times the Area Today. Geophys. Res. Lett., 48, e2021GL094194,
https://doi.org/10.1029/2021gl094194, 2021.
Claussen, M., Dallmeyer, A., and Bader, J.: Theory and Modeling of the African Humid Period and the Green Sahara, in: Oxford Research Encyclopedia of Climate Science, Oxford University Press, https://doi.org/10.1093/acrefore/9780190228620.013.532, 2017.
Comas-Bru, L., Harrison, S. P., Werner, M., Rehfeld, K., Scroxton, N., Veiga-Pires, C., and S. W. G. members: Evaluating model outputs using
integrated global speleothem records of climate change since the last
glacial, Clim. Past, 15, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, 2019.
Comas-Bru, L., Rehfeld, K., Roesch, C., Amirnezhad-Mozhdehi, S., Harrison,
S. P., Atsawawaranunt, K., Ahmad, S. M., Brahim, Y. A., Baker, A., Bosomworth, M., Breitenbach, S. F. M., Burstyn, Y., Columbu, A., Deininger,
M., Demény, A., Dixon, B., Fohlmeister, J., Hatvani, I. G., Hu, J.,
Kaushal, N., Kern, Z., Labuhn, I., Lechleitner, F. A., Lorrey, A., Martrat,
B., Novello, V. F., Oster, J., Pérez-Mejías, C., Scholz, D., Scroxton, N., Sinha, N., Ward, B. M., Warken, S., Zhang, H., and SISAL Working Group members: SISALv2: a comprehensive speleothem isotope database
with multiple age–depth models, Earth Syst. Sci. Data, 12, 2579–2606,
https://doi.org/10.5194/essd-12-2579-2020, 2020a.
Comas-Bru, L., Atsawawaranunt, K., Harrison, S., and SISAL working group members: SISAL (Speleothem Isotopes Synthesis and AnaLysis Working Group) database version 2.0, University of Reading [data set], https://doi.org/10.17864/1947.256, 2020b.
Dallmeyer, A., Claussen, M., Lorenz, S. J., and Shanahan, T.: The end of the
African humid period as seen by a transient comprehensive Earth system model
simulation of the last 8000 years, Clim. Past, 16, 117–140,
https://doi.org/10.5194/cp-16-117-2020, 2020.
Duque-Villegas, M., Claussen, M., Brovkin, V., and Kleinen, T.: Effects of
orbital forcing, greenhouse gases and ice sheets on Saharan greening in past
and future multi-millennia, Clim. Past, 18, 1897–1914, https://doi.org/10.5194/cp-18-1897-2022, 2022.
Fudge, T. J., Steig, E. J., Markle, B. R., Schoenemann, S. W., Ding, Q., Taylor, K. C., and W. D. P. Members: Onset of deglacial warming in West
Antarctica driven by local orbital forcing, Nature, 500, 440–444,
https://doi.org/10.1038/nature12376, 2013.
Gasse, F.: Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Sci. Rev., 19, 189–211, https://doi.org/10.1016/S0277-3791(99)00061-X, 2000.
Harrison, S. P., Bartlein, P. J., Izumi, K., Li, G., Annan, J., Hargreaves,
J., Braconnot, P., and Kageyama, M.: Evaluation of CMIP5 palaeo-simulations
to improve climate projections, Nat. Clim. Change, 5, 735–743,
https://doi.org/10.1038/nclimate2649, 2015.
Hoelzmann, P., Jolly, D., Harrison, S. P., Laarif, F., Bonnefille, R., and
Pachur, H. J.: Mid-Holocene land-surface conditions in northern Africa and
the Arabian Peninsula: A data set for the analysis of biogeophysical
feedbacks in the climate system, Global Biogeochem. Cy., 12, 35–51,
https://doi.org/10.1029/97gb02733, 1998.
Holmes, J. and Hoelzmann, P.: The late pleistocene-holocene African humid
period as evident in lakes, in: Oxford Research Encyclopedia of Climate
Science, Oxford University Press, https://doi.org/10.1093/acrefore/9780190228620.013.531, 2017.
