Articles | Volume 19, issue 7
https://doi.org/10.5194/cp-19-1461-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1461-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The effect of the Pliocene temperature pattern on silicate weathering and Pliocene–Pleistocene cooling
Department Earth and Planetary Sciences, University of California, Berkeley, USA
John C. H. Chiang
Department of Geography, University of California, Berkeley, USA
Nicholas L. Swanson-Hysell
Department Earth and Planetary Sciences, University of California, Berkeley, USA
Related authors
Pierre Maffre, Yves Goddéris, Guillaume Le Hir, Élise Nardin, Anta-Clarisse Sarr, and Yannick Donnadieu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-220, https://doi.org/10.5194/gmd-2024-220, 2024
Preprint under review for GMD
Short summary
Short summary
A new version (v7) of the numerical model GEOCLIM is presented here. GEOCLIM models the evolution of ocean and atmosphere chemical composition on multi-million years timescale, including carbon and oxygen cycles, CO2 and climate. GEOCLIM is associated to a climate model, and a new procedure to link the climate model to GEOCLIM is presented here. GEOCLIM is applied here to investigate the evolution of ocean oxygenation following Earth's orbital parameter variations, around 94 million years ago.
Vincent Regard, Rafael Almar, Marcan Graffin, Sébastien Carretier, Edward Anthony, Roshanka Ranasinghe, and Pierre Maffre
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-165, https://doi.org/10.5194/nhess-2023-165, 2023
Publication in NHESS not foreseen
Short summary
Short summary
The erosion of sandy beaches affects human activities and ecosystems. Research has mainly focused on sea level and wave changes, and while localized sediment research is abundant, the global effect of reduced fluvial sediment supply remains unexplored. This study presents a global sediment model that demonstrates the significant impact of river dams on beach erosion worldwide. Sediment can travel long distances via wave-induced transport, often away from river outlets.
Pierre Maffre, Yves Goddéris, Guillaume Le Hir, Élise Nardin, Anta-Clarisse Sarr, and Yannick Donnadieu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-220, https://doi.org/10.5194/gmd-2024-220, 2024
Preprint under review for GMD
Short summary
Short summary
A new version (v7) of the numerical model GEOCLIM is presented here. GEOCLIM models the evolution of ocean and atmosphere chemical composition on multi-million years timescale, including carbon and oxygen cycles, CO2 and climate. GEOCLIM is associated to a climate model, and a new procedure to link the climate model to GEOCLIM is presented here. GEOCLIM is applied here to investigate the evolution of ocean oxygenation following Earth's orbital parameter variations, around 94 million years ago.
Vincent Regard, Rafael Almar, Marcan Graffin, Sébastien Carretier, Edward Anthony, Roshanka Ranasinghe, and Pierre Maffre
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-165, https://doi.org/10.5194/nhess-2023-165, 2023
Publication in NHESS not foreseen
Short summary
Short summary
The erosion of sandy beaches affects human activities and ecosystems. Research has mainly focused on sea level and wave changes, and while localized sediment research is abundant, the global effect of reduced fluvial sediment supply remains unexplored. This study presents a global sediment model that demonstrates the significant impact of river dams on beach erosion worldwide. Sediment can travel long distances via wave-induced transport, often away from river outlets.
Sol Kim, L. Ruby Leung, Bin Guan, and John C. H. Chiang
Geosci. Model Dev., 15, 5461–5480, https://doi.org/10.5194/gmd-15-5461-2022, https://doi.org/10.5194/gmd-15-5461-2022, 2022
Short summary
Short summary
The Energy Exascale Earth System Model (E3SM) project is a state-of-the-science Earth system model developed by the US Department of Energy (DOE). Understanding how the water cycle behaves in this model is of particular importance to the DOE’s mission. Atmospheric rivers (ARs) – which are crucial to the global water cycle – move vast amounts of water vapor through the sky and produce rain and snow. We find that this model reliably represents atmospheric rivers around the world.
W.-C. Hsieh, W. D. Collins, Y. Liu, J. C. H. Chiang, C.-L. Shie, K. Caldeira, and L. Cao
Atmos. Chem. Phys., 13, 7489–7510, https://doi.org/10.5194/acp-13-7489-2013, https://doi.org/10.5194/acp-13-7489-2013, 2013
Cited articles
Berner, R. A., Lasaga, A. C., and Garrels, R. M.: The carbonate-silicate
geochemical cycle and its effect on atmospheric carbon dioxide over the past
100 million years, Am. J. Sci., 283, 641–683, https://doi.org/10.2475/ajs.283.7.641, 1983. a
Brierley, C. M. and Fedorov, A. V.: Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and
Pliocene-Pleistocene climate evolution: SST GRADIENTS AND ICE
AGES, Paleoceanography, 25, PA2214, https://doi.org/10.1029/2009PA001809, 2010. a
Cannariato, K. G. and Ravelo, A. C.: Pliocene-Pleistocene evolution of
eastern tropical Pacific surface water circulation and thermocline depth,
Paleoceanography, 12, 805–820, https://doi.org/10.1029/97PA02514, 1997. a
Deser, C., Phillips, A. S., Tomas, R. A., Okumura, Y. M., Alexander, M. A., Capotondi, A., Scott, J. D., Kwon, Y.-O., and Ohba, M.: ENSO and Pacific Decadal Variability in the Community Climate System Model Version 4, J. Climate, 25, 2622–2651, https://doi.org/10.1175/JCLI-D-11-00301.1, 2012. a
Dessert, C., Dupré, B., Gaillardet, J., François, L. M., and Allègre, C. J.:
Basalt weathering laws and the impact of basalt weathering on the global
carbon cycle, Chem. Geol., 202, 257–273, https://doi.org/10.1016/j.chemgeo.2002.10.001, 2003.
a
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.:
The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007. a
Fedorov, A. V., Dekens, P. S., McCarthy, M., Ravelo, A. C., deMenocal, P. B.,
Barreiro, M., Pacanowski, R. C., and Philander, S. G.: The Pliocene
Paradox (Mechanisms for a Permanent El Niño), Science, 312,
1485–1489, https://doi.org/10.1126/science.1122666, 2006. a
Fedorov, A. V., Brierley, C. M., Lawrence, K. T., Liu, Z., Dekens, P. S., and
Ravelo, A. C.: Patterns and mechanisms of early Pliocene warmth, Nature,
496, 43–49, https://doi.org/10.1038/nature12003, 2013. a, b
Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: Global, composite runoff
fields based on observed river discharge and simulated water balances,
Global Runoff Data Centre Koblenz, Germany, https://www.compositerunoff.sr.unh.edu/ (last access: 1 December 2019), 1999. a
Gabet, E. J. and Mudd, S. M.: A theoretical model coupling chemical weathering rates with denudation rates, Geology, 37, 151–154, https://doi.org/10.1130/G25270A.1, 2009. a
Gaillardet, J., Dupré, B., Louvat, P., and Allègre, C. J.: Global silicate
weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chem. Geol., 159, 3–30, https://doi.org/10.1016/S0009-2541(99)00031-5,
1999. a
Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated high-resolution
grids of monthly climatic observations - the CRU TS3.10 Dataset:
Updated High-Resolution Grids Of Monthly Climatic Observations, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014. a
Hartmann, J. and Moosdorf, N.: The new global lithological map database GLiM: A representation of rock properties at the Earth surface, Geochem. Geophy. Geosy., 13, Q12004, https://doi.org/10.1029/2012GC004370, 2012. a
Herbert, T. D., Dalton, C. A., Liu, Z., Salazar, A., Si, W., and Wilson, D. S.: Tectonic degassing drove global temperature trends since 20 Ma, Science, 377, 116–119, https://doi.org/10.1126/science.abl4353, 2022. a, b
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers,
D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly
averaged data on single levels from 1979 to present, CDS,
https://doi.org/10.24381/CDS.F17050D7, 2019. a, b
Kukla, T., Ibarra, D., Lau, K. V., and Rugenstein, J. K. C.: All aboard! Earth system investigations with the CH2O-CHOO TRAIN v1.0, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1000, 2022. a
Langenbrunner, B.: The pattern effect and climate sensitivity, Nat. Clim.