Hopcroft, P. O. and Valdes, P. J.: On the Role of Dust-Climate Feedbacks
During the Mid-Holocene, Geophys. Res. Lett., 46, 1612–1621,
https://doi.org/10.1029/2018gl080483, 2019.
Joly, M. and Voldoire, A.: Influence of ENSO on the West African Monsoon:
Temporal Aspects and Atmospheric Processes, J. Climate, 22, 3193–3210,
https://doi.org/10.1175/2008JCLI2450.1, 2009.
Kino, K., Okazaki, A., Cauquoin, A., and Yoshimura, K.: Contribution of the
Southern Annular Mode to Variations in Water Isotopes of Daily Precipitation
at Dome Fuji, East Antarctica, J. Geophys. Res.-Atmos., 126, e2021JD035397,
https://doi.org/10.1029/2021JD035397, 2021.
Klein, C., Heinzeller, D., Bliefernicht, J., and Kunstmann, H.: Variability
of West African monsoon patterns generated by a WRF multi-physics ensemble,
Clim. Dynam., 45, 2733–2755, https://doi.org/10.1007/s00382-015-2505-5, 2015.
Krinner, G., Lézine, A. M., Braconnot, P., Sepulchre, P., Ramstein, G.,
Grenier, C., and Gouttevin, I.: A reassessment of lake and wetland feedbacks
on the North African Holocene climate, Geophys. Res. Lett., 39, L07701,
https://doi.org/10.1029/2012GL050992, 2012.
Kuete, G., Mba, W. P., James, R., Dyer, E., Annor, T., and Washington, R.:
How do coupled models represent the African Easterly Jets and their associated dynamics over Central Africa during the September–November rainy
season?, Clim. Dynam., 60, 2907–2929, https://doi.org/10.1007/s00382-022-06467-y, 2022.
Kutzbach, J., Bonan, G., Foley, J., and Harrison, S. P.: Vegetation and soil
feedbacks on the response of the African monsoon to orbital forcing in the
early to middle Holocene, Nature, 384, 623–626, https://doi.org/10.1038/384623a0, 1996.
Kutzbach, J. E. and Liu, Z.: Response of the African Monsoon to Orbital Forcing and Ocean Feedbacks in the Middle Holocene, Science, 278, 440–443, https://doi.org/10.1126/science.278.5337.440, 1997.
Kutzbach, J. E., Guan, J., He, F., Cohen, A. S., Orland, I. J., and Chen, G.: African climate response to orbital and glacial forcing in 140,000-y simulation with implications for early modern human environments, P. Natl. Acad. Sci. USA, 117, 2255–2264, https://doi.org/10.1073/pnas.1917673117, 2020.
Larrasoaña, J. C., Roberts, A. P., and Rohling, E. J.: Dynamics of green
Sahara periods and their role in hominin evolution, PloS One, 8, e76514,
https://doi.org/10.1371/journal.pone.0076514, 2013.
Lavaysse, C., Flamant, C., and Janicot, S.: Regional-scale convection patterns during strong and weak phases of the Saharan heat low, Atmos. Sci.
Lett., 11, 255–264, https://doi.org/10.1002/asl.284, 2010.
Liu, X., Xie, X., Guo, Z., Yin, Z. Y., and Chen, G.: Model-based distinct
characteristics and mechanisms of orbital-scale precipitation δ18O
variations in Asian monsoon and arid regions during late Quaternary, Natl.
Sci. Rev., 9, nwac182, https://doi.org/10.1093/nsr/nwac182, 2022.
Messori, G., Gaetani, M., Zhang, Q., Zhang, Q., and Pausata, F. S. R.: The
water cycle of the mid-Holocene West African monsoon: The role of vegetation
and dust emission changes, Int. J. Climatol., 39, 1927–1939,
https://doi.org/10.1002/joc.5924, 2018.
National Geophysical Data Center: 5-minute Gridded Global Relief Data (ETOPO5) National Geophysical Data Center, NOAA [data set], https://doi.org/10.7289/V5D798BF, 1993.