Change, 10, 977–977, https://doi.org/10.1038/s41558-020-00946-y, 2020.
a
LaRiviere, J. P., Ravelo, A. C., Crimmins, A., Dekens, P. S., Ford, H. L.,
Lyle, M., and Wara, M. W.: Late Miocene decoupling of oceanic warmth and
atmospheric carbon dioxide forcing, Nature, 486, 97–100,
https://doi.org/10.1038/nature11200, 2012. a, b, c
Maffre, P., Ladant, J.-B., Moquet, J.-S., Carretier, S., Labat, D., and
Goddéris, Y.: Mountain ranges, climate and weathering. Do orogens
strengthen or weaken the silicate weathering carbon sink?, Earth Planet. Sc. Lett., 493, 174–185, https://doi.org/10.1016/j.epsl.2018.04.034, 2018. a
Maffre, P., Swanson-Hysell, N., and Park, Y.: piermafrost/GEOCLIM-dynsoil-steady-state: version compatible with Maffre et al. (2023) Clim Past, Zenodo [code], https://doi.org/10.5281/zenodo.8013407, 2023a. a
Maffre, P., Chiang, J., and Swanson-Hysell, N.: Data for: The effect of Pliocene regional climate changes on silicate weathering, Dryad [data set], https://doi.org/10.6078/D11H7D, 2023b. a
Maher, K. and Chamberlain, C. P.: Hydrologic Regulation of Chemical
Weathering and the Geologic Carbon Cycle, Science, 343, 1502–1504,
https://doi.org/10.1126/science.1250770, 2014. a
Molnar, P. and Cane, M. A.: El Niño's tropical climate and teleconnections
as a blueprint for pre-Ice Age climates., Paleoceanography, 17,
11-1–11-11, https://doi.org/10.1029/2001PA000663, 2002. a
Molnar, P. and Cronin, T. W.: Growth of the Maritime Continent and its
possible contribution to recurring Ice Ages: Maritime Continent
Growth and Ice Ages, Paleoceanography, 30, 196–225,
https://doi.org/10.1002/2014PA002752, 2015. a, b, c
Muñoz Sabater, J.: ERA5-Land monthly averaged data from 2001 to present, CDS, https://doi.org/10.24381/CDS.68D2BB30, 2019. a, b
Oliva, P., Viers, J., and Dupré, B.: Chemical weathering in granitic
environments, Chem. Geol., 202, 225–256, https://doi.org/10.1016/j.chemgeo.2002.08.001, 2003. a
Ravelo, A. C.: The Role of the Tropical Oceans on Global Climate
During a Warm Period and a Major Climate Transition, Oceanography, 17, 32–41, https://doi.org/10.5670/oceanog.2004.28, 2004. a
Shukla, S. P., Chandler, M. A., Jonas, J., Sohl, L. E., Mankoff, K., and
Dowsett, H.: Impact of a permanent El Niño (El Padre) and Indian
Ocean Dipole in warm Pliocene climates, Paleoceanography, 24, PA2221,
https://doi.org/10.1029/2008PA001682, 2009. a
Trenberth, K. E. and Stepaniak, D. P.: Indices of El Niño Evolution,
J. Climate, 14, 1697–1701, https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2, 2001. a
Urey, H. C.: On the Early Chemical History of the Earth and the
Origin of Life, P. Natl. Acad. Sci. USA, 38, 351–363, https://doi.org/10.1073/pnas.38.4.351, 1952. a
Walker, J. C. G., Hays, P. B., and Kasting, J. F.: A negative feedback
mechanism for the long-term stabilization of Earth's surface temperature,
J. Geophys. Res., 86, 9776, https://doi.org/10.1029/JC086iC10p09776, 1981. a, b
Wara, M. W., Ravelo, A. C., and Delaney, M. L.: Permanent El Niño-Like
Conditions During the Pliocene Warm Period, Science, 309, 758–761,
https://doi.org/10.1126/science.1112596, 2005.
a
West, A. J.: Thickness of the chemical weathering zone and implications for
erosional and climatic drivers of weathering and for carbon-cycle feedbacks,
Geology, 40, 811–814, https://doi.org/10.1130/G33041.1, 2012. a
Zhang, Y. G., Pagani, M., and Liu, Z.: A 12-Million-Year Temperature
History of the Tropical Pacific Ocean, Science, 344, 84–87,
https://doi.org/10.1126/science.1246172, 2014.
a, b, c
Zhou, C., Zelinka, M. D., and Klein, S. A.: Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach, J. Adv. Model. Earth Syst., 9, 2174–2189, https://doi.org/10.1002/2017MS001096, 2017. a
Short summary
CO2 consumption by chemical alteration of continental silicate rocks regulates atmospheric CO2 and Earth's mean climate. The efficiency of this regulation is affected by the amount of continental precipitation and may have been reduced 3 to 4 million years ago because of different patterns of sea surface temperature. This process could have contributed to the warmer climate of that time.
CO2 consumption by chemical alteration of continental silicate rocks regulates atmospheric CO2...