Ngoungue Langue, C. G., Lavaysse, C., Vrac, M., Peyrillé, P., and Flamant, C.: Seasonal forecasts of the Saharan heat low characteristics: a
multi-model assessment, Weather Clim. Dynam., 2, 893–912,
https://doi.org/10.5194/wcd-2-893-2021, 2021.
Nicholson, S. E.: On the factors modulating the intensity of the tropical
rainbelt over West Africa, Int. J. Climatol., 29, 673–689, https://doi.org/10.1002/joc.1702, 2009.
Nicholson, S. E. and Klotter, D.: The Tropical Easterly Jet over Africa, its representation in six reanalysis products, and its association with Sahel rainfall, Int. J. Climatol., 41, 328–347, https://doi.org/10.1002/joc.6623, 2020.
Ohgaito, R., Yamamoto, A., Hajima, T., O'ishi, R., Abe, M., Tatebe, H., Abe-Ouci, A., and Kawamiya, M.: PMIP4 experiments using MIROC-ES2L Earth
system model, Geosci. Model Dev., 14, 1195–1217, https://doi.org/10.5194/gmd-14-1195-2021, 2021.
O'Ishi, R. and Abe-Ouchi, A.: Polar amplification in the mid-Holocene derived from dynamical vegetation change with a GCM, Geophys. Res. Lett., 38, L14702, https://doi.org/10.1029/2011gl048001, 2011.
Okazaki, A. and Yoshimura, K.: Global Evaluation of Proxy System Models for
Stable Water Isotopes With Realistic Atmospheric Forcing, J. Geophys. Res.-Atmos., 124, 8972–8993, https://doi.org/10.1029/2018jd029463, 2019 (code available at http://isotope.iis.u-tokyo.ac.jp:8000/gitlab/miroc-iso/miroc5-iso, last access: 15 May 2022).
Otto-Bliesner, B. L., Braconnot, P., Harrison, S. P., Lunt, D. J., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Capron, E., Carlson, A. E., Dutton, A., Fischer, H., Goelzer, H., Govin, A., Haywood, A., Joos, F., LeGrande, A. N., Lipscomb, W. H., Lohmann, G., Mahowald, N., Nehrbass-Ahles, C., Pausata, F. S. R., Peterschmitt, J.-Y., Phipps, S. J., Renssen, H., and Zhang, Q.: The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations, Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, 2017.
Perez-Sanz, A., Li, G., González-Sampériz, P., and Harrison, S. P.:
Evaluation of modern and mid-Holocene seasonal precipitation of the
Mediterranean and northern Africa in the CMIP5 simulations, Clim. Past, 10,
551–568, https://doi.org/10.5194/cp-10-551-2014, 2014.
Quade, J., Dente, E., Armon, M., Ben Dor, Y., Morin, E., Adam, O., and Enzel, Y.: Megalakes in the Sahara? A Review, Quatern. Res., 90, 253–275,
https://doi.org/10.1017/qua.2018.46, 2018.
Risi, C., Bony, S., Vimeux, F., and Jouzel, J.: Water-stable isotopes in the
LMDZ4 general circulation model: Model evaluation for present-day and past
climates and applications to climatic interpretations of tropical isotopic
records, J. Geophys. Res.-Atmos., 115, D12118, https://doi.org/10.1029/2009JD013255, 2010.
Schmidt, G. A., LeGrande, A. N., and Hoffmann, G.: Water isotope expressions
of intrinsic and forced variability in a coupled ocean-atmosphere model, J.
Geophys. Res., 112, D10103, https://doi.org/10.1029/2006JD007781, 2007.
Specht, N. F., Claussen, M., and Kleinen, T.: Simulated range of mid-Holocene precipitation changes from extended lakes and wetlands over North Africa, Clim. Past, 18, 1035–1046, https://doi.org/10.5194/cp-18-1035-2022, 2022 (data available at http://hdl.handle.net/21.11116/0000-0009-63B5-B, last access: 13 May 2022).
Steinig, S., Harlaß, J., Park, W., and Latif, M.: Sahel rainfall strength and onset improvements due to more realistic Atlantic cold tongue development in a climate model, Sci. Rep., 8, 2569, https://doi.org/10.1038/s41598-018-20904-1, 2018.
Sundqvist, H. S., Kaufman, D. S., McKay, N. P., Balascio, N. L., Briner, J.
P., Cwynar, L. C., Sejrup, H. P., Seppä, H., Subetto, D. A., Andrews, J.
T., Axford, Y., Bakke, J., Birks, H. J. B., Brooks, S. J., de Vernal, A.,
Jennings, A. E., Ljungqvist, F. C., Rühland, K. M., Saenger, C., Smol,
J. P., and Viau, A. E.: Arctic Holocene proxy climate database – new approaches to assessing geochronological accuracy and encoding climate
variables, Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, 2014.
Takata, K., Emori, S., and Watanabe, T.: Development of the minimal advanced
treatments of surface interaction and runoff, Global Planet. Change, 38,
209–222, https://doi.org/10.1016/S0921-8181(03)00030-4, 2003.
Tegen, I., Harrison, S. P., Kohfeld, K., Prentice, I. C., Coe, M., and Heimann, M.: Impact of vegetation and preferential source areas on global
dust aerosol: Results from a model study, J. Geophys. Res.-Atmos., 107,
4576, https://doi.org/10.1029/2001jd000963, 2002.
Tharammal, T., Bala, G., Paul, A., Noone, D., Contreras-Rosales, A., and
Thirumalai, K.: Orbitally driven evolution of Asian monsoon and stable water
isotope ratios during the Holocene: Isotope-enabled climate model
simulations and proxy data comparisons, Quaternary Sci. Rev., 252, 106743,
https://doi.org/10.1016/j.quascirev.2020.106743, 2021.
Thiery, W., Davin, E. L., Panitz, H.-J., Demuzere, M., Lhermitte, S., and
van Lipzig, N.: The Impact of the African Great Lakes on the Regional
Climate, J. Climate, 28, 4061–4085, https://doi.org/10.1175/jcli-d-14-00565.1, 2015.
Thompson, A. J., Zhu, J., Poulsen, C. J., Tierney, J. E., and Skinner, C. B.: Northern Hemisphere vegetation change drives a Holocene thermal maximum, Sci. Adv., 8, eabj6535, https://doi.org/10.1126/sciadv.abj6535, 2022.
Thorncroft, C. D., Nguyen, H., Zhang, C., and Peyrillé, P.: Annual cycle
of the West African monsoon: regional circulations and associated water
vapour transport, Q. J. Roy. Meteorol. Soc., 137, 129–147, https://doi.org/10.1002/qj.728, 2011.
Tootchi, A., Jost, A., and Ducharne, A.: Multi-source global wetland maps
combining surface water imagery and groundwater constraints, Earth Syst.
Sci. Data, 11, 189–220, https://doi.org/10.5194/essd-11-189-2019, 2019.
Watanabe, M., Suzuki, T., O'ishi, R., Komuro, Y., Watanabe, S., Emori, S.,
Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki, D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M.: Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate
Sensitivity, J. Climate, 23, 6312–6335, https://doi.org/10.1175/2010jcli3679.1, 2010.
Zhao, Y., Braconnot, P., Marti, O., Harrison, S. P., Hewitt, C., Kitoh, A., Liu, Z., Mikolajewicz, U., Otto-Bilesmer, B., and Weber, S. L.: A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-Holocene, Clim. Dynam., 25, 777–800, https://doi.org/10.1007/s00382-005-0075-7, 2005.
Short summary
Our study using the isotope-enabled climate model MIROC5-iso model shows that lakes may have contributed to the Green Sahara during the mid-Holocene period (6000 years ago). The lakes induced cyclonic circulation response, enhancing the near-surface monsoon westerly flow and potentially humidifying the northwestern Sahara with the stronger West African Monsoon moving northward. Our findings provide valuable insights into understanding the presence of the Green Sahara during this period.
Our study using the isotope-enabled climate model MIROC5-iso model shows that lakes may have...